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Abstract

By using normal forms and exact models, Sasaki (2010a) provided a
detailed description of the mutual relation of formulas with finite proposi-
tional variables p1, - - , pm in the modal logic S4. The description contains
more information on S4 than those given in Shehtman (1978) and Moss
(2007). In the present paper, we extend most of the results in Sasaki
(2010a) to normal modal logics containing the modal logic K4. Also, we
point out the exact models listed in Sasaki (2010a) are only the exact
S4-models.

1 Introduction

In the following three subsections, we introduce formulas, sequents, normal
modal logics, and some types of Kripke models. Also, in subsection 1.4, we
describe the purpose of the present paper.

1.1 Formulas and sequents

Formulas are constructed from L (contradiction) and the propositional vari-
ables p,q,p1,p2,-++ by using logical connectives A (conjunction), V (disjunc-
tion), D (implication), and O (necessitation). We use upper case Latin letters,
A,B,C,- -, with or without subscripts, for formulas. We refer to =4 as A D L.
Also, we use Greek letters, I'; A, -- -, with or without subscripts, for finite sets
of formulas. The expressions OI' and T denote the sets {JA4 | A € T'} and
{04 | OA € T'}, respectively. The depth d(A) of a formula A is defined as

d(p;) = d(L) =0,

d(BAC)=d(BVC)=d(B>C)=max{d(B),d(C)},

d(OB) =d(B) + 1.

The set of propositional variables py,--- ,pm (m > 1) is denoted by V and
the set of formulas constructed from V and L is denoted by F. Also, for any
n =0,1,---, we define F(n) as F(n) = {A € F | d(A) < n}. In the present
paper, we mainly treat the sets F and F(n).

A sequent is the expression (I' = A). We often refer to

Al:"' aAi:FI:"' 7Fj _>Ala"' :AkaBla"' :Bé



as
({4, A3UulhU-- UL = AyU---UALU{By,---,Be}).

We use upper case Latin letters X,Y, Z,---, with or without subscripts, for
sequents. The antecedent ant(I' — A) and the succedent suc(I' — A) of a
sequent I' = A are defined as

ant(l > A)=T and suc(l' —» A)=A,

respectively. Also, for a sequent X and a set S of sequents, we define for(X)
and for(S) as

[ Aant(X) D \/suc(X) if ant(X) # 0
for(X) = { \/ suc(X) if ant(X) = 0

and
for(S) = {for(X) | X € S}.

By the equivalence between (A3 A---AAg) D B and =A; V---V -4, VC in the
classical propositional logic CL, the set of sequent

ED =for({V-V -V |V CV}
means the set of elementary disjunctions

{pI V-~V | pi € {pi,—pi}}

in CL.

1.2 Normal modal logics

A normal modal logic is a set of formulas containing all tautologies and the
axiom O(p D ¢) D (Op D dg); and closed under modus ponens, substitution,
and necessitation (A/0A). By K, we mean the smallest normal modal logic.
For a normal modal logic L and a formula A, we refer to L + A as the smallest
normal modal logic including LU {A}. The normal modal logics K4 and S4 are
defined as

Ka=K+0OpD>0OOp and S4=K4+OpDp.

For a normal modal logic L, we use A =1, B instead of (A D B)A(B D A) € L
and use [A] <g [B] instead of A — B € L. Thus, the structures

(F(n)/ =1,<r) and (F/=p,<p)

express the mutual relation of formulas in F(n) and F, respectively. In CL, a
conjunctive normal form /\ S for S € 2FP is a canonical representative of the
quotient set. Specifically, the following two conditions hold:

e F(0)/ =cr= {[/\ for(S)] | S C ED},



e for any subsets Sy and Sy of ED, [A for(S1)] <cw [A for(S2)] if and only
if S C 5

In order to treat normal modal logics, we often use sequents. We say that
a sequent X is provable in L, write X € L, if for(X) € L. In this sense, every
inference rule in the sequent system LK for CL given by Gentzen (1934-35)
holds. Also, the rule
r,or— A
——— ()
or — oA

holds in a normal modal logic containing K4.

1.3 Kripke models

Here, we introduce a Kripke model and an exact model, which are useful to
investigate the structures (F(n)/ =1, <r) and (F/ =1, <p).

A Kripke model is a structure (W, R, P), where W is a non-empty set, R
is a binary relation on W, and P is a mapping from the set of propositional
variables to 2". We extend, as usual, the domain of P to include all formulas.
We call a member of W a world. For a Kripke model M = (W, R, P), and for a
world o € W, we often write (M, «) = A and M = A, instead of a € P(A) and
P(A) = W, respectively. For a set S of formulas, we say that a Kripke model
M is a S-model, write M |= S, if M |= B for any B € S.

The following lemma is described in several articles (for example in Chagrov
& Zakharyaschev (1997)):

Lemma 1.1 — A € K4 if and only if M |= A for any transitive Kripke model.

Below, we define an exact model. This is an extension from the exact model
introduced in de Bruijn (1975) in order to treat the cases that W is infinite. For
details, one can consult subsection 1.3 in Sasaki (2010a).

Definition 1.2 Let S be a set of formulas closed under O and A. We say that
a Kripke model M = (W, R, P) is exact for S in a modal logic L if the following
two conditions hold:

(1) for any A€ S, M |= A if and only if > A€ L,
(2) {{a} |ae W} C{P(4) A€ S}
The following lemmas is observed easily; therefore, exact models are useful

to investigate the structures (F/ =, <r) and (F(n)/ =, <1).

Lemma 1.3 Let S be a set of formulas closed under O and A and let (W, R, P)
be an exact model for S in L. Then the mapping P* from S/ =, to {P(A) |
A € S} defined as

P*([A]) = P(4)

is an isomorphism and the structure (S| =r,<pr) is isomorphic to the structure
({P(A) | A € S},C). Moreover, {P(A) | A€ S} =2W if S/ =y, is finite.



Lemma 1.2 can be achieved without using (2) in Definition 1.2 However, by (2),
we observe that an exact model is one of the simplest Kripke models satisfying
the condition in Lemma 1.3

We note that there may exist an exact model for F(n) in L, which is not
L-model. However, Sasaki (2010a), in section 4, did not describe this existence
and only treated exact S4-models for F(n) in S4. In other words, Sasaki (2010a)
gave a method to list all exact S4-models for F(n) in S4, but did not give a
method to list all exact models for F(n) in S4.

1.4 The purpose

The purpose of the paper is to provide a detailed description of the mutual
relation of formulas in F in a normal modal logic L containing K4. In other
words, we provide a detailed description of the structures (F(n)/ =, <) and
(F/ =, <r) by extending the results in Sasaki (2010a).

There are also many previous works on this topic. Finite structures like (
F(n)/ =1, <) have been studied previously(e. g. Diego (1966), Urquhart (1974),
de Bruijn (1975), Hendriks (1996), Sasaki (2001), and Moss (2007)). Infinite
structures like (F'/ =1, <) have also been studied in many articles(e. g. Rieger
(1949), Nishimura (1960), Urquhart (1973), Esakia & Grigolia (1975), Esakia
& Grigolia (1977), Shehtman (1978), Bellissima (1985), Ghilardi (1995)). We
wrote about these works in Sasaki (2010a).

In Sasaki (2010a), we treated the case that L = S4. Let us list the results
in Sasaki (2010a).

(I) We gave a construction of a finite set ED(n) of sequents satisfying

(1) F(n)/ =sa = {[/\for(5)] | S C ED(n)},

(I-2) for any subsets S; and Sy of ED(n), [A for(S1)] <sa [A for(S:)] if
and only if §; C Ss.

(IT) We gave another construction of ED(n) without using S4-provability(the
construction in (I) depends on S4-provability for a kind of sequents).

(ITT) By clarifying a relation between ED(k) and ED(k + 1), we gave a finite
method to find S € 2FP(™ satisfying A =g4 A for(S) for each A € F(n).

(IV) We define the sets CNF and S|} for S € 2EP("); and clarified (F/ =, <1)
by showing two conditions corresponding to (I-1) and (I-2).

(V) We constructed the exact model (Wg4, Rga, Ps4) for F in S4 and proved
(V-1) {Pss(A) | A€ F} = {Ws4 — S| S € CNF}.
(VI) We gave a method to list all exact S4-models for F(n) in S4.

(VII) By using each exact S4-model for F(n) in S4, we gave another finite
method to find S € 2FP(™ satisfying A =g4 A for(S) for each A € F(n).



In the next section, we treat (I) and (III). In section 3, we treat (IV). In
section 4, we treat (V); and in section 5, we treat (VI) and (VII). Here, we do
not treat the construction in (II). Sasaki (2010b) gave such construction for K4,
but not in general.

2 A construction of ED/(n) and a clarification
of <F(’I’L)/ =L, §L>

In the present section, we extend (I) and (III) in subsection 1.4, to normal modal
logics containing K4. In the rest of the present paper, we let L be a normal
modal logic containing K4.

First, we construct ED (n).

Definition 2.1 The sets Gr(n) and G7 (n) of sequents are defined inductively
as follows.

G(0)={(V-V=V)[VCV}
G7(0) =0,

Gr(k+1)= U next(X),
XeG(k)—G*(k)

Gi(k+1) ={X € Gr(k+1) | (ant(X))" C (ant(Y))" implies (ant(X))" =
(ant(Y))™, for any Y € Gr(k+ 1)},

for any X € Gr(k),

e nexty(X)={Y €next} (X)|Y ¢ L},

o next; (X) = {n,(X,5) | S C Gr(k)},

e n;(X,S) = (Ofor(Gr(n) — S),ant(X) — suc(X), Ofor(S)).

Definition 2.2 We define the sets EDy(n) and G} (n) as
n—1
ED.(n) = Gr(n)U | ] GL(),
i=0

G.(0) ifn=0
Gj(n) = U next! (X) ifn>0.
XeGr(n—1)-Gj (n—1)

If L = S4, then the above construction is almost same as the construction in
Sasaki (2010a). The only one difference is the definition of nextg, (X). Specif-
ically, in Sasaki (2010a), we defined it as {ng4(X,S) | S C Ggsa(k),X € S}.
However, every member in {ng4(X,S) | S C Gsa(k), X ¢ S} is provable in S4,
and thus, the set nextss(X) above and the corresponding set in Sasaki (2010a)
are the same set. Hence, we can treat the above construction as an extension
of the construction in Sasaki (2010a).



Also, in Sasaki (2010a), we wrote that the construction is based on the con-
struction of the normal forms in Fine (1975) and that there are three differences
between Fine’s normal forms and EDy,(n). However, there is one more differ-
ence between them. The difference is basically the difference between ny, (X, S)
and the sequent (Ofor(Gp,(n)—S),ant(X)NV — suc(X )NV, Ofor(S)). This is
also a difference between our construction and the construction in Moss (2007),
and makes it easier to compare ED[,(n) with ED[,(n+1). From this, we obtain
the idea to define CNF in the next section. Moreover, Sasaki (2010a) defined
Fine(n) as the set of normal forms corresponding to Fine in a sequent style,
but there is the same kind of difference between Fine(n) and the set of such
normal forms in a sequent style.

In order to treat EDy (n), it is convenient to distinguish two types of mem-
bers:

(---Ofor(X),ant(X) — suc(X)---) and (---ant(X) — suc(X),Ofor(X)---

To do so, we define X¢, G$(n), and G (n) as follows.

Let X be a sequent in Gz(n + 1). Then there exists only one sequent
Y € Gr(n) — G} (n) such that X € next} (V). We refer to X as this sequent
Y. We note that Xg € Gr(n) — G} (n) and X € nextr(Xg).

Definition 2.3 We define the sets G (n) and G3.(n) as
Go(n)_{w ifn=20
LYY 7 {X € Gi(n) | Ofor(Xg) € suc(X)} if n >0,
G'(n)—{w ifn=0
LYY {X € Gi(n) | Ofor(Xs) € ant(X)}  if n > 0.

Example 2.4 We list members of Gr(n), GJ(n), and G (n) in the case that
L=K4, m =1, andn = 0,1,2. We use ( )* and ( )° for a sequent in
G (n) and G (n), respectively.

G (0) ={T,F},

next} (T) = nextr(T) = {T1°,72,T3,T4},

Gpr(1) = {T1°,T2,T3,T4,F1°,F2, F3, F4},

Gy (1) = {T1°, F1*}, G5 (1) =,

nextr (72) = {T2.1°,72.2°,72.3},

nextr (73) = {T3.1°,73.2°,T3.3},

nextr (74) > T4.1°,

G$(2) = {T2.1°,72.2°,T3.1°, F2.1*, F3.1*, F3.2*},
G (2) = {T3.2°,T4.1°, F2.2°, F4.1°},



Table 1: Members of G (n) in the case that L = K4, m =1, and n =0, 1,2

T = (p =), F = (= m),

T1* = n(T,0), F1* = ny(F0),

T2 = n(T,{F}), F2 = ny(F{F)),

T3 = n(T,{T)), F3 = ny(F{T)),

T4 = ny(T,{T,FY}), F4 = ny(F{T,F)}),
T2.1° = np(T2,{F1°}), F2.1° = np(F2,{F1*)),
T2.2* = np(T2,{F2)), F22° = np(F2,{F2)),
T2.3 = np(T2,{F1° F2}), F23 = n,(F2,{F1° F2}),
T3.1° = np(T3,{T1°}), F3.1° = np(F3,{T1"}),
T3.2° = np(T3,{T3}), F32° = np(F3,{T3}),
T3.3 = ng(T3,{T1°,T3}), F3.3 = ny(F3,{T1°T3}),
T4.1° = np(T4,{T4,F4}), F4.1° = np(F4,{T4,F4}).

where T, F,T1°,--- are the sequents in table 1.
By an induction on n, we can show the following lemma.
Lemma 2.5

(1) None of the members in Gr,(n) is provable in L.

(2) For any X,Y € EDr(n), X #Y implies for(X) V for(Y) € L.

(3) Forany X € G} (n), ant(X)Usuc(X)=VU ”U Ofor(Gr (7)) and ant(X)N

suc(X) = 0.

We use the above lemma without specific justification in the rest of the present
paper.

The main purpose in the present section is to prove the following two theo-
rems.
Theorem 2.6
(1) L=, \for(EDy(n)) and p;=p [\for({X € EDy(n)|p; € suc(X)}).
(2) For any subsets S1 and Sz of EDp(n),

) /\for(Sl) A /\ for(S2) =1, /\ for(S; U Ss).

(3) For any subset S of EDp(k), O\ for(S) =1 A for(S; US,), where

o S = |J{Y €EDy(k+1) | Ofor(X) € suc(Y)},
Xes



k
e S=) | {VeGi()](ant(X))? = (ant(y))"}.

i=1 XeSNG3 (i)

We note that Sy USs C EDy(k + 1) for Sy and S, in the above (4).
Theorem 2.7

(1) F(n)/ =1 = {[/\for(5))] | S CEDr(n)}.

(2) For subsets S1 and So of EDp(n),

S1 C Sy if and only if /\for(Sg) — /\for(Sl) € L.

By the above theorem, the conditions (I-1) and (I-2) in subsection 1.4 are shown.
Theorem 2.6 provide a finite method described in (III) in subsection 1.4.

Theorem 2.71) and Theorem 2.72) can be shown by Theorem 2.6 and Lemma
2.5 respectively. In order to prove Theorem 2.G especially (3), we need some
lemmas.

Lemma 2.8 Let X,I" and A be finite sets of formulas. Then
{for(O0®,T — A,00) | QUT =X, 2NV =0}, > A e L.

Proof. We use an induction on the number #(X) of elements in X. If ¥ = 0,
then the lemma is clear. Suppose that A € ¥. Then by the induction hypothesis,

{for(O0®,T - A, 00) | 2UT =X —{4},2NT =0}, > AeL.

Therefore,
OA4, {for(0®,04,T - A,00) | 2UT =X - {A},2NT =0}, T 5> AecL
and
—0A4, {for(O®,T - A,04,00) |2UT =X - {A},2NT =0},T > AecL.
Using OA v -0A € L, we obtain the lemma. [ ]
Corollary 2.9 For any X,Y € G(n),
(1) for(nextr (X)) — for(X) € L,
(2) /\for(next (X)) =, for(X),
(3) for({Z € nextr(X) | Ofor(Y) € suc(Z)}) — for(X),Ofor(Y) € L.
Proof. We can show (3) by considering the case that
(2, T,A) = (for(Gr(n) — {Y}),ant(X),suc(X) U {Ofor(Y)})

in Lemma 2.8 (1) can be shown similarly. (2) is clear from (1). [ |



Lemma 2.10 Let X andY be sequents in Gp(n). If (ant(X))" ¢ (ant(Y))",
then (— for(X),Ofor(Y)) € L.

Proof. We can show the lemma as in the proof of Lemma 2.10 in Sasaki (2010a).
|

Lemma 2.11 Let X and Y be sequents in G} (n) and G (n), respectively. If
(ant(X))” = (ant(Y))" and Ofor(Ys) € suc(Y), then Ofor(Y) — for(X) € L
andY € Gp(n).

Proof. By Ofor(Yy) € suc(Y), Corollary 2.91), Lemma 2.1Q and (O), we can
show the lemma as in the proof of Lemma 2.11(2) in Sasaki (2010a). [ |

Corollary 2.12 Let X and Y be sequents in Gr(n) satisfying (ant(X))” =
(ant(Y))”. Then

(1) X € G}(n) if and only if Y € G3 (n),
(2) Y € G (n) implies Ofor(Y) — for(X) € L.

Definition 2.13 For any X € Gp(n), we define the sets pclus;(X) and
clus;(X) as

pelus; (X) = {Y € G4 (n) | (ant(X))? = (ant(¥))"},

clusy (X) = ; ifn=0
L " | {Y € pclus;(n) | Ofor(Yg) € suc(Y)} if n > 0.
By Corollary 2.121), if X € G}.(n) (n > 0), then
pclus; (X) € G1(n) and clusy, (X) C Gi.(n).

Also, as in Sasaki (2010a), if X € GJ(n), then we will find that clusg (X) is
the cluster containing X of the Kripke model EMj, introduced in section 3.

Lemma 2.14 For any X € G (n),

(1) X & G%(n) implies G1(C,X) = G£(C, X),

(2) for(G(C, X)) — Ofor(X) € L,

(3) X ¢ G (n) implies (for(GT(C, X)) — Ofor(X)) € L,

(4) X € G (n) implies (for(pclus; (X)), for(GF (C, X)) — Ofor(X)) € L,
(5) X € G$(n) implies (for(pclus; (X)), for(G%(C, X)) — Ofor(X)) € L,
(6) X € G3.(n) implies (for(GF(C, X)) — Ofor(X)) € L,

where



¢ GL(C,X)={Y € G(n) | (ant(¥))" C (ant(X))7},
e GP(C,X) = Gr(C,X) - Gj(n).
Proof. (1) can be shown by
X ¢ G} (n) and (ant(Y))? C (ant(X))" imply ¥ ¢ G (n).

(3) is clear from (1) and (2). (4) can be shown similarly to Lemma 2.14(4) in
Sasaki (2010a). (5) is clear from (4). Therefore, we have only to show (2) and

(6).
We show (2) by an induction on n. Basis (n = 0) is clear from for(Gr,(C
,X)) — L € L. We show Induction step (n > 0). By the induction hypothesis,

for(GL(C,Xg)) — Ofor(Xs) € L.

Using Xg € Gr(n —1) — G5 (n — 1), (1), and Ofor(Xg) — for(X) € L, we
have
for(GS(C, Xo)) — Ofor(X) € L. (2.1)

In order to prove (2), we show
Y, for(Gr(C, X)) — Ofor(X) € L (2.2)

for any subset ¥ of ant(X) N Ofor(Gr(n — 1)). In order to show (2.2), we
use an induction on #(ant(X) N Ofor(Gpr(n — 1)) — ¥). We show Basis (¥ =
ant(X)NOfor(Gr(n—1))) and Induction step (£ C ant(X)N Ofor(Gr(n—1)))
simultaneously. We define the set ¥ as

U= U for({Y € next™ (V') | ant(Y) N Ofor(GL(n — 1)) = T}).
Y/EGE (S Xe)
We note that ¥ — L C for(G[(C, X)) and for any for(Y) € ¥,
suc(Y) N Ofor(Gr(n — 1))
Ofor(Gr(n —1)) — X

((suc(X) N Ofor(Gp(n —1))) U (ant(X) N Ofor(GL(n —1)))) — X
(suc(X) N Ofor(Gr(n —1))) U (ant(X) N Ofor(Gr(n — 1)) — X).

We can easily observe that
A — Ofor(X) € L for any A € suc(X) N Ofor(Gr(n —1)). (2.4)
Also, by the induction hypothesis, we have

A, %, for(GL(C, X)) —» Ofor(X) € L  for any A € ant(X)NOfor(Gr(n—1))—X.
(2.5)
By (2.1), (2.3), (2.4) and (2.5), we have

¥, for(Gr(C, X)), ¥ — Ofor(X) € L.

10



Using ¥ — L C for(GL(C, X)), we have (2.2). Considering the case that ¥ = 0,
we obtain (2).

We show (6). If n = 0, then (6) is clear. So, we assume that n > 0. Suppose
that Y € pclus; (X). Then Ofor(Xg) € (ant(X))” = (ant(Y))"”. Therefore,

ant(Y) — suc(Y),Ofor(X) € L

and thus,
— for(Y) v Ofor(X) € L. (6.1)

On the other hand, by (4),

{for(Y) V Ofor(X) | Y € pelus, (X)},for(G2(C, X)) — Ofor(X) € L.
Using (6.1), we obtain (6). [ ]
Lemma 2.15 For any X € Gp(n),

N
where ® = {for(Y) | Y € Gr(n + 1), 0for(X) € suc(Y)}.
Proof. It is sufficient to show the following four conditions:
(1) Ofor(X) » A @ €L,
(2) Ofor(X) — /\for(pclusL(X)) e Lif X € GY(n),
(3) ® —» Ofor(X) € Lift X ¢ G5 (n),
(4) for(pclus; (X)), ® — Ofor(X) € Lif X € G (n).

(1) is clear. (2) is also clear from Corollary 2.1%2). We show (3) and (4). By
Corollary 2.93), for any Z € Gr(n) — Gj.(n),

for({Zg € nextr(Z) | Ofor(X) € suc(Zg)}) — for(Z), Ofor(X) € L.
Therefore,
& - /\ for(G(n) — G} (n)), Ofor(X) € L.

Using Lemma 2.143) and Lemma 2.146); and Lemma 2.145), we obtain (3);
and (4), respectively. [ ]

By Corollary 2.92), we obtain Theorem 2.61). We can easily observe The-
orem 2.62). By Lemma 2.15 and Corollary 2.121), we obtain Theorem 2.6

(3).

11



3 A construction of CNF; and a clarification of
(F/ =1,<1)

In the present section, we consider (IV) in subsection 1.4. However, we can
directly extend the result (IV) in Sasaki (2010a) to our general cases. Thus, we
show the extended results without proofs.

Definition 3.1 We define the sets CNF (k) and CNFy, as follows.

2EDL(0) ifk=0
CNF (k) = { 2BDL(k) — | | mext,(X) | S C Gr(k-1) - Gy (k—1)} if k>0,
XeS

CNF, = | J CNF(i).
1=0
We note that each member of CNF, is a finite set.

Example 3.2 Using the sequents in Ezample 2./ in the case that L = K4,
m=1, and n =0,1,2, we list some examples:

o CNF.(0) ={0,{T},{F}{T,F}},
e CNF (1) = 2PPr(D) — [ next, (T),next,(F),next(T) Unexty (F)},
Definition 3.3 For any sequent X, we define X (k) as
X (k) = (ant(X) N B(k) — suc(X) N B(k)),
where B(k) = VUOF(k — 1).
Definition 3.4 For any X € G (n), we define the sets Xy, and X1, as
Xbos= (¥ € Go(k) [Y) = X} and  Xbp=| ) Xlbis
i=1

Also, for any S € 2EP1(") e define Sl1, as Si= U Xl .
XeSs

We can easily observe that for any X € Gr(3),
e X(4)=X(3) =X, X(2) = X, and X(1) = (Xg)e,

o Xl =0, X3 1={X}, and X4 1= { gextL(X) 1£§ ; gig;,

X if X € G1(3)
o Xli= { (X} Unexty (X)ly  if X ¢ GE(3).
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Lemma 3.5 Let X and Y be sequents in G (n) and Gp(k), respectively. If
n >k, then

ant(Y) C ant(X) and suc(Y) C suc(X) if and only if X € Y.
Theorem 3.6
(1) F/ =1 = {[/\for(S)]| S € CNF}.
(2) For any S; € CNF({) and for any S; € CNF(k),

(2.1) [/\ for(S1)] < [/\ for(S2)] if and only if either Sy C Syr or both
S2UL ﬂEDL(E) g Sl and k S Z’

(2.2) \ for(Sy) =1 \ for(S,) if and only if Sy = Ss.

4 The exact model for F

In the present section, we extend (V) in subsection 1.4 to a kind of normal
modal logics. Specifically,

e we define a Kripke model EM}, = (W, Ry, PL),

e we introduce a finite model property of L in weakened form, which is
equivalent to the condition

EM,, is the exact L-model for F in L, @)

e for any L satisfying (}), we clarify the set {Pr(4) | A € F}.

Considering Lemma 1.3 the third task above is important. Also, as pointed out
in Sasaki (2010a), the clarification of the task has not directly been described
in previous works.

Definition 4.1 The Kripke model EM7, is defined as

EM;, = (Wy, Ry, Pr),

where Wy, = | ] G7(n), Ry = {(X,Y) | Ofor(Y) € suc(X) or Y € clus(X)},
and Pr,(p;) :nTg( | pi € ant(X)}.

Definition 4.2 We say that L has the finite model property for ¥ if for any
A € F — L, there ezists a finite transitive L N F-model M such that M = A.

Theorem 4.3
(1) The following three conditions are equivalent:

(1.1) EMy, is the exact model for F in L,
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(1.2) EMy, is the exact L-model for F in L,
(1.3) L has the finite model property for F.

(2) For anyY € Gp(n),
PL(fOI‘(Y)) = WL - YUL and PL(ﬁfOI'(Y)) = WL n YUL
(3) {PL(A) | A€ F} = {W; — Slz| S € CNF.}.

To prove the theorem above, we need some lemmas. The condition (1.1) =
(1.2) will be proved in Lemma 4.5 and the converse is clear. Three conditions
(1.1) = (1.3), (1.3) = (1.1), and (2) will be proved in Lemma 4.7 Lemma 4.17
and Corollary 4.23 respectively. By (2), we have

PL(/\ for(S)) =W — Syr, for any S € CNF,
and using Theorem 3.6 we obtain (3).

Definition 4.4 Let M = (W, R, P) be a Kripke model. For any subset S of W,
we define the Kripke model M|s as

M|S: (SaR|57P|S>7

where R|s= RNS? and (P|s)(p;) = P(p;)NS. For any world o € W, we define
atl as

at={a}U{B e W | aRB}.
Lemma 4.5 If EMy, is the exact model for ¥ in L, then EMy, is an L-model.
Proof. We note that

for any X € Wy, there exists a formula f(X) € F such that {X} = P(f(X)).

Suppose that M is not L-model. Then there exist a world X € W and a
formula A € L such that (M,X) £ A. We can easily observe finiteness of
EML|XT and (EML|XT;X) l;é A. We define the Sz as

Si={fY)|Y € (P|x+)(pi)}
Then we can easily observe
(Plxt)(p:) = (Plxp)(\/ S0)- (1)

Let A’ be the formula obtained from A be substituting p; with \/.S; for any i.
Then we have A" € LN F; and by (1), we have (EMp, X) = A". Hence, M is
not exact model for F in L. |

Lemma 4.6 EM, is transitive.
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Proof. By Corollary 2.1%2). [ ]

Lemma 4.7 If EMy, is the exact model for F in L, then L has the finite model
property for F.

Proof. Suppose that A € F — L. Then there exists X € Wy such that
(EMp, X) £ A. By Lemma 4.6 we can easily observe finiteness and transitivity
OfEML|XT, EML|XT|:LOF, and (EML|XT,X) béA [ |

Definition 4.8 Let M = (W, R, P) be a Kripke model. For any k > 0 and for
any o € W, we define the sequent edy,(k,a) as follows.

edr(0,a) = ({pi € V[ (M, ) = pi} = {pi € V [ (M, q) ¥~ pi}),

edy (k,a) if edy (k,a) € Wy,

edp(k+1,0) = { nz(edy(k, o), {X € GL(k) | (M,a) ¢ Ofor(X)}) o. w. .

We can easily observe the following lemma.

Lemma 4.9 Let M = (W, R, P) be an L N\ F-model. Then for any o, 3 € W,
1) {X € EDy(n) | (M,a) £ for(X)} = {ed,(n,a)},
2) if k <n, then (edy(n,a))(k) = edy (k,a),
3) {X € G (k) | (M,0) £ Dfor(X)} = {edy (k, ) € G (k) | aRB},

(
(
(
4

)

)

)

) if M is transitive, aRf, BRa, and edy(k,a),ed(k,5) € GL(k), then
(ant(edy (k,a)))” = (ant(edy(k,[)))".

Definition 4.10 For any X € Gr.(n), we define the sets Gr(X,C) and G (X,
C) as follows:

GL(X, Q) ={Y € Gi(n) | (ant(X))” C (ant(Y))"},
GL(X,C) ={Y € GL(n) | (ant(X))” C (ant(Y))"}.

Lemma 4.11 Let M = (W, R, P) be a finite transitive L N F-model and let «
be a world in W. If

{edr(n,B) | B € W,aRB, BRa} C W, (*)
then there ezists k < #(Gr(edr(n+1,a),C))+n+1 such that edr (k, o) € Wr.

Proof. For brevity, we refer to X as edp(n + 1,a). We note that (M, «a) [~
for(X) and X € ED(n+1). If X ¢ Gr(n + 1), then X € Wy, and thus, the
lemma is clear. So, we assume that X € Gr(n + 1).

We use an induction on #(Gr (X, Q)).

Basis(#(Gr(X,C)) = 0) is clear from X € Wr.
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Induction step(#(Gr(X,C)) > 0). We refer to Xg as edr(n + 2,a). By
Lemma 4.91), we have Xg ¢ L. By (%) and Lemma 4.943), we have

Xo =n,(X,{edr(n+1,8) € G(n +1) | aRB, BRa}).
Using Lemma 4.94), we have that for any Y7,Y> € Gr(n + 1),
Ofor(Y7), Ofor(Ys) € suc(Xg) implies (ant(Y;))” = (ant(¥2))”. (1)
Let Y be a sequent in G1(X,C) — G} (n+1). We define Yy as
Yo =nr(Y,{Z € Gr(n+ 1) | Ofor(Z) € suc(Xg), Ofor(Zg) € suc(Y)}).
We show the following two conditions:
next, (V) N Gy (Xs, ) C {Va), 2)

(ant(X))” = (ant(Y))" implies (ant(Xg))" = (ant(Ye))". (3)
For (2). Let Y be a sequent in nextr(Y) N Gr(Xg,C). We note that
(ant(X2))° C (ant(V2))°, (2.1)
Let Z be a sequent in G (n + 1). Then by (2.1), we have
Ofor(Z) € ant(Xg) implies Ofor(Z) € ant(Yy). (2.2)
We also note that Y ¢ L. Using Ofor(Z5) — Ofor(Z) € L, we have
Ofor(Zs) € ant(Y') implies Ofor(Z) € ant(Yy). (2.3)
By (1) and (2.1), we have
Ofor(Z) € suc(Xg) implies Ofor(nextr(Zo)—{Z}) C (ant(Xg))" C (ant(Yy))",
and using Corollary 2.9and Y} ¢ L, we have
Ofor(Z) € suc(Xg) and Ofor(Zs) € suc(Y') imply Ofor(Z) € suc(Yy).
By (2.2), (2.3), and (2.4), we obtain (2). 24

For (3). Suppose that (ant(X))® = (ant(Y))”. Then for any Z € G (n+1),
we have

Ofor(Z) € suc(Xg) and Ofor(Zg) € ant(Y) imply Xg € L,
using Xg & L, we have
Ofor(Z) € suc(Xg) implies Ofor(Zg) € suc(Y).
Therefore, we have

Yo =np(Y,{Z € Gr(n+ 1) | Ofor(Z) € suc(Xg)}),
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and hence, we obtain (3).
By (2) and (3), we have

GrL(Xg,Q) = {Yol|YeGL(X,0)-Gr(n+1)}NG(Xg, Q)
= {YGB |Y€GL(Xag)_GZ(n"‘l)}mGL(X@vg)
C |V eGX.O)—Gint 1),

and therefore,

#(GL(Xe,G) < #({Ye |Y € GL(X,Q) - GL(n+1)})
= #(GL(X, Q) = Gi(n+1)).

By the definition of G7 (k) , we have G (X, ) NG} (n + 1) # 0, and thus,
#(GL(Xe, Q) < #(GL(X, Q).

Also, by (x), we have

{edr(n+1,5) | B € W,aRp, fRa} = {edr(n, B) | B € W,aRpS, fRa} C Wi
Using the induction hypothesis, there exists

k<#(GL(Xg, Q)+ (n+1)+1 < #(GL(X, Q) +n+1

such that edy, (k,«) € Wr. ]
Definition 4.12 We define the number ar,(n,k) as

o[ n ifk=0
ar(n, k) = ar(n,k—1)+#(Gp(ag(nk—1)+1) ifk>0.

Lemma 4.13 If0 < k </, then ar(ar(n,1),k) < ar(n,t).
Proof. By an induction on k. ]

Lemma 4.14 Let M = (W, R, P) be a finite transitive L N F-model and let
a be a world in W. Then for any n, there exists k < ar(n,k, o) such that
edy(k,a) € Wi, where

kn,o =#{edr(n,B) | B € W,aRB, BRa} — W) + 1.
Proof. We use an induction on k, o. First, we note that

#(GL(edL(n + laa)a ,g)) +n+1
< #Grln+ 1)~ {edp(n+1,a)}) +n+1 1)
= #(Gr(n+1)+n=ar(n,l).

Basis(kn,o = 1) is clear from Lemma 4.11 and (1).
We show Induction step(kp,q > 1). By kp,o > 1, we have

{edr(n,B) | B € W,aRB, BRa} — WL # 0.
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Using the finiteness of M, there exists a world v € W such that

aly,yRa,edp(n,y) € Wi, and {ed(n,5) | f € W,vRf, bRy} C Wr.

Using Lemma 4.11 and (1), there exists k < ar,(n, 1) such that edy,(k,~v) € Wr,.
Therefore, we have

edr(n,v) € Wr,edy(ar(n,1),y) € W, and
{edL(n7ﬂ) | B € Wa aRﬂaﬂRa}mWL g {edL(aL(n7 1)7ﬂ) | ﬂ € W7 OéRﬂ,ﬂRO[}ﬁWL-

Hence, we have
k'ma > kaL(n,l),a-

Using the induction hypothesis, there exists £ < ar(ar,(n,1),ka, (n,1),a) such
that edr (¢, ) € Wr,. Moreover, using Lemma 4.13 we have ¢ < ar,(n, ko). B

Lemma 4.15 Let M = (W, R, P) be a Kripke model. Ifa. € W and X € G7 (n)
satisfy (M, ) = for(X), then for any Y € G (k),

(M, ) W for(Y) if and only if X € Y.
Proof. By (M, a) [ for(X), we note that
ant(X) C {4 | (M,a) |= A} and suc(X) C {B | (M,a) i B}.
Also, we note that (M, «a) [ for(Y) is equivalent to
ant(Y) C {4 | (M, a) = A} and suc(Y) C {B | (M, a) £ B}.
Therefore, if n > k, then we have
(M, ) [ for(Y) if and only if ant(Y") C ant(X) and suc(Y) C suc(X),

and using Lemma, 3.5 we obtain the lemma. If n < k, then we have X € Y{r;
and we have

(M, ) b for(Y) implies ant(X) C ant(Y") and suc(X) C suc(Y),
and using Lemma 3.5 we obtain that (M, «) % for(Y') is in contradiction with
X € G5 (n). n
Lemma 4.16 Let M = (W, R, P) be an LNF-model. If o € W and X € G (n)
satisfy (M, «) [~ for(X), then for any Y € Gr(k),
(M, «) £ Ofor(Y) if and only if either Ofor(Y) € suc(X) or Y € clusy (X).
Proof. By Corollary 2.122), we obtain the “if” part.

We show the “only if” part. Suppose that (M, «) = Ofor(Y'). By Theorem
2.6 we have

_ Afor(SUpclus, (Y)) ifY € G} (k)
Dfor(Y) =1 { Nor(s) Y ¢ G (),

where S = {Z € EDr(k+1) | Ofor(Y) € suc(Z)}. Therefore, either one of the
following two conditions holds:
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(1) (M, a) £ for(Z) for some Z € S,
(2) Y € G5 (k) and (M, ) } for(Z) for some Z € pclus (V).

If (1) holds, then by Lemma 4.15 we have X € Z |, and using Z € S and
Lemma 3.5 we obtain

Ofor(Y) € suc(Z) C suc(X).

So, we assume that (2) holds. Then by Lemma 4.15 we have X € Z| . By
Y € G (k) and Z € pclus; (Y), we have Z € G} (k) and Y € clusz(Z). Using
X € Z|, we have X = Z, and hence, we obtain Y € clusy,(Z) = clusy, (X).
|

Lemma 4.17 If L has the finite model property for F, then EM/, is the exact
model for F in L.

Proof. By the finite model property for F of L, for any A € F — L, there
exists a finite transitive L N F-model M4 = (W4, R4, P4) such that My £~ A.
By Lemma 4.9 and Lemma 4.14 for any a € Wy, there exists the sequent
seq(a) € Wy, such that (Ma,a) £ for(seq(a)). We define the Kripke model
M = (W,R,P) as

o W= (Uscr-r Wa)/ ~,
o [a]R[3] & 'Ry for some A € F—L,a' € [a]NWy, and ' € [B]NWy,
e [a] € P(p;) & o € Py(p;) for some A € F and o' € [a] N W4,

where a ~ f & seq(a) = seq(f).
We show that M is the exact model for F in L. By Lemma 4.15 for any
a €Wy, B € Wg,and Y € Gp(k), we have

a ~ [ implies (M4, a) = for(Y) < (Mg, ) |= for(Y),
and using Theorem 2.7 we have
o ~  implies {C | (Mg, a) = C} = {C | (Mg, 8) = C}.
Therefore, by an induction on C, we can show for any C' € F and [a] € W,
(M,[a]) | C if and only if for any o' € [a],(Ma,a') = C, (1)
where M4 is the model satisfying o' € Wy4. Thus, for any C' € F, we have
M = C if and only if for any A€ F — L, M4 = C.
Also, by (1) and Lemma 4.15 we have
P(—for(seq(a))) = {[a]} for any [a] € W. (2)

Hence, M is the exact model for F in L.
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Therefore, we have only to show that M is isomorphic to EM . Specifically,
we show that the mapping seq* : W — W, defined as seq*([a]) = seq(a) is an
isomorphism from M to EDj. We can easily observe that seq* is one-to-one
and onto. Also, by (2), we have

[] R[] if and only if (M, [a]) [# Ofor(seq" ([8))),
and using Lemma 4.16 we obtain
[a] R[] if and only if seq” ([a]) Rrseq* ([5])-
We can also observe

[o] € P(pi) < pi € ant(seq(a)) < seq”([o]) € Pr(pi).

Lemma 4.18 For any X € G} (n),
suc(X) — suc(Xg) C Ofor(clusy (Xg) UGE(n —1)).

Proof. First, we note that X ¢ L from X € G7 (n). Suppose that Ofor(Y") €
suc(X) —suc(Xg)— Ofor(G% (n—1)). Then by Ofor(Y) € suc(X) and X ¢ L,
we have

(ant(X))” — Ofor(Y) ¢ L,

and using (O), we have
(ant(X))”,ant(Y) — suc(Y) ¢ L.
Using Lemma 2.§ there exist ® and ¥ such that
PUT =for(Gp(n—1) —ant(X)), ®NT =40,

and
0%, (ant(X))”, ant(Y) — suc(Y),0¥ ¢ L.

We refer to the above sequent as Yg. By Y € Gr(n — 1) — G} (n — 1), we have
Yy € nextr, (V) C Gp(n),

Also, we note that
(ant(X))” C ant(Yy).

Using X € G3 (n), we have
(ant(X))” = (ant(Yy))" and Yg € G (n).
By Ofor(Y) € suc(X) and X ¢ L, we have
Tfor(Vs) ¢ (ant(Xo)) = (ant(¥))".

Hence, we obtain
Y € clusp(Xg).
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Lemma 4.19 Let X be a sequent in G (n+1) and let Y be a sequent satisfying
Ofor(Y') € suc(X). Then

Ofor({Yy € nextr(Y) | (ant(X))" C (ant(Yy))"}) — for(X) € L.
Proof. By Ofor(Y) € suc(X) and Corollary 2.9 we have
Ofor(nexty,(Y)) — for(X) € L,
and using Lemma 2.1() we obtain the lemma. |

Lemma 4.20 Let X be a sequent in Gr,(n+1) and let Y be a sequent in Gr,(k)
satisfying Ofor(Y") € suc(X). Then there exists a sequent Y* € EDy,(n) such
that Ofor(Y™*) € suc(X) and Y* € Y.

Proof. We use an induction on n > k. Basis (n = k) is clear since Y satisfies
the conditions.

Induction step (n > k). By n > k, we have Ofor(Y") € suc(Xg). Using
the induction hypothesis, there exists a sequent Y’ € EDy(n — 1) such that

n—1
Ofor(Y') € suc(Xp) and V' € Y. fY' € U G7 (i), then Y’ satisfies the
i=0
conditions. We assume that Y’ € Gr(n—1) — G5 (n —1). Then by Ofor(Y”) €
suc(Xg), X ¢ L, and Lemma 4.19 we have

Ofor({Vs € nextz(Y') | (ant(X5))" C (ant(Yy))"}) € ant(X).

Therefore, there exists a sequent Yg € nexty (Y') such that Ofor(Yg) € suc(X).
Also, by Y € Y1, and Yy € nexty,(Y'), we have Yy € Y. [ |

Lemma 4.21 For any X € G} (n) and for any Y € Gr(k),
(1) (M, X) £ pi if and only if p; € suc(X),

(2) (EMp,X) [~ Ofor(Y) if and only if either one of the following two condi-
tions holds:

(2.1) k <n and Ofor(Y) € suc(X),
(2.2) k=n andY € clus(X).
Proof. From the definition of Pr, we obtain (1). We show (2) by an induction
on n + k. A proof of Basis is included in Induction step.
Induction step. We first note that for any X’ € G (n') and for any Y’ €

G (K", if n < n and k' < min{n', k}, then the following four conditions are
equivalent:

e (EM_, X') }£ for(Y"),
e ant(Y') C {A| (EM,, X') = A} and suc(Y') C {B | (EM, X") |~ B},

21



e ant(Y’) C ant(X’) and suc(Y’) C suc(X’),
e X' eY'r.

The equivalence between the second one and the third one is from (1) and the
induction hypothesis. The equivalence between the third and the fourth is from
Lemma 3.5

We show the “only if” part. Suppose that (EMp, X) = Ofor(Y). Then
there exist a number £ and a sequent Z € G (¢) such that X R, Z and (EMp, Z) &
for(Y'). By XRpZ, we have either one of the following two conditions:

¢ < n and Ofor(Z) € suc(X), (3.1

¢=mnand Z € clusg(X). (3.2)

Therefore, we have ¢ < n. Also, by (EMy,, Z) [ for(Y), we have (EM,, Z) [~
for(Y'(£)). Using ¢ < n and the equivalence we noted first, we have Z € Y (¢){} .
Using Lemma 3.5 we have either one of the following two conditions:

k<CandY = Z(k), (4.1)

k>Cand Y(0) = Z. (4.2)

We divide the cases.
The case that (4.1) hold. Clearly, we have k < n. Also, we have the following

two conditions:
Ofor(Y) — Ofor(Z) € L, (4.1.1)

Ofor(Y) — Ofor(Z(¢ — 1)) € L. (4.1.2)
If (3.1) holds, then by (4.1.1), we obtain (2.1). If (3.2) holds, then we have

Ofor(Z (¢ — 1)) € (suc(2))" = (suc(X))",

and using (4.1.2), we obtain (2.1).
The case that (4.2) holds. We have Y (¢) = Z € G7 (£), and thus,

k=ClandY =Y () =Z.
Hence, we have that (3.1) implies (2.1) and that (3.2) implies (2.2).
We show the “if” part. If there exists a sequent Y satisfying
Y'e Y, NWrNEDL(n) and XR.Y", (5)

then by the equivalence we noted first, we have (EMp,,Y") }~ for(Y"), and thus,
we have (EMp,, X) £ Ofor(Y). Therefore, we have only to show the existence
of Y satisfying (5).

Suppose that (2.1) holds. Then by Lemma 4.2( there exists a sequent Y* €
EDy (n — 1) such that Ofor(Y*) € suc(X) and Y* € Y.
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IfY*e WpenNEDL(n—1) C Wy NEDg(n), then by Ofor(Y*) € suc(X),
we have X Rp Y™, and hence, we obtain that Y* satisfies (5).

So, we assume that that Y* € Gp(n — 1) — G} (n — 1). By Lemma 4.1§ we
have Y* € clusy(Xg). We define Y as

YS = (ant(X) — ant(Xg),ant(Y™) — suc(Y™"),suc(X) — suc(Xg)).
Then by Y* € clus;,(Xg) and Ofor(Y*) € suc(X), we have

Y3 € next (Y*) C Gf(n), (ant(X))” = (ant(Y3))", and
Ofor(Y™*) € suc(Yy).

Using Lemma 2.11 we have Y € G (n), and thus, we have
Y5 € clusy(X) and XRLY.
Also, we have
Y5 €nextr (Y*) NGz (n) CYlr NWr NEDL(n).

Hence, Y satisfies (5).
Suppose that (2.2) holds. Then we have Y € G (n) and X R Y. Hence, ¥
satisfies (5). m

Lemma 4.22 For any X € G} (n) and for any Y € G (k),
(EMp, X) [£ for(Y) if and only if X € Y|, .

Proof. By Lemma 4.21 the equivalence noted first in the proof of Lemma 4.21
holds. Therefore, we have (EMy,, X) }£ for(X), and using Lemma 4.15 we
obtain the lemma. |

Corollary 4.23 For any Y € Gp(n),
PL(fOI‘(Y)) = WL - YUL and PL(ﬁfOT(Y)) = WL n YUL

5 Exact models for F(n)

In the present section, we only treat the normal modal logics with the finite
model property for F. By Theorem 4.3 for a logic L we treat here, EM is the
exact L-model for F. The purpose of the present section is to extend (VI) and
(VII) in subsection 1.4 to these logics.

We let L satisfy the finite model property for F.

First, we introduce an exact set & for F(n). The Kripke model EM, |¢ is
shown to be exact for F(n).

Definition 5.1 A set £ is said to be exact for F(n) in L if the following three
conditions hold:
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(1) EDL(TL) NW,C&CWy,
(2) for any X € ED;(n), #(X4s nE) = 1,
(3) for any X € € and for anyY € Wi, XRLY implies Y € €.

By the following theorem, we can extend (VI) and (VII) in subsection 1.4.
Specifically, by (1.1), (2), and (3) of the theorem, we can extend (VI); in other
words, we obtain a finite method to list all exact L-models for F(n) in L. Also,
by (1.2), we can extend (VII); in other words, we obtain a finite method to
find S € 2FPr(") satisfying A =5, A for(S) for each A € F(n). The method is
different from the method provided by Theorem 2.6in section 2.

Theorem 5.2 We refer to k as ar(n,#(EDr(n))).
(1) For any exact set £ for F(n) in L,
(1.1) EM_|¢ is an ezxact L-model for F(n) in L,
(1.2) for any A € F(n),
A=y, \{for(X(n)) | X € £,(EMyle, X) £ A}.

(2) For any exact L-model M = (W, R, P) for F(n) in L, there exists an ezact
set € for F(n) in L satisfying the following two conditions:

o £C|JGi0),

1=0
e M is isomorphic to EMy|¢.

K
(3) Every exact set for F(n) in L is a subset of U G ().
i=0
Proof. For (1). Since EM[, is an L-model, we have
(EMy e, X) = L. (1.3)
By Lemma 4.22 we have

(EMy |, X) £ for(Y) if and only if X € Y,

for any X € £ and for any Y € G, (k). Using (1.3) and Theorem 2.7 we obtain
(1.1). Also, we have
(Prle)(X) =€ = {X},

and using (1.1), we obtain (1.2).
For (2). Since M is exact L N F-model for F(n) in L, we have

for any A € F,(M,a) EOA D OOA, (2.1)
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ED/(n) = {ed(n,a) |a € W}, (2.2)

and
P(edr(n,a)) =W — {a}. (2.3)

Since ED (n) is finite, we can observe that M is finite. Also, by (2.3) and (2.1),
we can observe that M is transitive.
We define £ as
E={edy(k,a) | a e W}

By (2.2) and (2.3), we can define a one-to-one mapping f from W onto EDy,(n)
and an one-to-one mapping g from EDy,(n) onto £ as

fla) =edr(n,a), gled(n,a))=edr (k).

In order to prove (2), we have only to show

(2a) £ is an exact set for F(n) in L and £ C U Gi.(7),
i=0

(2b) go f is an isomorphism from M to EMy|¢.
We show (2a). By the definition of edy,(n, a),

ED.(n) NWg = {edr(k,a) | edr(n,a) € W,a e W} CE.

By the finiteness and transitivity of M and Lemma 4.14 we have

Also, we have
for any edy (n,a) € EDp(n),edy(n, o)l NE = {ed(k,a)}.
Therefore, it is sufficient to show
for any edy,(k,a) € £ and for any Y € Wi, edy,(k,a)R.Y implies Y € €.

Suppose that edr,(k,a) € £, Y € Wi, and edr(k,a)R.Y. By edy(k,a)RLY
and Corollary 2.1%2), we have

Ofor(Y) — for(edy(k,a)) € L.
Using (2.3) and M = LN F, we have (M, a) = Ofor(Y), and thus,
(M, B) W for(Y) for some 8 € {B' € W | aRj'}.
Using (2.3) and Lemma 4.15 we have

edL(Ii, /8) € Y‘U’La
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and using Y € W, we have
Y = edL(Ii,B) e€.

We show (2b). We note that g o f is one-to-one and onto. We can easily
observe that {edy(k,a) | « € P(p;)} = Pr(p;). By (2.3), we have

aRp if and only if (M, «) [~ Ofor(edr(k, B)).
Using (2.3), M = LNF, and Lemma 4.1 we obtain
aRp if and only if edy, (k, @) Rredr(k, 3).

For (3). Let £ be an exact set for F(n) in L. Then by (1), EML|¢ is an
exact LNF-model for F(n) in L. We define g and f as in the proof of (2). Then
g o f is identity. Using (2), we obtain (3). [ ]
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