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Abstract. [3] provided a detailed description of the mutual relation of formulas with finite propositional
variables pi, - -+ , pp, in modal logic S4. It contains some lemmas whose detailed proofs are omitted. Here,
we provide such detailed proofs.

1 Introduction

Here, we provide detailed proofs of Lemma 3.12, Lemma 4.15(2), and Theorem 5.4(2) in [3]. [3] treated
the modal logic S4 by using normal forms and exact models. In the present section, we introduce modal
logic S4, exact models, and normal forms. The next three sections are devoted to giving detailed proofs
of Lemma 3.12, Lemma 4.15(2), and Theorem 5.4(2) in [3], respectively.

We introduce S4 as a sequent system.

Formulas are constructed from L (contradiction) and the propositional variables p;,po,--- by using
logical connectives A (conjunction), V (disjunction), D (implication), and O (necessitation). We use
upper case Latin letters, A, B,C,---, with or without subscripts, for formulas. Also, we use Greek
letters, I', A, .-+, with or without subscripts, for finite sets of formulas. The expressions OI' and '
denote the sets {0A | A € T} and {OA | DA € T'}, respectively. The depth d(A) of a formula A is defined
as

d(p;) = d(L) =0,

d(BANC)=d(BV(C)=d(B >C)=max{d(B),d(C)},

d(OB) =d(B) + 1.

Let ENU be an enumeration of the formulas. For a non-empty finite set I' of formulas, the expressions
/\ I' and \/ I" denote the formulas

(o (A AA)AAs) - AAy)  and (- (A1 V As) V Ag) -V Ay),

respectively, where {A41,---,A,} = ' and A; occurs earlier than A;;; in ENU. Also, the expressions
/\ (¢ and \/@ denote the formulas 1 D 1 and L, respectively.

The set of propositional variables pi,- - ,p, (m > 1) is denoted by V and the set of formulas
constructed from V and L is denoted by F. Also, for any n =0,1,---, we define F* as F* = {4 € F |
d(A) <n}.

A sequent is the expression (I' = A). We often refer to ' — A as (I' — A) for brevity and refer to

Ala"' 7Ai7F17'“ 7Fj _)Ala"' 7Ak7B17"' 7Bf

as
{Al,--- ,Ai}UI—HU---Ul—‘j —>A1U---UAkU{Bl,--- ,B[}.
We use upper case Latin letters X,Y, Z, .-+ with or without subscripts, for sequents. If X = (I' = A),

then we sometimes refer to T3A as T — A. The antecedent ant(I' > A) and the succedent suc(T' — A)
of a sequent I' — A are defined as

ant(' > A)=T and suc(l' > A)=A,
respectively. Also, for a sequent X and a set S of sequents, we define for(X) and for(S) as

[ Aant(X) D Vsuc(X) ifant(X)#0
for(X) = { \/ suc(X) if ant(X) =0



and
for(S) = {for(X) | X € S}.

For a finite set S of formulas or sequents, the expression #(S) denotes the number of elements in S.
Ohnishi and Matsumoto [2] defined the system by adding the following two inference rules to the
sequent system LK given by Gentzen [1] for the classical propositional logic:

AT = A or— A

— (O _ 0.
DA,F—>A( =) DF—)DA(_) )

Here, we do not use — as a primary connective, so we use the additional axiom 1 — instead of the
inference rules (- —) and (— —). We write X € S4 if X is provable in S4. We use A = B instead of
- (ADB)A(BDA) € S4.

We introduce an exact model as a kind of Kripke models.

A Kripke model is a structure (W, R, P) where W is a non-empty set, R is a binary relation on W,
and P is a mapping from the set of propositional variables to 2. We extend, as usual, the domain
of P to include all formulas. We call P a valuation and a member of W a world. For a Kripke model
M = (W, R, P), and for a world a € W, we often write (M,«) = A and M [ A instead of a € P(A)
and P(A) = W, respectively.

Let S be a set of formulas closed under D and A. We say that a Kripke model M = (W, R, P) is ezxact
for S if the following two conditions hold:

e forany A€ S, M | Aif and only if - A € S4,

o {P(A)| Ae S} =2".

Here, we note that 2" is either finite or uncountable, whereas {P(A4) | A € S} is at most countable.
Therefore, from the second condition above, we find that W must be finite.

We also consider a Kripke model M = (W, R, P) satisfying the following two conditions:

e forany A€ F, M |= A if and only if - A € S4,

e {{a} [a € W} C {P(4) | A € F}.

If W is finite, then the second condition above is equivalent to the second condition for an exact model.
Every exact model is finite, as stated above. Thus, there is no confusion if we refer to the above model
as an ezact model for F.

[3] constructed normal forms as sequents corresponding to elementary disjunctions in classical propo-
sitional logic. Below, we introduce the set ED" of such normal forms and some lemmas. By Lemma 1.4,
we may say that ED" is the set of normal forms. All of the lemmas below have been shown in [3].

Definition 1.1 The sets G(n) and G*(n) of sequents are defined inductively as follows.
G(0)={(V-Vi—»W)|W CV}
G*(0) =1,
G(k+1) = U next(X),
XeG(k)—G*(k)
G (k+1)={X € G(k+1) | (ant(X))"” C (ant(Y"))” implies (ant(X))” = (ant(Y))", for any YV €
G(k+ 1)},
where for any X € G(k),
nextt(X) = {(OT,ant(X) — suc(X),0A) |[TUA = for(G(k)),[ N A =, for(X) € A},
prov(X) ={Y € next™(X) | Y € S4},
next(X) = next™ (X) — prov(X).

Definition 1.2
(1) We define the sets ED", G*(n), and BG(n) as



G(0) ifn=0
Gt(n) = { U next™(X) ifn >0,
XeG(n—1)—G*(n—1)
n—1
BG(n) = VU | ] Dfor(G(i)).
i=0

(2) For any X € G(n), we define the set clus(X) of sequents as
clus(X) = {V € G(n) | (ant(X))” = (ant(1))"}.
(3) For any X € G*(n) and for any k, we define the sequent X (k) as
X (k) = (ant(X) N BG(k) — suc(X) N BG(k)).
(4) For any sequent X and for any subset S of G(n), we define the sequent n(X,S) as
n(X,S) = (Ofor(G(n) — {X}US)),ant(X) — suc(X),Ofor({X} U S)).
We note that n(X,S) € nextt(X) if X € G(n).

Lemma 1.3
(1) None of the members in G(n) is provable in S4.
(2) For any X,Y € ED", X #£Y implies for(X) V for(Y) € S4.
(3) For any X € GT(n), ant(X) Usuc(X) = BG(n) and ant(X) Nsuc(X) = 0.
(4) For any X € G(n), /\for(next(X)) = for(X).
(5) For any X € G*(n) and for any Y € clus(X), Y € G*(n) and Ofor(Y) — for(X) € S4.

~ — —

Lemma 1.4
(1) F"/ == {[\ for($))] | S C ED"}.
(2) For subsets S; and Sy of ED™,

S1 C S, if and only if /\for(Sg) — /\for(Sl) € S4.

Definition 1.5 For any X € G(n), we define the sets X} inductively as follows:
(1) X € X,

(2) if V' € next(Z) for some Z € X|} —| JG*(i), then Y € X}

i=1
Here, we note that X (k) = X if k > n.

Lemma 1.6 Let X and Y be sequents in GV (n) and G(k), respectively. Then
(1) n # 0 implies X(n —1) € G(n —1) = G*(n — 1) and X € next™ (X (n — 1)),
(2) n > k implies X (k) € G(k) — G*(k), X € X (k)| Uprov(X(n — 1)) and Ofor(X (k)) € suc(X),
(3) if X € G(n), then the following three conditions are equivalent:
(3.1) ant(Y) C ant(X) and suc(Y) C suc(X),
32)n>kandY = X(k),
(3.3) X e YUl

Lemma 1.7 Let X and Y be sequents in G(n) and G*(k), respectively. If n > k and (ant(X (k)))” =
(ant(Y))?, thenn = k and X € G*(n).



2 A construction of ED" without the provability of S4

[3] constructed the sets prov, (X), prov,(X), and prov,(X) for X € G(n) without using the provability
of S4; and proved that
prov(X) = prov,(X) Uprov,(X) Uprov,(X)

for X € G(n) — G*(n). In other words, we obtain a construction of ED" without the provability of S4.
Lemma 3.12 in [3] is a lemma for the above result. In the present section, we provide a detailed proof of
it.

Definition 2.1 For any X € G(n), we define prov, (X), prov,(X) and prov,;(X) as follows:
prov,(X) = {(I' = A,Ofor(Y)) € next™(X) | Y € G(n), (ant(X))" Z (ant(Y))"},

prov,(X) = {(I' = A,Ofor(Y)) € nextt(X) | Y € G(n), Ofor(Zs) € suc(Y),
Ofor({Z € next(Zy) | (ant(Y))" C (ant(Z))"}) CT for some Z5 € G(n — 1) — G*(n — 1)},

prov,(X) = {(Ofor(Y),T — A, Ofor(Z)) € next™ (X) | Y, Z € G*(n), (ant(Y))" = (ant(2))"}.

Lemma 2.2 Let X,, and Y, be sequents in G(n) — G*(n) and let X1 be a sequent in next™ (X,) —
(prov, (X,) Uprov,(X,) Uprovs(X,)). If Ofor(Y,) € suc(X,+1), then

Vo1 € next™ (V,,) — (prov, (Y,,) U prov,(Y,) U prov,(Y,)),

where
Y1 = (Ty,ant(X,,41) N Ofor(G(n)),ant(Y,,) — suc(Y,), Ay),
Ay = {Ofor(Z,) € suc(X,11) N Ofor(G(n)) | (ant(¥,))” C (ant(Z,))"},
'y = {Ofor(Z,) € suc(X,;1) N Ofor(G(n)) | (ant(¥,,))” Z (ant(Z,))"}.

Definition 2.3 The saturation sat(X) of a sequent X € G*(n) is defined as follows:

X ifn=0
sat(X) = { T4, To,ant(X), {A | OA € ant(X)} = suc(X), Aw, Ag, A;  ifn > 0,
where
T.={AZ| T Cant(X),T CBG(n—1),#() > 1},
Pa= (/S| Snant(X) £0,5 € BG( S0, #(9) > 13,
Ac= {\Z | Snsue(X) # 0,5 C BG(n — 1), 4(5) > 1},

Ag={\/T| T Csuc(X),L CBG(n—1),#(%) > 1},
Ay = {for(X(()) [ £ <n—1ant(X(()) # 0}.

We note that ant(X) C ant(sat(X)) and suc(X) C suc(sat(X)).

Lemma 2.4 (Lemma 3.12 in [3]) Let P be a cut-free proof figure in S4 whose end sequent is & — .
Then for any X, € G(n) — G*(n) and for any X,+1 € next™(X,) — (prov,(X,) U prov,(X,) U
provy(X,)),

(@ = TU)Z{(P" — T*) | &* C ant(sat(X, 1)), ¥* C suc(sat(X,11))}-
Proof. We give a detailed proof. We use I'c,I'¢, A¢, Ag, and Ay as in the above definition. Specifically,
P = {A\S| S Cant(Xn11), S C BG(n), #() > 1},
Ty ={\/S|Znant(X,41) # 0, CBG(n), #(Z) > 1},
Ac={\Z | ZNsuc(X,i1) # 6,5 C BG(n), #(3) > 1},
Ag={\/T| T Csuc(Xn41), S CBG(n), #(3) > 1},
Ay = {for(X(£)) | £ < n,ant(X(£)) # 0}.



First, we show
Ofor(X,,(k)) ¢ ant(X,, 1) for any k € {0,--- ,n}. (1)

By Lemma 1.6 and X,,11(k + 1) € next™ ((X,,+1(k + 1))(k)) = next™ (X, (k)), we have Ofor(X,(k)) €
suc(X,y1(k+1)) C suc(X,41). Using Lemma 1.3(3), we obtain (1). Also, by Lemma 1.3(3), we have
{Al \Y AQ | D(Al \Y AQ) € aIlt(Xn+1)}

{\/=10V/< € ant(X,41),= C BG(n),#(3) > 1}

C Tau{\/T |0V €ant(X,11), S C BG(n),#(3) > 1,S Nant(X,41) = 0}

= T,u{\/2|0\/S €ant(X,11),S C BG(n),#(%) > 1,% C suc(X,11)}

= T4U {\/E | D\/E = Ofor(Y (k)) € ant(X,,41) for some k € {0,--- ,n},#(X) > 1,% C suc(X,41)}
|V {\/E | D\/E = Ofor(X,,(k)) € ant(X,, 1) for some k € {0,--- ,n}, #(X) > 1},

and using (1), we have
{Al \ A2 | D(Al \Y AQ) € ant(XnH)} g Fd (2)

In order to prove the lemma, we use an induction on P.

Basis (P consists of an axiom). By Lemma 1.3(3), we have L ¢ ant(sat(X,;+1)). We show
ant(sat(X,41)) N suc(sat(X,+1)) = . Suppose that A € ant(sat(X,4+1)) N suc(sat(X,y1)). We
divide the cases.

The case that A = p;. By p; € suc(sat(X,,+1)), we have p; € suc(X,,). Using Lemma 1.3(3), we have
pi & ant(X,,). Using p; € ant(sat(X,,11)), we have Op; € ant(X,,11), and thus, i = m = 1. In other
words, Ofor(X,,(0)) = Op; € ant(X,,+1), which is in contradiction with (1).

The case that A = Ay A As. We have A € T, N A., which is in contradiction with Lemma 1.3(3).

The case that A = A; V As. By (2), we have A € Ty N Ay, which is in contradiction with Lemma
1.3(3).

The case that A = A; D A,. By A € suc(sat(X,11)), we have A = for(X,(k)) € A;. Using
A € ant(sat(X,(k))), we have OA = Ofor(X,,(k)) € ant(X,,+1), which is in contradiction with (1).

The case that A = OA;. We have A € ant(X,11) Nsuc(X,;1). Using X,,41 € next™(X,,), we have
A € ant(X,) Nsuc(X,), which is in contradiction with Lemma 1.3(3).

Induction step (P has the inference rule I introducing the end sequent ® — ¥). We define SAT as
SAT = {(®* — ¥") | ®* C ant(sat(X,,41)), " C suc(sat(X, 1))}

and we suppose that
(® — ¥) € SAT.

We divide the cases. The case that I is (— O) is shown in [3].! We show the other cases.
The case that I is either weakening rules or (—D) is clear.

The case that I is (A —). I is of the form of

Ai,q>/—)\1’
A1 /\AQ,CI)’—}\I’,

where { A1 AA>}UP" = &. We note that A1 AAy € T'.. Therefore, Ay € T':Uant(X,,11) C ant(sat(X,41))
and Ay € ant(X,,11) C ant(sat(X,+1)). Hence, the upper sequent of I belongs to SAT, which is in
contradiction with the induction hypothesis.

I The condition (6)
for(Y},) = for(Y (k)) = for(Y,+1(k)) € suc(sat(V,41)) (6)

in [3] is shown by

ant(Yy) # 0 = for(Yy) € Ay and ant(Y},) = 0 = for(Y;) € Ag.



The case that I is (— V). We can show the lemma similarly to the above case.

The case that I is (— A). I is of the form of

P — ‘I’I,Al b — \I’I,AQ
(ID—)\I”,Al/\AQ ’

where {A; A A>}UT’ = . We note that A1 A Ay € A.. If Ay € suc(X,,41), then the right upper sequent
of I belongs to SAT, which is in contradiction with the induction hypothesis. If Ay ¢ suc(X,41), then
Ay € AcUsuc(Xp41) C suc(sat(X,41)), and hence, the left upper sequent of I belongs to SAT, which
is in contradiction with the induction hypothesis.

The case that I is (— V). By (2), we can show the lemma similarly to the above case.

The case that I is (OD—). I is of the form of

P 5V A Ay, d > T

A DAy, ® -0
where {4; D A3} U ®' = &. We note that O(4; D Ap) = Ofor(Z) € ant(X,41) for some Z € G(k)
(k=0,1,---,n). By (1), we have Z # X, (k). Using Lemma 1.3(3), we have either ant(Z) ¢ ant(X,(k))
orsuc(Z) ¢ suc(X, (k). If ant(Z) € ant(X,,(k)), then there exists a formula B € ant(Z)Nsuc(X, (k)).
Therefore, we have either A; = /\ ant(Z) € A.or Ay = /\ ant(Z) = B € suc(X,,). Hence, the left upper
sequent of I belongs to SAT, which is in contradiction with the induction hypothesis. If suc(Z) ¢
suc(X,(k)), then similarly, we have either A, = \/ suc(Z) €Ty or Ay = \/suc(Z) € ant(X,). Hence,
the right upper sequent of I belongs to SAT, which is in contradiction with the induction hypothesis. -

3 Exact models for F"

[3] introduced the Kripke model EM, an exact set £ for F”, and the Kripke model EMg, and proved
that EM is the exact model for F and that the set {EMg¢ | € is an exact set for F™} is the set of exact
models for F". Also, a finite method to list all exact models for F™ was given. Lemma 4.14(2) in [3] is a
lemma, for one of the above result. In the present section, we provide a detailed proof of it.

Definition 3.1 The Kripke model EM is defined as
EM = (Wg, Rg, Pg),

where Wg = U G*(n), Rg = {(X,Y) | Ofor(Y) € suc(X) or X € clus(Y)}, and Pg(p;) = {X | pi €

ant(X)}.

Definition 3.2
(1) A set & is said to be exact for F™ if the following three conditions hold:
n

(1.1) | G* (i) c € C W,
i=0
(1.2) for any X € ED", #(X|§ NnE) =1,
(1.3) for any X € £ and for any Y € Wg, XRgY implies Y € €.

(2) For an exact set £ for F”, the Kripke model EMg¢ is defined as
EM¢ = (£, Re, Pe),
where Re = Rg N E? and Pe(p;) = Pe(p;) NE.



Lemma 4.14(2) in [3] is a lemma for the following lemma.

Lemma 3.3
(1) For any exact model M for F™, there exists an exact set £ for F™ such that M is isomorphic to

EMg;.
n+2#(ED" —Wg)

(2) Every exact set for F" is a subset of U G* (7).
i=0

Lemma 3.4 (Lemma 4.14 in [3]) Let M = (W, R, P) be an exact model for F™.
(1) There exists one-to-one mapping f from W onto ED" such that P(for(f(a))) =W —{a}.
(2) There exist an exact set € for F™ and an isomorphism from M to EMg.

Proof. (1) was shown in [3]. We give a detailed proof of (2). First, we note that
(3) R is reflexive and transitive
from M =0A D Aand M = 0OA D OOA.

For any a € W, we define the set clus(a) as clus(a) = {# € W | aRfS, fRa}. By an induction on
ke{n,n+1,n+2- -}, we define a mapping g from W to the set of sequents as

f(a) ifk=n
gr(a) = { gr—1(a) if k>n and gp—1(a) € Wg
n(gr—1(a),{gr-1(8) € G(k—1) | aRB}) otherwise.

Also, we define the set & as & = {gr(a) | « € W}. Then we have the following six conditions:
(2.1) for any o € W, gi(@) € ED* and P(for(gi())) = W — {a},

2.2) ED"NWg C &, C EDF,

3) for any X € ED", #(X| N&) =1,

4) for any o € W and for any 3 € clus(a), (ant(gx(a)))” = (ant(gx(3)))",

5) for any a € W and for any X € Wg, gi(a) € & NWg and gi(a)ReX imply X € &,

6)

(

(2.
(2.
(2.
(2.6) & € Wg implies #(Ex — WE) > #(Exy2 — WE).

We show (2.1) by an induction on k.
Basis(k = n). Let a be a world in W. Then by (1), we have

gn(@) = f(@) € ED" and P(for(gn())) = P(for(f(e))) =W —{a}.

Induction step(k > n). Let a be a world in W.
If gx—1(a) € Wg, then by the induction hypothesis,

gr(@) = gr—1(a) € ED* ' nWg C ED*
and
P(for(gx(a))) = P(for(gx—1(a))) = W —{a}.
We assume that g1 (a) € Wg. Then by the induction hypothesis, we have
gi_1() eED*' —Wg =G(k—1) - G*(k—1) (2.1.1)

and
P(for(gr—1(B))) =W — {B} for any g € W. (2.1.2)

By (3), we have aRa, and using (2.1.1),
gk—1() € {gr_1(B) € G(k — 1) | aRS}.

Therefore, we have Ofor(g,_1(a)) € suc(gr(a)). Using (2.1.1), we have gi(a) € nextt(gr_1(c)), and
thus,
P(for(gi(a))) = W — {a} implies g; () € next(gr_1(a)) C ED".



Therefore, we have only to show
P(for(gr(@))) =W —{a}.

To show the above condition, it is sufficient to show the following four conditions:

(2.1.3) for any g € W — {a}, (M, B) E for(gi(a)),

(2.14) (M, ) I for(gs—1()),

(2.1.5) for any X € {gi1(8) € G(k—1) | aRB}, (M, ) £ Dfor(Y),

(2.1.6) for any X € G(k — 1) — {gs_1(8) € G(k— 1) | aRB}, (M, a) | Ofor(X),
(2.1.3) is from (2.1.2) and the condition:

(M, B) |= for(gx—1(a)) implies (M, ) |= for(gi()).

(2.1.4) and (2.1.5) are from (2.1.2).
We show (2.1.6). Suppose that X € G(k—1) —{gr—1(8) € G(k—1) | aRf} and v € {y € W | aRy}.
We want to show (M, ) = for(X). By (2.1.2), we have

(M,~)  for(gr—1(7))- (2.1.7)
Also, by the induction hypothesis, we have either
gr—1(7) € G(k —1) or gr_1(y) € G*(¢) for some £ < k — 1.

If gr—1(y) € G(k — 1), then by X € G(k —1) — {gr—1(8) € G(k — 1) | aRS} and aR~y, we have
X # gr—1(7), and using (2.1.7), (M,~) E for(X). We assume that gr_1(y) € G*(¢) C Wg. Then by
¢ < k—1, we have X(¢) € Wg, and thus, X (£) # gr_1(7). Using (2.1.7), we have (M,~) | for(X (¢)),
and hence (M, ) |= for(X).

We show (2.2). Clearly, & C ED* from (2.1). We show ED" N Wg C & by an induction on k.
Basis(k = n). By (1), we have

ED"NnWg CED" =¢,.
Induction step(k > n). By the induction hypothesis,
ED"NWg C &1 N Wr.
Also, we note that
gr—1(a) € &1 N WE implies gi 1 () = gr(a) € E.

Hence, we obtain
ED"NWg C &1 NWE C &.

We show (2.3) by an induction on k.
Basis(k = n). By (1), we have
for any X € ED", #(X{ N&(n)) = #(XJ NED") = {X}.

Induction step(k > n). By the induction hypothesis, there exists a € W such that X{ NE(k — 1) =
{gr—1()}. We note that g, (o) € X

We show X || NE(k) D {gr(a)}. Clearly, gr(a) € E(k). If gr—1(a) € Wg, then we have gi(a) =
gr—1(a) € X{. If gp—1 (o) € Wg, then by (2.2), we have g () € next(gi_1(a)) C X{.

We show X |} NE(k) C {gr(e)}. Suppose that Y € X | NE(k). Then by (2.2), there exists f € W
such that Y = g(3) € ED*. If g;_,(8) & Wg, then by (2.2),

Y = gi(B) € next(gi—1(8)),

and using Y € X and Lemma 1.6, we have

gr—1(B) =Y(k=1) € Xy nE(k — 1) = {gr-1(a)}.



If gr—1(8) € Wr, then by Y € X |, we also have

g_1(B) =Y e XnEk —1) = {gr_1(a)}.
Therefore, in any case, we obtain gg—1(83) = gr—1(a). Also, by (1) and (2.2), we have

a# B = fla) # f(B) = gn(@) # gn(B) = gnt1(@) # gny1(B) = -+ = gr—1(a) # gr—1(F)- (2.3.1)
Hence, we obtain « = f and Y = g (8) € {gx(a)}.

We show (2.4). By (2.1), we have gi(a), gr(8) € ED"*. Therefore, g;(a) € G(£1) and g (8) € G(£s)

for some (1,05 € {1,2,---,k}. Without loss of generality, we can assume that ¢; < ¢». Then for any
X € {X | Ofor(X) € BG({)},
Ofor(X) € suc(gr()) & (M, a) £ Ofor(X) by (2.1)
= there exists v such that aRy and (M,~) £ for(X)
= (M, pB) £ Ofor(X) by (3) and SR«
& Ofor(X) € suc((gx(B))(¢1)) by (2.1).
Similarly,

Ofor(X) € suc((g9x(8))(¢1)) = Ofor(X) € suc(gr(e)).
Using Lemma 1.3(3), we have

(ant(g¢(a)))” = (ant((gx(8)(61)))" (2.4.1)

If ¢1 = k, then clearly, ¢4 = f>. If {1 < k, then we have gy(a) € G*(¢1), and using (2.4.1) and Lemma
1.7, we have £; = £5. Hence, we obtain (2.4). 2

We show (2.5) by an induction on k. Suppose that

251) aeW

(2.5.2) X € Wg,

(2.5.3) gr(a) € & N Wg, and

(254) gk (a)REX

We want to show X € &. By (2.5.4), we have either
(4a) Ofor(X) € suc(gr(a)) or
(4b) gr(a) € clus(X).

Basis(k = n). If (4a) holds, then by (2.1), we have Ofor(X) € BG(n), using (2.5.2), we have X €
ED" = &,,. If (4b) holds, then by g,(a) € £, = ED", (2.5.2), and Lemma 1.7, we have X € ED" = &,,.

Induction step(k > n). We divide the cases.

The case that gr—1(a) € Wg. We have gr—1(a) = gi(a). Using the induction hypothesis, we have
X € &g—1. Therefore, there exists a world 8 € W such that X = gr_1(8), using (2.5.2), we have
X = gi-1(B) = gi(B) € &

The case that gr_1(a) € Wg and that (4a) holds. We note that for any i € {n +1,n+2,---},

gi(a) € Wg implies giy1(a) = gi(a) € WE. (2.5.7)
Using gr—1(a) € Wg, none of the sequents in {gg—1(), gr—2(a), -+, gn(a)} belongs to Wg. Hence,

gr(a) = n(gr-1(a),Sk-1)
n(n(gk72 (a)a Sk72)7 Skfl)

= nn( - n(gu(a),Sn),  Sk—2)Sk-1),
2We can also show (2.4) by an induction on k. Basis(k = n) can be shown as the case that k = n in the proof of (2.4).
Induction step(k > n). By the induction hypothesis, we have

(ant(gr—1()))” = (ant(gr—1(8))". (2.4.2)

If both of gx—1 () and gr—1(B) belong to Wg, then we obtain (2.4) from (2.4.2). If none of g;_(a) and g1 (3) belongs to
Wg, then by (3), 8 € clus(a), and the definition of g («), we obtain (2.4). The remaining case is that only one of g;_1 ()
and g —1(B) belongs to Wg, but this is in contradiction with Lemma 1.7.




where S; = {g;(8) € G(i) | «RfS}). Using (4a), we have either Ofor(X) € suc(g,(a)) or X € S; for some
i€{n,n+1,---,k—1}. If Ofor(X) € suc(gn(a)), then by (2.5.2), X € ED" = &,,. Therefore, in both
cases, X = g;(B) for some i € {n,n+1,--- ,k—1} and g € W. Using (2.5.2), we have X = g;(f8) € WEg.
Also,

X=gi(p)eWg = X=gB)=gi+1(8)€Wg
= X =gi(B) = git1(B) = gi+2(B) € Wg
i ..
= X=giB)=9i1(B)=-=qg(B) e Wg
= X =giB) =9i+1(B) == gr1(8) = gr(p).

Hence, we obtain X = gi(3) € &.
The case that gr_1(a) ¢ Wg and that (4b) holds. This case is shown in [3].

We show (2.6). By (2.3.1),

and using (2.5.7),
#(En —We) 2 #(En1 —We) 2 #(Eni2 —We) 2 -+ (26.1)

Also, [3] proved that there exists a world @ € W such that
gr(a) € & — Wg and gri2(a) € Epypa N WE.

Hence, we obtain (2.6).

By (2.6) and (2.6.1), there exists £ € {0,1,--- ,#(ED™ — Wg)}, such that

#(ED" -Wg) = #(& —Wg)
> #(5n+2 - WE)
> #(8n+4 - WE)
> #(Enroe — Wa) (=0)
= #(5n+2(£+1) - Wg) (=0)

= #(Ent2ED—we) — WE) (=0).
We consider the number k£ = n + 2#(ED" — Wg). Then
#(Eﬁ - WE) = 07

and using (2.2), we have
ED"NWg C &, C WEg. (2.7)

Using (2.3) and (2.5), &4 is an exact set for F™. Therefore, in order to prove the lemma, it is sufficient
to show that ¢, is an isomorphism from M to EMg,_. Specifically, we have only to show the following
three conditions:

(2.8) gx is one-to-one and {g.(a) |a € W} = &,,

(2.9) aRp if and only if g, (a)Re, gx(8),

(2.10) a € P(p;) if and only if g, (a) € Pe, (p;)-
Clearly, we obtain (2.8) from (2.3.1) and the definition of &.

We show (2.9). By (2.7), we have g, (a) € G*(¢{1) and ¢,.(8) € G*({2) for some ¢1,05 € {1,2,--- ,k}.
Also, by (2.1), we have

(M, ) I go(a) (2.9.1)

and

(M, B) I~ gx(B)- (2.9.2)
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Suppose that aRS. Then by (2.9.2), we have (M, «) £ Ofor(g.(5)). Therefore, if ¢4 > £, then by
(2.9.1), we have Ofor(g,.(3)) € suc(gx(a)), and hence g, () Re, g:(3). We assume that ¢; < f>. Then

Ofor(X) € ant(g.(@)) = (M,a) | Ofor(X) and Ofor(X) € BG(¢;) by (2.9.1)
= (M,p) = Ofor(X) and Ofor(X) € BG(¢;) by aRf and (3)
= Ofor(X) € ant(g.(5)) by (2.9.2) and ¢; < (5.

Therefore, we have (ant(g,(«)))” C (ant(g.(3)))”. Using gx(a) € G*(£1), we have (ant(g.()))” =
(ant(g.(3)(¢1)))", and using Lemma 1.7, we have £; = {» and (ant(g.(a)))” = (ant(g.(3)))". Hence,
we obtain g.(a)Re, gx(5).

Suppose that g,.(a)Re(x)gx(8). If Ofor(g.(B)) € suc(gx(a)), then by (2.9.1), we have (M,a)
Ofor(g.(B)). If /1 = > and (ant(g.(a)))” = (ant(g.(3)))”, then by (2.9.1) and Lemma 1.3(5), we have
(M,a) = Ofor(g,(8)). Hence, in both cases, we have (M, «) & Ofor(g.(3)), and using (2.1), we have
aRpf.

We show (2.10). By (2.1), we have
a € P(p;) if and only if p; € ant(g.(a)).
Hence, we obtain (2.10). 4

4 The structure (F/ =, <)

[3] introduced the set CNF and a detailed description of the structure (F/ =, <), where [4] < [B] &
A — B € S4. Theorem 5.4(2) in [3] is one of the description of the structure. In the present section, we
provide a detailed proof of it.

Definition 4.1 We define the set CNF, and for any S € 2EP", we define cnf(S) and S|} as follows.

9G(0) ifk=0
(1) CNFy, = EDF .
{S§€e2 | next(X) € S,next(X)NS #0, for some X € G(k —1) —Wg} ifk>0,

(2) CNF = [j CNF;,
=0 S if S € CNF
(3) cnf(S) = { cnf({X € G(n— 1) | next(X) CS}) if S ¢ CNF,

(4) Su= | (xW.

Xes

Lemma 4.2 For any S € 2EP",

/\ for(S) = /\ for(cnf(S)).

Theorem 4.3 (Theorem 5.4(2) in [3]) For any S; € CNF, and for any S € CNF,,
(1) J\ for(Sz) — \ for(S1) € S4 if and only if either S; C Syl} or both S} NED* C S, and ¢ < k,

(2) /\for(Sl) = /\for(Sg) if and only if S; = Ss.

Proof.
For (1). We divide the cases.
The case that £ < k. By ¢ < k, we have

cnf (S|} NEDF) = S;.
Using Lemma 4.2, we have

/\ for(S1} NED*) = A for(enf (i} NED")) = A for(51),
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and using Lemma 1.4, we have

/\for(82) - /\for(Sl) €84 & /\for(Sg) — /\for(Sﬂ} NED*) € S4
& S NED* CS,.

Hence, we obtain the “only if” part. We also obtain the “if” part by (1.1) and

S CSY = SIC (S:U)=SU
= S| NEDF C S|l NEDF = S,.

The case that ¢ > k. Similarly to the above case, we obtain

/\for(82) - /\for(Sl) €S4 & /\for(SglL NED®) — /\for(Sl) €S54

&S 8§ C SzU ﬁEDé
& S CSI.

For (2). The “if” part is clear. We show the “only if” part. Suppose that /\ for(Sy) — /\ for(S;) € S4.

Then by (1), one of the following four conditions holds:

(21) 81 g SQU and 82 g SlU,

(2.2) S; C Soll, Sl NEDY C Sy, and € > k,

(2.3) SLU NEDF C Sy, £ < k, and S, C Si},

(2.4) S} NED* C Sy, S, NED* C Sy, and /£ = k.
We divide the cases.

The case that (2.1) holds. By S; C Sa, we have £ > k; and by Sy C S}, we have £ < k. Therefore,
we have ¢ = k, and using Lemma 1.4, we obtain & = S,.

The case that (2.2) holds. By S; C S»{}, we have S N ED¢ C S, NED¢. Using S»l} NED* C Sy,

S =8N ED[ C S| ﬂEDZ C S;.
Therefore, we have S,|} NED? = S;. Using £ > k,
Sy = enf(S,|) NEDY) = cnf(S5)) = S;.

The case that (2.3) holds can be shown similarly to the above case.
The case that (2.4) holds. By £ = k and Lemma 1.4, we obtain S; = Ss. =
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