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Abstract. Here, we give a finite method to list all exact models for the set of formulas, which have finite
modal degree n and contain only propositional variables py,--- , p, in modal logic K4. The method is
obtained by modifying the method in [Sas10a] for modal logic S4.

1 Introduction

In the present section, we introduce formulas, the modal logic K4, and exact models; and also describe
the motivation of the present paper.

Formulas are constructed from L (contradiction) and the propositional variables p;,po,--- by using
logical connectives A (conjunction), V (disjunction), D (implication), and O (necessitation). We use
upper case Latin letters, A, B,C, -, with or without subscripts, for formulas. Also, we use Greek
letters, T, A, -+, with or without subscripts, for finite sets of formulas. The expressions OI' and T'"
denote the sets {0A | A € I'} and {0A | OA € '}, respectively. The modal degree d(A) of a formula A
is defined as

d(p;) = d(1) =0,

d(BAC)=d(BVC)=d(BD>C)=max{d(B),d(C)},

d(OB) =d(B) + 1.

The set of propositional variables pi,- - ,p, (m > 1) is denoted by V and the set of formulas
constructed from V and L is denoted by F. Also, for any n = 0,1,---, we define F(n) as F(n) = {4 €
F | d(A) < n}. In the present paper, we mainly treat the set F(n).

We define the modal logic K4 as a sequent system obtained by adding an inference rule to the sequent
system LK introduced in Gentzen [Gen35] for the classical propositional logic.
A sequent is the expression (I' = A). We often refer to I' = A as (I' = A) for brevity and refer to

Ala"' 7Ai7F17'“ 7Fj _)Ala"' 7Ak7B17"' 7Bf

as
{Ay,-- ,AYUT U---UTD; - Ay U---UALU{By, -+, By}

We use upper case Latin letters X,Y, Z,---, with or without subscripts, for sequents. If X = (I' — A),

then we sometimes refer to T3A as T — A. The antecedent ant(I' > A) and the succedent suc(T' — A)
of a sequent I' — A are defined as

ant(' > A)=T and suc(l' = A)=A,
respectively. Also, for a sequent X and a set S of sequents, we define for(X) and for(S) as

[ Aant(X) D Vsuc(X) ifant(X)#0
for(X) = { \/ suc(X) if ant(X) = 0

and
for(S) = {for(X) | X € S}.

For a finite set S of sequents, the expression #(S) denotes the number of elements in S.



By K4, we mean the system obtained by adding the inference rule

r,aor— A
—— 7O

aor — oA
to LK. Here, we do not use = as a primary connective, so we use the additional axiom 1 — instead of
the inference rules (= —) and (— =). We write X € K4 if X is provable in K4.
We use A = B instead of = (4 D B) A (B D A) € K4. Also, for any two equivalence classes [A] and
[B] in F/ =, we use [A] < [B] instead of A — B € K4. Thus, the structure (F(n)/ =, <) expresses the
mutual relation of formulas. Exact models are useful to clarify this structure.

We introduce an exact model, which is a kind of Kripke models.

A Kripke model is a structure (W, R, P) where W is a non-empty set, R is a binary relation on W,
and P is a mapping from the set of propositional variables to 2. We extend, as usual, the domain
of P to include all formulas. We call P a wvaluation and a member of W a world. For a Kripke model
M = (W, R, P), and for a world o € W, we often write (M, a) = A and M = A instead of @ € P(A) and
P(A) = W, respectively. The following lemma, is described in several articles (for example in Chagrov
and Zakharyaschev [CZ97]):

Lemma 1.1 — A € K4 if and only if M = A for any transitive Kripke models.

Let S be a set of formulas closed under D and A. We say that a Kripke model M = (W, R, P) is exact
for S if the following two conditions hold:

e forany A€ S, M | Aif and only if - A € K4,

e {P(A) | Aec S} =2".
This model was introduced in de Bruijn [Bru75].

The purpose of the present paper is to give a finite method to list all exact models for K4. Because
exact models are useful to clarify the structure (F(n)/ =, <), which expresses the mutual relation of
formulas. Specifically, the following lemma holds.

Lemma 1.2 Let (W, R, P) be an exact model for F(n).
(1) The mapping P* from F(n)/ = to 2V defined as

is an isomorphism and the structure (F(n)/ =, <) is isomorphic to the structure (2", C).
(2) If a mapping [ from W to F(n) satisfies
P(f(a)) =W —{a},

then
e« Fn)/ =={ \ flo)| W' eW},
acW’
e for any subsets Wy and W of W, Wy C W if and only if /\ fla) — /\ fla) € K4,

a€EWs aceW,

o forany Ac F(n), A= /\ fla).
(M,a) A

For the earlier works on this topic, we can refer to [Sasl0Oa]. Also, [Sasl0a] give a method to list
all exact models in the modal logic S4. [Sas10a] defined the set EDg4(n) of sequents, whose members
behave like an elementary disjunction

pivV---Vopr, (p; € {pi,pi D L}).

In other words, EDg4(n) satisfies



e F(n)/ =sa={[/\ for(S)] | S C EDs4(n)},
e for any subsets S; and Sy of EDg4(n), S; C S, if and only if A for(S2) — A for(S;) € S4.

[Sas10a] used it to construct exact models. By modifying this construction, [Sas10b] defined the set
ED/, (n) for a normal modal logic L containing K4 and proved the corresponding properties to the above
two. Here, we construct exact models using EDg4(n) in [Sas10b]. In the next section, we introduce
EDka(n) in [Sas10b]. In section 3, we give a finite method to list all exact models for F(n) in K4.

2 Constructions of EDy(n)

In [Sas10b], a construction of the set EDy (n) for a normal modal logic L containing K4 was given. Also,
another construction of the set EDk4(n) was given. The former depends on L-provability, but latter
doesn’t. Here, we introduce these two constructions in the case that L = K4. Therefore, we omit the
subscript L and K4 from ED and the other notations in [Sas10b].

We introduce the first construction as follows.

Definition 2.1 The sets G(n) and G*(n) of sequents are defined inductively as follows.
G0)={(V-Vi—»W)|W CV}
G*(0) =1,
G(k+1) = U next(X),
XeG(k)-G*(k)
G (k+1)={X € G(k+1) | (ant(X))"” C (ant(Y"))” implies (ant(X))” = (ant(Y))", for any YV €
Gk + 1)),
where for any X € G(k),
nextt(X) = {(OT,ant(X) — suc(X),0A) |[TUA = for(G(k)),[ N A =0},
prov(X) ={Y € next™(X) | Y € L},
next(X) = next™ (X) — prov(X).

Definition 2.2 We define the set ED(n) as

Lemma 2.3
(1) F(n)/ == {[/\ for($))] | S CED(n)}.
(2) For subsets Sy and Sy of ED(n),

S1 C Sy if and only if /\for(Sg) — /\for(Sl) € L.
We introduce the second construction as follows.
Definition 2.4 We define the set G*(n) as

G(0) if n=0
Gt(n) = U next™(X) ifn >0,
XeG(n—1)—G*(n—1)
Let X be a sequent in GT(n + 1). Then there exists only one sequent Y € G(n) — G*(n) such that
X € nextt(Y). We refer to X as this sequent Y. We note that X5 € G(n)—G*(n) and X € next(Xg).

Definition 2.5 We define the sets G°(n) and G*(n) as
o 0 ifn=0
G°(n) = . .
{X € G*(n) | Ofor(Xg) € suc(X)} ifn >0,
G*(n) = 0 ifn=0
"=\ {X € G*(n) | Ofor(Xg) € ant(X)} ifn > 0.



Definition 2.6 Let X, Yy, and Z be sequents in G(n), G(n + 1), and G (n), respectively. We define
two sets next(X,Yg) and pclus(Z) as

next (X, Yy) = { X € next(X) | (ant(Vs))” C (ant(Xe))"},
pclus(Z) = {Y € G (n) | (ant(Z))” = (ant(Y))"}.
Definition 2.7 For any X € G(0), we define pry(X), pry(X), pry(X), prs(X) and pr,(X) as

pro(X) = pr(X) = pry(X) = pry(X) = pr,(X) = 0.

For any X € G(n + 1), we define pry(X), pry(X), pry(X), prs(X) and pr,(X) as follows:
pro(X) = {(Ofor(Ys),I' — A, Ofor(Y)) € next™ (X) | Y € G(n)},

pr; (X) = {(I' » A,Ofor(Y)) € next™(X) | Y € G(n), (ant(X))” Z (ant(Y))"},
pry(X) = {(Ofor(next(Z', X)),I — A, Ofor(Z')) € next(X) | Z' € G(n — 1) - G*(n — 1)},

pr;(X) = {(Ofor(next(Z',Y)),[ — A, Dfor(Flz)Al, Ofor(Z'))) € next™(X)
|Y e G(n),Z' € G(n—1) — G*(n — 1)},

pr,(X) = {(Ofor(Y),I - A,Ofor(Z)) € next™(X) | Y € G°(n), Z € pclus(Y)}.
Lemma 2.8 For any X € G(n) — G*(n),
prov(X) = pry(X) U pr, (X) Upry(X) Upry(X) Upr,(X).
By the above lemma, we obtain a construction of ED(n), which does not depend on K4-provability.

In [Sas10b], there are also useful notations and lemmas for our investigations. Below, we show such
notations and lemmas.

Definition 2.9
(1) We define the set BG(n) as

BG(n) = VU D Ofor (G (i)).

i=0
(2) For any X € G*(n) and for any k, we define X (k) as
X (k) = (ant(X) N BG(k) — suc(X) NBG(k)).
Here, we note that X (k) = X if ¥ > n; and that X(n — 1) = Xg if n # 0. Also, we note the following.

Remark 2.10
(1) None of the members in G(n) is provable in K4.
(2) For any X,Y € ED(n), X #Y implies for(X) V for(Y) € K4.
(3) For any X € G (n), ant(X) Usuc(X) = BG(n) and ant(X) Nsuc(X) = 0.

Lemma 2.11 Let X and Y be sequents in G(n) satisfying (ant(X))” = (ant(Y))™. Then
(1) X € G*(n) if and only if Y € G*(n),
(2) Y € G°(n) implies Ofor(Y) — for(X) € L.
Definition 2.12 Let X be a sequent and let S be a subset of G(n). We define the sequent n(X,S) as
n(X,S) = (Ofor(G(n) — S),ant(X) — suc(X), Ofor(S)).

We note that n(X,S) € next™ (X) if X € G(n).



Lemma 2.13 Let X and Y be sequents in G(n) — G*(n) and let Xq be a sequent in next(X). If
Ofor(Y) € suc(Xg), then
n(Y,S) € next(Y),

where
S— {Z € G(n) | Ofor(Z) € suc(Xy)} ifn=0
{Z € G(n) | Ofor(Z) € suc(Xg), Ofor(Zs) € suc(Y), (ant(V))” C (ant(2))"} ifn > 0.
Definition 2.14 For any X € G(n), we define the sets X| inductively as follows:
(1) X € XU,
o0
(2)if Z e X| —UG*(i), then Zg € X || for any Zg € next(Z).
i=1

Lemma 2.15 Let X be a sequent in G(n). Then
(1) n > k implies X (k) € G(k) — G*(k) and X € X (k){,
(2) for any Y € G(k), the following three conditions are equivalent:
(2.1) ant(Y) C ant(X) and suc(Y) C suc(X),
(22)n >k andY = X (k),
(2.3) X € Y.

Lemma 2.16 Let X and Y}, be sequents in G(n) — G*(n) and G(k), respectively, and Xg be sequents
in next(X). Ifn > k and Ofor(Yy) € suc(Xg), then there exists a sequent Y € ED(n) such that
Ofor(Y) € suc(Xg) and Y € Y. {).

Also, by Lemma 2.8, we have the following lemma.
Lemma 2.17 Let X be a sequent in G*(n) and let Y be a subset of pclus(X). Then
X € G(n) if and only if Y € G(n).

Proof. If n =0, then the lemma is clear from G*(0) = G(0). We assume that n > 0. It is observed
easily that
X € pry(Xg) if and only if Y € pry(Ys),

(Xe) (Ye)
X € pr,(Xg) if and only if Y € pr, (Ys),
X € pry(Xg) if and only if Y € pr,(Ys),
X € pry(Xg) if and only if YV € pry(Ys),
X € pr,(Xg) if and only if Y € pr,(Yy).

Using Lemma 2.8, we obtain the lemma. -

3 Exact models for F(n)

In the present section, we give a finite method to list all exact models for F(n) in K4.

First, we introduce the Kripke model EM, an exact set £ for F(n), and the Kripke model EMg.
Here, we use EM to investigate exact models for F(n). For an exact set £ for F(n), the Kripke model
EMc¢ is shown to be exact for F(n).

Definition 3.1 The Kripke model EM is defined as
EM = (Wg, Rg, Pg),

where

WE = U G*(n),
n=0

Rg = {(X,Y) | Ofor(Y) € suc(X) or both X € pclus(Y) and Y € |J,—, G°(n)}, and
Pg(p;) ={X | p; € ant(X)}.



Definition 3.2
(1) A set & is said to be exact for F(n) if the following three conditions hold:
(L.1) ED(n) NWg C € C W,
(1.2) for any X € ED(n), #(X{n€) =1,
(1.3) for any X € £ and for any YV € Wg, XRgY implies Y € £.

(2) For an exact set £ for F(n), the Kripke model EMg¢ is defined as
EM¢ = (£, Re, Pg),

where Re = Rg N E? and Pe(p;) = Pe(pi) NE.

Definition 3.3 For any ¢ € {0,1,2,.---}, we define the number () as
e x(0) =n,
e k(l+1)=k(l) + #(G(r(())) — 1.

The main purpose in the present section is to prove the following theorem.

Theorem 3.4
(1) For any ezxact set € for F(n), EMg¢ is an exact model for F(n).
(2) For any exact model M for F(n), there exists an exact set € for F(n) such that M is isomorphic

to EMg.
k(#(ED(n)—Wg))
(3) Every exact set for F(n) is a subset of U G*(1),

=0
(4) Let € be an ezact set for F(n). Then for any A € F(n),
A= N{for(X(n)) | X € £,(EMg, X) = A}.

The above theorem has the following meaning. By (1), (2), and (3), we can list all exact models for
F(n). By (4), for each exact model for F(n), we obtain a finite method to find a subset S of £ such that

A= /\ for(S) for a given formula A € F(n).

To prove the theorem, we need some lemmas. (1) and (4) will be proved by Lemma 3.12. (2) will be
proved by Lemma 3.19. (3) can be shown by the proof of Lemma 3.19(2).

Lemma 3.5 Let X and Y) be sequents in G(n) and G*(k), respectively. If n > k and (ant(X (k)))” =
(ant(Y%))”, then n = k and X € G*(n).

Proof. By Lemma 2.15 and Lemma 2.11(1), we have X (k) € G*(k). Hence, we obtain the lemma. -

Lemma 3.6 Let X,Y, and Z be sequent in G(n1), G(nsa), and G(ns), respectively. If Ofor(X) € suc(Y")
and Ofor(Y') € suc(Z), then Ofor(X) € suc(Z).

Proof. From Ofor(X) € suc(Y) and Ofor(Y) € suc(Z), we have (Ofor(X) — suc(Z)) € K4 and
ny < nz. Hence, we obtain Ofor(X) € suc(Z). —|

Lemma 3.7
(1) Rg is transitive.
(2) For any exact set € for F(n), Re is transitive.



Proof. We only show (1). Suppose that XRgY, YReZ, X € G(n1), Y € G(nz), and Z € G(ns).
Then we have either one of the following four conditions:
(1.1) Ofor(Y) € suc(X) and Ofor(Z) € suc(Y),
(1.2) Ofor(Y) € suc(X), ny = n3, (ant(Y))” = (ant(2))", and Z € G°(n3),
(1.3) ny = na, (ant(X))" = (ant(Y))"”, Y € G°(nsy), and Ofor(7) € suc(Y),
(1.4) ny = na = n3, (ant(X))” = (ant(V))" = (ant(2))", Y € G°(n2), and Z € G°(n3).
If (1.1) holds, then by Lemma 3.6, we obtain X RgZ. If (1.2) holds, then by Lemma 2.11, we have

Ofor(Z) — for(Y) € K4, Ofor(Y) € suc(X), and ny > ny = ngs,

and hence, we obtain Ofor(Z) € suc(X). If (1.3) holds, then we obtain Ofor(Z) € (suc(Y))”
(suc(X))®. If (1.4) holds, then clearly, we obtain X RgZ.

2l

Lemma 3.8 Let Xq and Y be sequents in G*(n + 1) and G(n) — G*(n), respectively. If Ofor(Y) €
suc(Xg), then (ant(Xg))” NBG(n) = (ant(Y))".

Proof. We define S as in Lemma 2.13. Then by Lemma 2.13, we have n(Y,S) € next(Y) C G(
1). We note that (ant(Xg))” C (ant(n(Y,S)))”. Using Xg € G*(n + 1), we have (ant(Xg))"
(ant(n(Y,S)))". Hence, (ant(Xg))" NBG(n) = (ant(n(Y,S)))? NBG(n) = (ant(Y))".

_|_||+

The following two lemmas are concerned with EM, but as a corollary, we have the same results with
EMg¢.

Lemma 3.9 For any X,, € G*(n) and for any Y}, € G(k),

(1) (BML, X.,) £ pi if and only if p; € suc(X.,),
(2) (EM, X,,) = Ofor(Y},) if and only if either one of the following two conditions holds:
(2.1) k < n and Ofor(Y}) € suc(X,),
(2.2) k =n, (ant(Y))" = (ant(X,))" and Y € G°(k).

Proof. From the definition of Pg, we obtain (1). We show (2) by an induction on n + k. A proof of
Basis is included in Induction step.

Induction step. We first note that for any X' € G*(n') and for any Y’ € G(k'), if ' < n and
k' <min{n', k}, then the following four conditions are equivalent:

o (EM, X') - for(Y"),

e (EM, X') E A for any A € ant(Y”'); and (EM, X') }£ B for any B € suc(Y"'),

e ant(Y') C ant(X') and suc(Y"') C suc(X'),

e X' cY'|.
The equivalence between the second one and the third one is from (1) and the induction hypothesis. The
equivalence between the third and the fourth is from Lemma 2.15.

We show the “only if” part. Suppose that (EM, X,,) £ Ofor(Y},). Then there exist a number ¢ and

a sequent Z, € G*({) such that X,,RgZ, and (EM, Z;) }~ for(Y},). By X,,RgZ,, we have either one of
the following two conditions:

¢ < n and Ofor(Z,) € suc(X,), (3.1)

¢ =n,(ant(X,))" = (ant(Z;))" and Z, € G°(¥). (3.2)

Therefore, we have £ < n. Also, by (EM, Z;) & for(Y}), we have (EM, Z;) £~ for(Y}(¢)). Using £ < n
and the equivalence we noted first, we have Z; € Y. (¢){}. Using Lemma 2.15, we have either one of the
following two conditions:

k</fland Y, = Z[(k) (41)

k> € and Yy (0) = Z,. (4.2)

We divide the cases.
The case that (4.1) and (3.1) hold. Clearly, we have k < n. By (4.1), we have

Ofor(Y};,) — Ofor(Z;) € K4.



Using (3.1), we obtain (2.1).
The case that (4.1) and (3.2) hold. Clearly, we have k < n. By (4.1), we have

Ofor(Yy,) — Ofor(Z,(¢ — 1)) € K4.

Also, by (3.2), we have
Ofor(Z,(( — 1)) € (suc(Zy))" = (suc(X,))".

Hence, we obtain (2.1).
The case that (4.2) holds. By Lemma 3.5, we have

kzéandYk:ZZ.
Hence, we have that (3.1) implies (2.1) and that (3.2) implies (2.2).

We show the “if” part.

Suppose that (2.1) holds. Then by Lemma 2.16 and Lemma 2.8, there exists a sequent ¥ € ED(n—1)
such that Ofor(Y) € suc(X,,) and Y € Y;{. We divide the cases.

The case that Y € Wg N ED(n — 1), By Ofor(Y) € suc(X,,), we have

X, RgY.
Also, by Y € Y| and the equivalence we noted first, we have
(EM,Y) |~ for(Yy,).
Hence,
(EM, X,,) £ Ofor(Y%).

The case that Y € G(n—1)—G*(n—1). By Lemma 3.8, we have (ant(X,,))"NBG(n—1) = (ant(Y))".
We define Z,, as
Zn=n(Y,{Z € G(n —1) | Ofor(Z) € suc(X,)}).

Then we have Z,, € next™ (V) C G (n) and (ant(X,))” = (ant(Z,))". Using X,, € G*(n) and Lemma
2.17, we have Z,, € next(Y) C G(n), and using Lemma 2.11(1), Z, € G*(n). Also, by Y € Y}, |
and Lemma 2.15, we have ant(Y;) C ant(Y) C ant(Z,) and suc(Y;) C suc(Y) C suc(Z,). Using
the equivalence we noted first, we have (EM, Z,,) [~ for(Y;). Using (ant(X,))"” = (ant(Z,))"” and
Ofor(Z,(n — 1)) = Ofor(Y) € suc(X,) N Ofor(G(n — 1)) C suc(Z,), we have X,, Rg Z,, and hence, we
obtain (EM, X,,) j= Ofor(Y}).

Suppose that (2.2) holds. Then we have

Y: € G*(n) and X,,RgY}.
By the equivalence we noted first, we have
(EM, Yk) bé fOI‘(Yk).

Hence, we obtain
(EM, X,,) #~ Ofor(Y%).

Lemma 3.10 For any X,, € G*(n) and for any Y}, € G(k),

(EM, X,,) £ for(Y},) if and only if X,, € Y|} .



Proof. By Lemma 3.9, we have
for any A € BG(n),(EM, X,,) E A if and only if A € ant(X,,). (1)
Therefore, if n > k, then we obtain the lemma as follows.

X, €Yl & ant(Y;) Cant(X,) and suc(Y}) C suc(X,) by Lemma 2.15
& for any A € BG(k), A € ant(Y}) if and only if A € ant(X,),
< for any A € BG(k), (EM, X,,) = A if and only if A € ant(Y},) by (1)
& (EM, X,,) [~ for(Yy).

If n < k, then we obtain the lemma as follows.

X, eyl © n=kand X, =Y} by Lemma 2.15
= for any A € BG(k),(EM, X,,) F A if and only if A € ant(Y;) by (1)
& (EM, X,) [~ for(Yy).

(EM, X,,) £ for(Yy)

< for any A € BG(k), (EM, X,,) = A if and only if A € ant(Y})

= forany A € BG(n), A € ant(Y},) if and only if A € ant(X,,) by (1)

& ant(X,) = ant(Yy(n))

& n=kand X, =Y} by X,, € G*(n)
& X, eYil.

Corollary 3.11 Let £ be an exact set for F(n). Then for any X, € G*({) N E and for any Y, € G(k),
(EMg, X) & for(Yy,) if and only if X, € Vil .

Lemma 3.12 Let € be an exact set for F(n). Then
(1) for any A € F(n), EM¢ = A if and only if — A € K4,
(2) for any X,Y € &, (EMg, X) £ for(Y(n)) if and only if X =Y,
(3) {Pe(A) | A € F(n)} = 2°,
(4) for any X € &, Pe(for(X(n))) =& — {X}.

Proof. For (1). The “if” part is shown by Lemma 1.1 and Lemma 3.7. We show the “only if” part.
Suppose that — A ¢ K4. Then by Theorem 2.11, A = /\ for(S) for some S € 2FP(™ — {(}. Therefore,
there exists X € S, and by Definition 3.2(1.2), there exists Y € X|} N€ C Wg. Using Corollary 3.11, we
have (EMg,Y) | for(X). Hence, we obtain (EM¢,Y) [~ A.

For (2). The “if” part is clear from Corollary 3.11. We show the “only if” part. Suppose that
(EMg, X)) [~ for(Y (n)). Then by Corollary 3.11, we have

X eY(n)|NE.
We also have
YeY(n)nE.

By Definition 3.2(1.2),
#Y (n)nE) =1,
Hence, we obtain X =Y.
For (3). By (2), we have that S € 2¢ implies Pg((A for({X(n) | X € S})) D 1) = S, and hence, we
obtain (3).
For (4). Clear from (2). =

From (1) and (3) of the above lemma, we obtain Theorem 3.4(1). From (4) of the above lemma and
Lemma 1.2(2), we obtain Theorem 3.4(4).

Next, we prove Theorem 3.4(2).



Definition 3.13 For a sequent X € G(n), we define the set antg(X) as follows.
antg(X) = {V € G(n) | (ant(X))" C (ant(¥))"}.

Lemma 3.14 Let X be a sequent in G(n) — G*(n) (n > 0) and let S be a subset of pclus(X) satisfying
n(X,S) € next(X). Then
(1) Yy € antg(n(X,S)) implies Yg(n) € antg(X),
(2) Vs € antg(n(X,S)) implies Yo, = n(Ya(n),0),
(3) #(antg(X)) > #(antg(n(X, 3))).

Proof. For (1). By Yy € antg(n(X,S)), we have
(ant(n(X,S)))” ¢ (ant(V3))”, (1.1)

and thus,
(ant(X))" C (ant (Vg (n)))".

Therefore, we have only to show

(ant(X))” # (ant (Y5 (n)))".
Suppose that

(ant(X))? = (ant (Vs (n)))°. (1.2)
Then by (1.1), we have

(ant(n(X,S)))"” N Ofor(G(n)) C (ant(Yy))" N Ofor(G(n)).
Therefore, there exists a sequent Z such that
Ofor(Z) € ant(Yg) Nsuc(n(X,S)) N Ofor(G(n)) = ant(Yy) N Ofor(S). (1.3)

By n(X,S) € next(X) and Lemma 2.8, we have n(X,S) ¢ pry(X), and using Ofor(Z) € suc(n(X,S))
and (1.2),
Ofor(Zs) € (suc(X))” = (suc(Ye(n)))” C suc(Yy).

By Yo € G(n + 1) and Lemma 2.8, we have Yg & pry(Yp(n)). Therefore,
Ofor(next(Zg, Yo (n))) Nsuc(Yy) # 0.
Also, by (1.1), we have (suc(Yg))" C (suc(n(X,S)))", and thus,
() # Ofor(next(Zs,Ys(n))) Nsuc(Yy) C Ofor(next(Zs, Yy (n))) N Ofor(S).
By (1.3), we have Z € § C pclus(X), and thus,
() # Ofor(next(Zs, Yy (n))) Nsuc(Yy) C Ofor(next(Zs, Yy (n))) N Ofor(S) = {Ofor(2)}.

Therefore, Ofor(Z) € suc(Yy), which is in contradiction with (1.3). Hence, we obtain (1).

For (2). By Yy € antg(n(X,S)), it is observed easily that Yo = n(Yg(n),S") for a subset S’ of S.
Suppose that Z € S'. Then we have Z € &' C S C pelus(X), and using (1.1), (ant(Z))" = (ant(X))" C
(ant(Yg(n)))”. Hence, Yy € pry(Ygp(n)), which is in contradiction with Lemma 2.8. Hence, S’ = {).

For (3). By (1) and (2), we have the following two conditions:

e Yy € antg(n(X,S)) implies Yg(n) € antg(X),

o Yy, Zg € antg(n(X,S)) and Ya # Zg imply Yo (n) # Zg(n).

Also, it is observed easily that antg(X) N G*(n) # (. Hence, we obtain (3). 4

Definition 3.15 Let S be a subset of G(n). We define the subset S* (k=1,2,---) of G(n +k — 1) as
[ ] 81 = S,
o M1l =In(YV,8F) e G(n+k) | Y € ¥ — Wg}.
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Lemma 3.16 For any subset S of G(n), (S?)F = Sk+1.

Proof. Clearly, we have
(82)1 — 82 — Sl+1.

Also, if (8?)F = S¥*1, then

(S2)k+1 = {n(Y, (SHFYeGn+k+1) |Y € (S2)k — W)
=Y, S* ) eGn+k+1)|Y € S — Wg}

Definition 3.17 Let X be a sequent in ED(n) (n > 0) and let S be a subset of pclus(X). We define
the sequent n*(X,S) e ED(n +k)U{L —} (k=0,1,---) as

en’(X,S) =X,
( n(n*(X,S),Sk1) ifnf(X,S) e G(n+k)—G*(n+k)
and n(n*(X,S),S**1) € next(n*(X,S))
1 — if n*(X,S8) € G(n+k) — G*(n + k)
. (X, ) = and (o (X,8).547) € prov(uf (X, )
n+
n*(X,S) if nf(X,S) € | G*(i)
i=0
[ L — if nf(X,8) = (L —).
(

Lemma 3.18 Let X be a sequent in G(n) — G*(n) (n > 0) and let S be a subset of pclus(X). Then
(1) n'(X,8) € G(n + 1) implies S*> C pclus(n' (X,S)) and n*(n' (X, S),S8?%) = n**+1(X,S),
(2) there exists k € {1,2,--- , #(antg(X))} such that n*(X,S) € G*(n + k) U {L —}.

Proof.
For (1). For brevity, we define X2 as

X? =n'(X,S).
Suppose that X?(= n!'(X,S)) € G(n + 1). Then we have
X? =n!(X,8) = n(n"(X,S),5') = n(X,S) € next(X).
Hence,
S?={nY,8)eGn+1)|Y eS—-Wg}Cpclus(n(X,S)) = pclus(X?).

In order to show
n*(X?,8%) =" (X, ), (1.1)

we use an induction on k. Basis(k = 0) is clear.

Induction step(k > 0). We divide the cases.

The case that n* (X2, 8?) € G(n+k)—G*(n+k) and n(n*~1(X2,8?), (5%)*) € next(nF (X2, 5?)).
By the induction hypothesis and Lemma 3.16, we have

n"(X,8) =n* (X% S*) e G(n+k)—G*(n+k)

nd
) n(n*(X,8), 8 1) = n(n* 71 (X2, 8?%), (S*)*) € next(n* "1 (X? S?%)) = next(n*(X,S)).

Hence,
n*(X?,8%) = n(@" 7 (X?,8%), (%)) = n(*(X,S),5") =" (X, S).

The case that n* (X2, 8?) € G(n+k)—G*(n+k) and n(n* 1 (X2, 8?), (§%)*) € prov(n* 1 (X2, 8?)).
By the induction hypothesis and Lemma 3.16, we have

n"(X,8) =n" 1 (X% S cGn+k)—G* (n+k)
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and
n(n(X,8),8"") = n@" 1 (X?,8%),(5%)") € prov(n" ! (X?,8?%)) = prov(n*(X, 5)).

Hence,
n*(X2%, 8% = (L =) =nfT(X,S).
n+k
The case that n*~! (X2 5?) U G*(i). By the induction hypothesis, we have

n+k
nf(X,8) =nf1(X2 8% e U G*(i

Hence,
n*(X?,8?%) = n"1(X?,8?%) = n*(X,S) = 0 (X,S).
The case that n*~!(X?,8%) = (L —). By the induction hypothesis, we have
n*(X,8) = nf1(X2,82) = (L —).

Hence,
nk(XQ,SQ) =(L—=)= nk'H(X,S).

For (2). If X?(=n!'(X,S)) = (L —), then (2) is clear. We assume that X2 # (L —). Then we have
X? =n!(X,8) =n(X,S) € next(X) C G(n + 1). (2.1)

Using Lemma 3.14(3),
#(antg (X)) > #(antg(X?)) (2.2)

We use an induction on #(antg(X)).
Basis(#(antg(X)) = 1). By (2.2), we have #(antg(X?)) = 0, and using (2.1), we obtain X? €
G*(n+1).
Induction step(#(antg(X)) > 1). If X2 € G*(n + 1), then (2) is clear. Using (2.1), we can assume
that
X?eG(n+1)—G*(n+1).

Also, by (2.1) and (1), we have
S? C pelus(X?) and n*(X?,8?) = "1 (X, S).
Using (2.2) and the induction hypothesis, there exists £ € {1,2,--- , #(antg(X?))} such that
n(X,8) =nf (X2, 8*) € G*(n+ L+ 1)U{L —}.
Also, using (2.2),

(+1€{1,2,-- #(antg(X?)) + 1} C {1,2, -, #(antg(X))}.

Lemma 3.19 Let M = (W, R, P) be an exact model for F(n).
(1) There exists one-to-one mapping f from W onto ED(n) such that P(for(f(«))) =W — {a}.
(2) There exist an exact set € for F(n) and an isomorphism from M to EMg.
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Proof. First, we note that
(3) R is transitive.

For (1). Let a be a world in W. Then by Lemma 1.2 and Lemma 2.3, there exists only one sequent
X in ED(n) such that (M, «) £ for(X). Therefore, we can define a mapping f as f(a) = X; and f
satisfies the conditions.

For (2). For any o € W, we define the set clus(a) as clus(a) = {# € W | aRfS,Ra}. By an
induction on k € {n,n+1,n+2,---}, we define a mapping g; from W to the set of sequents as

fla) ifk=n
gr(a) = { gr—1(a) if k> n and gp—1(a) € Wg
n(gr—1(a),{gr-1(B) € G(k—1) | aRB}) otherwise.

Also, we define the set (k) as E(k) = {gr(«) | « € W}. Then by (1), we have
(2.0) ED(n) = &(n).
Also, we have the following six conditions:
(2.1) for any a € W, gi(a)) € ED(k) and P(for(gix(a))) =W — {a},
(2.2) ED(n) N Wg C (k) C ED(k),
(2.3) for any X € ED(n), #(X{ NE(k)) =
(2.4) for any a € W and for any 3 € clus(a ), (ant(gx()))® = (ant(gx(8)))",
(2.5) for any a € W and for any X € Wg, gr(a) € E(k) N Wg and gi(a)RgX imply X € (&),
(2.6) E(k) & Wiy implies #(E(K) — W) > #(E(k + #(G(k)) — 1) - W),

The first four conditions are shown similarly to the proof of Lemma 3.4 in [Sas10c], which is an
extended proof of Lemma 4.14 in [Sas10a]. We note the following two things.

[Sas10a] and [Sas10c] treat the modal logic S4. Therefore, definition of next®(X) is different from
ours. To show (2.1), we show that

gk—1(a) € Wg implies gi(a) € next™t (gi—1(a)). (2.1.1)

In order to show (2.1.1), [Sasl0c] has to show Ofor(gi_1(a)) € suc(gx(a)), but in our case, we don’t
have to show it and we can directly obtain (2.1.1).

To show (2.4), [Sas10c] uses Lemma 1.7 in [Sas10c] for S4. Here, we use Lemma 3.5 instead of Lemma
1.7 in [Sas10c].

We show (2.5) by an induction on k. Suppose that
251) aeW

(2.5.2) X € Wg,

(2.5.3) gr(a) € E(k) N Wg, and

(2.5.4) gr(a)REX.

We want to show X € (k). By (2.5.4), we have either

(4a) Ofor(X) € suc(gr(a)) or

(4b) (ant(gr(a)))” = (ant(X))” and X € G°(¢) for some .

Basis(k = n). If (4a) holds, then by (2.0), we have Ofor(X) € BG(n), using (2.5.2) and (2.0), we
have X € ED(n) = £(n). If (4b) holds, then by (2.5.2), (2.0), (2.5.3), and Lemma 3.5, we have ¢ < n
and X € G°(¢) CED(n) = &(n).

Induction step(k > n). We only show the case that both gr_; (o) € Wg and (4b) hold. The other
case can be shown similarly to the proof of Lemma 3.4 in [Sas10c].

By (2.2) and gg—1(a) & Wg, we have gi—1(a) € G(k — 1) — G*(k — 1), and using (2.2) and (2.5.3),
we have gr(a) € G*(k). Using (4b) and Lemma 3.5, we have £ = k and X € G°(k), and therefore,
we have Ofor(X (k — 1)) € (suc(X))®” = (suc(gi(a)))”. Considering the form of gi(a), there exists
a world f € W such that X(k — 1) = gx_1(f) and aRpB. Also, considering (3) and the forms of
gr(a) and gi(B), we have (suc(gy(8)))" C (sue(gi()))”. Using gr(a) € G*(k) and (4b), we have
(ant (g (8)))° = (ant (g (2)))° = (ant(X))°. Using X (k — 1) = ge_1 (), we obtain X = gi(8) € E(k).
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We show (2.6). Let ¢ be a number in {n,n+ 1,n+ 2,---}. Then we have
for any a € W, gi(a) € Wg = giy1(a)(= gi(a)) € WEg;

and by (1) and (2.2), we have

forany o, € W, a# 3= gu(a) # gu(B) = - = gi(a) # 9i(B) = gi+1(a) # gir1(B) = -+~

By £(k) € Wg and (2.2), there exists a world a € W such that
gr(a) € E(k) N (G(k) — G*(k))

and
9x(8) € ED(k) N Wg for any 3 € {y € W | aRy, vRa}.

Therefore,
for any 8 € {y € W | aRy,yRa}, ED(k) N WE 3 gi(8) = g1 (B) = -+ = grte(B) =

We define S as
S ={gr(p) € G(k) | B € clus(a)}.
Using (2.4), we have S C pclus(gi(«)). Therefore, using (2.6.3) and Lemma 3.18(2),

nl(gk(a),S) € G"(k+0)U{L —} for some ¢ € {1,2,--- ,#(antg(gr(a)))}.

We show
(2.6.6) S = {grse 1(B) € G(k+£—1)| 3 € clus(a)} and

(2.6.7) gr+e—1(a) = 0" (gr(a),S)
for £ € {1,2,---}. We use an induction on ¢. Clearly, we have Basis({ = 1).
Induction step (¢ > 1). By the induction hypothesis, we have

S = {grre—2(8) € G(k+£—2) | B € clus(a)}

gire—2(@) =0 (g (@), S).
Therefore, we obtain (2.6.6) as follows.

St = Y, S YHeGk+(-1)|Y eSS -Wg}
= (Y, S Y eGk+£-1)]Y €{grie—2(B) € G(k+(—2)|B € clus(a)} — Wg}
= {n(grse-2(8), 8" 1) € G(k+(—1) | grye—2(8) € Gk +(—2) — Wg, B € clus(a)}
= {n(grt+e—2(8): {gk+e—2(7) € G(k+£—2) |y € clus(a)}) € G(k + (- 1)
| grre—2(B) € G(k+ (€ —2) — Wg, S € clus(a)}
= {n(grte—2(8) {gr+e—2(7) € G(k+£—-2) | aRy}) € G(k+ (1)
| grre—2(B) € G(k+ (€ —2)—Wg, 3 € clus(a)}
= {n(grte—2(8); {gr+e—2(7) € G(k+L—2) | BRy}) € G(k + (- 1)
| grre—2(B) € G(k+{—2)—Wg, 3 € clus(a)}
= {gk+e-1(B)

€Gk+(—-1)]|p €clus(a)}.
We show (2.6.7). By (2.6.7)" and (2.2), we have

nliZ(gk(a) S) = grto—2(a) € ED(k + £ — 2).

If 02 (g(),S) = gryr2(a) € G(k+ € —2) — G*(k + £ — 2), then
grre-1(a) = n(gere—2(), {grre—2(8) € G(k+{=2) | aRS})
= 0lgere2() {gere2(B) € Gk + L= 2) [ § € clus(e)}) - (by (2.6.4))
= n(gku 2(a), 81 (by (2.6.6))
= n(n"*(g(a),8),8) (by (2-6-7)')
= n'"(gi(a),S) (by (2.
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If n72(gi (), S) = gr+e—2() € W, then

Gre—1(a) =
= n'(g(a),8) (by (2.6.7)")
= (a),S

Hence, we obtain (2.6.7).
By (2.6.5), (2.6.7), and (2.1), we have

gr+e(a) € G*(k + £) for some £ € {1,2,--- , #(antg(gr()))}.

Also, we have
ant(gx(a)) ¢ antg(gi(a)),

and using (2.1),
#(antg(gx () < #(G(k)) — 1.

Therefore,
grte(a) € G*(k + () for some £ € {1,2,--- ,#(G(k)) — 1}.

Using (2.6.3),
gr(a) & Wi and giye(a) € Wg.

Using (2.6.1) and (2.6.2),
#(E(k) — W) #(EK+1) —{gr+1(7) | ge(v) € WE})

S+ 0) = {gese() | 9n(2) € W)
#(Ek+ L) —Wg)

VIV VI

H(E(k + #(G () — 1) — W),
Hence, we obtain (2.6).

We consider the number k£ = &(#(ED(n) — Wg)). Then by (2.0), (2.6), and (2.6.1), there exists
te€{0,1,--- ,#(ED(n) — Wg)}, such that

#(ED(n) — Wg)
= #((k(0)) - Wr) (= #(E(n) — Wr))
> #(E(k(1) — Wa) (= #(E(k(0) + #(G(£(0))) — 1) — Wk))
> #(E(k(2)) - We) (= #E(k(1) + #(G(k(1))) — 1) — WE))

#(E(k(0)) — Wr) (=0)
= #EK(+1)) - W) (=0)
= #(E(K#(ED(n) - Wr)) —Wr) (=0)
= #(&(r) - We) (=0)

Using (2.2), we have
ED(n)NWg C £(k) C Wg. (2.7)

Using (2.3) and (2.5), £(k) is an exact set for F(n). Therefore, in order to prove the lemma, it is sufficient
to show that g, is an isomorphism from M to EMg(,). Specifically, we have only to show the following
three conditions:

(2.8) g, is one-to-one and {g.(a) |« € W} = E(k),

(2.9) aRp if and only if g, (o) Re(x)9x(5),
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(2.10) a € P(p;) if and only if gx(a) € Pg(w)(ps)-
Clearly, we obtain (2.8) from (2.6.2) and the definition of £(k). (2.10) is shown similarly to the proof in
[Sas10c].

We show (2.9). By (2.7), we have g,(a) € G*(¢1) and g¢,(8) € G*(¢2) for some (1,0 € {1,2,--- ,k}.

Suppose that aRf. If ¢1 > {5, we obtain (2.9), similarly to the proof in [Sas10c]. We assume that
¢y < {5. Similarly to the proof in [Sas10c], we have

{1 = {5 and (ant(g.(a)))” = (ant(g.(3)))".! (2.8.1)

Also, by (2.1), we have
(M, B) I for(gx(B)e)-
Using aRf, (2.1), and ¢; = (2, we have

Ofor(g. (8)e) € suc(ga(a)).

Using (2.8.1), we have
Dfor(g.(8)s) € suc(gx(f)):

Hence, g,(3) € G°({2), and using (2.8.1), we obtain g, (a)Re () 9x(83)-

Suppose that g,(a)Re(r)gx(B). If Ofor(g.(8)) € suc(ge(a)), then by (2.1), we have (M,«a) W
Ofor(g.(83)), and using (2.1) again, we have aR3. We assume that £; = {5, (ant(g.(«)))” = (ant(g.(5)))",
and g.(f) € G°(¢3). By (2.1), we have (M,a) [~ for(g,(a)). Using Lemma 2.11, we have (M, a) }
Ofor(g,(3)), and using (2.1) again, we have aR/. 4

From the above lemma, we obtain Theorem 3.4(2). Also, by the proof of (2) of the above lemma, we
obtain Theorem 3.4(3).
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