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Abstract. In [Sasl0], two constructions of normal forms in modal logic S4 were given. The first con-
struction depends on S4-provability, but the second one does not. Here, we extend the first construction
to normal modal logics containing the modal logic K4. We also modify the second construction and give
a construction of normal forms in K4, which does not depend on K4-provability.

1 Introduction

In the present section, we introduce formulas and normal modal logics, and also describe the purpose of
the present paper.

1.1 Formulas

Formulas are constructed from L (contradiction) and the propositional variables py, po, - - - by using logical
connectives A (conjunction), V (disjunction), D (implication), and O (necessitation). We use upper case
Latin letters, A, B,C, .-, with or without subscripts, for formulas. Also, we use Greek letters, I', A, - - -,
with or without subscripts, for finite sets of formulas. The expressions O and I'" denote the sets
{J0A| AeT} and {O0A | OA € T'}, respectively. The depth d(A) of a formula A is defined as

d(p;) = d(L) =0,

d(BAC)=d(BV(C)=d(B >C)=max{d(B),d(C)},

d(OB) =d(B) + 1.

Let ENU be an enumeration of the formulas. For a non-empty finite set I' of formulas, the expressions
/\ I' and \/ I" denote the formulas

(AL AA)AA) - AAy)  and (- (A1 V Ap) V Ag) -~V A,),

respectively, where {A41,---,A,} = ' and A; occurs earlier than A;;; in ENU. Also, the expressions
/\(Z) and \/Q) denote the formulas 1 D L and L, respectively.

The set of propositional variables pi,--+ ,pm, (m > 1) is denoted by V and the set of formulas
constructed from V and L is denoted by F. Also, for any n = 0,1,---, we define F(n) as F(n) = {A €
F | d(A) < n}. In the present paper, we treat the set F(n).

1.2 Normal modal logics

A normal modal logic is a set of formulas containing all tautologies and the axiom
K :0(p>q) D (0Op > 0q)
and closed under modus ponens, substitution, and necessitation (A/0A). By K4, we mean the smallest
normal modal logic containing the axiom
4 : Op D OOp.
For a normal modal logic L, we use A =y, B instead of (A D B)A (B D A) € L.

In order to treat normal modal logics, we use sequent systems obtained by adding axioms or inference
rules to the sequent system LK given by Gentzen [Gen35].
A sequent is the expression (I' = A). We often refer to I' = A as (I' = A) for brevity and refer to

Ala"' 7Ai7F17'“ 7Fj _)Ala"' 7Ak7B17"' 7Bf



as
{Ay, -, A U U---UD; - A U---UALU{By, -, B}

We use upper case Latin letters X,Y, Z,---, with or without subscripts, for sequents. If X = (I' — A),

then we sometimes refer to T 3A as T — A. The antecedent ant(I' — A) and the succedent suc(l’ — A)
of a sequent I' — A are defined as

ant(' > A)=T and suc(l' > A)=A,
respectively. Also, for a sequent X and a set S of sequents, we define for(X) and for(S) as

[ ANant(X) D Vsuc(X) ifant(X)#0
for(X) = { \/ suc(X) if ant(X) =0

and
for(S) = {for(X) | X € S}.

Here, we do not use — as a primary connective, so we use the additional axiom | — instead of the
inference rules (- —) and (— —).
For a sequent system L and for a sequent X, we write X € L if X is provable in L.

It is known that a sequent system for K4 is obtained by adding the inference rule

r,or— 4
=
or — 0OA
to LK. In other words,
— A is provable in the above system if and only if A € K4.

Therefore, we can identify the above system with K4 and call the above system K4. The system K4
enjoys cut-elimination theorem:

Lemma 1.1 If X € K4, then there exists a cut-free proof figure for X in K4.

Also, for any sequent system L, the following two conditions are equivalent:

e [ is a sequent system for a normal modal logic containing K4,

e L satisfies the inference rule (O);
and thus, we treat a sequent system satisfying the second conditions above as a normal modal logic
containing K4.

1.3 The purpose

Let L be a normal modal logic containing K4. The purpose of the paper is to construct normal forms in
L, which behave like an elementary disjunctions

PiV -V ®; € {pi,pi O L})
in the classical propositional logic. Specifically, we do the following tasks.
(I) We construct a finite set ED[(n) of sequents satisfying
(I-1) F(n)/ =1={[/\ for(S)] | S CEDy(n)},
(I-2) for any subsets S; and Sz of EDf(n), S; C Ss if and only if A for(S2) — A for(S;) € L.

(IT) For a formula A € F(n), we give a finite way to find a subset S of EDg(n) in (I) such that
A= N\for(S),

(ITT) Without using K4-provability, we give the set EDg4(n) in (I).



Two tasks (I) and (IT) prove that a member of ED(n) and a formula /\ for(S) behave like an elementary
disjunction
piV---Vop, (p; € {pi»pi D L})

and a principal conjunctive normal form in the classical propositional logic, respectively.

In [Sas10], Tasks (I) and (IIT) have been done in the case L = S4. We extend it to other normal
modal logics containing K4. In [Sas10], Task (III) for S4 has also been done. For the other earlier works,
we can consult [Sas10].

2 A construction of ED(n)

In the present section, we construct the set EDy (n) satisfying the conditions (I-1) and (I-2) in subsection
1.3 for a normal modal logic L containing K4.

Definition 2.1 Let L be a normal modal logic containing K4. The sets G (n) and G7 (n) of sequents
are defined inductively as follows.

Gr(0)={(V-Vi=>VW)|Vi CV}

G;(0) =9,

Grk+1) = U next (X),

XeG(k)—G* (k)

G} (k+1) = {X € GL(k+1) | (ant(X))" C (ant(Y"))" implies (ant(X))” = (ant(Y))", for any V €
Gr(k+ 1)},
where for any X € Gr,(k),

next} (X) = {(OT,ant(X) — suc(X),0A) | TUA = for(G(k)),T N A = @},

prov, (X) ={Y € next} (X)|Y € L},

next (X) = next} (X) — prov(X).

Definition 2.2 We define the sets EDz,(n) and G} (n) as
n—1
ED;(n) = Gr(n)U | Gi(9),
i=0

G(0) - ifn=0
Gj(n) = U next! (X) ifn >0,
X€GL(n—1)-Gj (n—1)

Let X be a sequent in G} (n + 1). Then there exists only one sequent ¥ € Gp(n) — G} (n) such
that X € next} (V). We refer to X5 as this sequent Y. We note that Xo € Gp(n) — G} (n) and
X € nextr(Xg).

Definition 2.3 We define the sets G (n) and G§ (n) as
G°(n):{0 ifn=0
L {X € G} (n) | Ofor(Xg) € suc(X)} ifn >0,
G'(n):{(b ifn=20
L {X € G} (n) | Ofor(Xg) € ant(X)} ifn > 0.

If there is no confusion, we omit the subscript L from Gy, (n), ED(n), =, and so on.

Example 2.4 We list members of G(n), G*(n+1), and G°(n + 1) in the case that L = K4, m = 1 and
n=0,1. Weuse ( )® and ( )° for a sequent in G*(n). G°(n).

G(0) = {T, F},

nextt(T) = next(T) = {T1°,72,73,T4}, mnext™(F) =next(F)= {F1° F2,F3, F4},

G(1) = {T1°,T2,T3,T4, F1°, F2, F3, F4},

GH(1) = {T1% F1*}, Go(1) =0,



next(T2) = {T2.1°,T72.2°, T2.3},

next(7'3) = {T3.1°,73.2°,T73.3},

next(74) > T4.1°,

next(F2) = {F2.1°, F2.2°, F2.3},

next(F3) = {F3.1°, F3.2°, F3.3},

next(F4) > F4.1

G*(2) = {T2.1°,T2.2°,T3.1°, F2.1°, F3.1°, F3.2*},

G°(2) = {T'3.2°,T4.1°,F2.2°, F4.1°},

where
T = (= ),
F = ( — pl)a
T1* = (Ofor({T,F}),ant(T) — suc(T)),
T2 = (Ofor(T),ant(T) — suc(T),DOfor(F)),
T3 = (Ofor(F),ant(T) — suc(T),Ofor(T)),
T4 = (ant(T) — suc(T),Ofor({T, F}))
F1* = (Ofor({T, F}),ant(F) — suc(F)),
F2 = (Ofor(T),ant(F) — suc(F),Ofor(F)),
F3 = (Ofor(F),ant(F) — suc(F),Ofor(T)),
F4 = (ant(F) — suc(F),Ofor({T,F})),
T2.1° = (Ofor(G(1) — {F1°}),ant(T2) — suc(72),0Ofor(F1°%)),
T2.2° = (Ofor(G(1) — {F2}),ant(T2) — suc(72),0for(F2)),
723 = (Ofor(G(l) — {F1° F2}),ant(T2) — suc(72),0for({F1°, F2})),
T3.1° = (Ofor(G(1) — {T'1°}),ant(T3) — suc(T3),Ofor(T'1*)),
T3.2° = (Ofor(G(1) — {T3}),ant(T3) — suc(7'3),0for(T3)),
733 = (Ofor(G(1) —{{T1°,73}),ant(T3) — suc(7T3),0for({T1°,73})),
T4.1° = (Ofor(G(1) — {{T4,F4}}),ant(T4) — suc(T4),Df0r({T4 F4})),
F21° = (Ofor(G(1) — {F1°}),ant(F2) — suc(F2),0for(F1°)),
F22° = (Ofor(G(1) — {F2}),ant(F2) — suc(F2),0for(F2)),
F23 = (Ofor(G(1l) —{F1°* F2}),ant(F2) — suc(F2),Dfor({F1' F2})),
F3.1° = (Ofor(G(1) — {T'1°}),ant(F3) — suc(F3),Ofor(T1%)),
F32° = (Ofor(G(1) — {T3}),ant(F3) — suc(F3),0for(7T3)),
F33 = (Ofor(G(1) — {T1°,72}),ant(F3) — suc(F3),0for({T1°,T73})),
F41° = (Ofor(G(1l) — {{T4,F4}}),ant(F4) — suc(F4),Ofor({T4,F4})).

By an induction on n, we can show the following lemma.

Lemma 2.5
(1) None of the members in G(n) is provable in L.
(2) For any X,Y € ED(n), X #Y implies for(X) Vfor(Y) € L.

(3) For any X € G*(n), ant(X) Usuc(X) =V U D Ofor(G(7)) and ant(X) Nsuc(X) = 0.
=0

The main purpose in the present section is to prove the following two theorems.

Theorem 2.6
(1) L= A for(ED(n)).
(2) pi = /\ for({X € ED(n) | p; € suc(X)}).
(3) For any subsets S and Sy of ED(n),
(3.1) /\ for(S1) A \ for(Sy) = /\ for(S1 U S,),
(3.2) \\ for(81) v /\ for(Sz) = /\ for(S1 N Ss),
(3.3) \ for(81) > /\ for(S;) = /\ for((ED(n) — 81) N S).
(4) For any subset S of ED(k), O A for(S) = A for(S; US,), where



S1 U {Y € ED(k + 1) | Ofor(X) € suc(Y)},

Xes

k
S=) U {VeG (i) (ant(X))" = (ant(V))"}.

=1 XeSNG° (i)
We note that S USs C ED(k + 1) for S; and S in the above (4).

Theorem 2.7
(1) F(n)/ == {[\ for($))] | S CED(n)}.
(2) For subsets Sy and Sy of ED(n),

S1 C Sy if and only if /\for(Sg) — /\for(Sl) € L.

By the above theorem, the conditions (I-1) and (I-2) in subsection 1.3 are shown. Theorem 2.6 provide
a finite way described in (II) in subsection 1.3.

Theorem 2.7(1) and Theorem 2.7(2) can be shown by Theorem 2.6 and Lemma 2.5, respectively. In
order to prove Theorem 2.6, especially (4), we need some lemmas.

Lemma 2.8 Let X,I" and A be finite sets of formulas. Then
{for(O0®,T - A,O00) | dUT =%,2NT =0}, > A€ L.

Proof. We use an induction on the number #(X) of elements in ¥. If ¥ = ), then the lemma is clear
from
{for(O0®,T - A,00) | 2UT =%,dNT =0} = {for(T = A)}.

Suppose that A € ¥.. Then by the induction hypothesis,

{for(0®, —» A, 0F) [dUT =% — {4}, &N T =0}, - Ac L.

Therefore,
0A, {for(03,04,T — A,0F) | UT =% — {4}, 8N T =},T > Ac L
and
OA S L, {for(03,T — A,04,00) |dUT =% — {4},8NT =0}, - A € L.
Hence,
O0AV (OAD 1), {for(0®, ' - A,00) | dUT =XdNT =0}, - AecL.
Since DAV (OA D 1) € L, we obtain the lemma. -

Corollary 2.9 For any X,Y € G(n),
(1) for(next(X)) — for(X) € L,
(2) /\for(next(X)) =, for(X),
(3) {for(Z) | Z € next(X),Ofor(Y) € suc(Z)},ant(X) — suc(X), Ofor(Y) € L.

Proof. We can show (1) and (3) by considering the case that (£,T', A) = (for(G(n)),ant(X), suc(X))
and the case that (2,I', A) = (for(G(n)—{Y'}),ant(X), suc(X)U{Ofor(Y)}) in Lemma 2.8, respectively.
(2) is clear from (1). =

Lemma 2.10 Let X and Y be sequents in G(n) satisfying (ant(X))” € (ant(Y))™. Then
(1) (= for(X),Ofor(Y)) € L,
(2) for any Xg € next™ (X), Ofor(Y) € suc(Xg) implies Xg € L.



Proof. [Sasl0] proved the lemma in the case L = S4. The other cases can also be shown similarly. -

Lemma 2.11 Let X and Y be sequents in G(n) satisfying (ant(X))” = (ant(Y))™. Then
(1) X € G*(n) if and only if Y € G*(n),
(2) Y € G°(n) implies Ofor(Y) — for(X) € L.

Proof. (1) is clear from the definition of G*(n). We show (2). By Corollary 2.9(1) and (O),
Ofor(next(Yy)) — Ofor(Ys) € L.

By Y € G°(n), (ant(X))? = (ant(Y))”, and Lemma 2.5(3), we have Ofor(Ys) € (suc(Y))” =
(suc(X))". Therefore,
Ofor(next(Yy)) — for(X) € L.

From this, we can show the lemma, similarly to Lemma 2.11 in [Sas10]. —|

Definition 2.12 For any X € G*(n) (n > 0), we define the set pclus(X) as
pclus(X) = {Y € G(n) | (ant(X))"” = (ant(Y))"}.

Lemma 2.13 For any X € G(n),
(1) ®(X) — Ofor(X) € L,
(2) X & G*(n) implies (®>(X) — Ofor(X)) € L,
(3) X € G*(n) implies (for(pclus(X)), ®*(X) — Ofor(X)) € L,
(4) X € G°(n) implies (for(pclus(X)),®*(X) — Ofor(X)) € L,
(5) X € G*(n) implies ®*(X) — Ofor(X)) € L,
where ®(X) = {for(Y) | Y € G(n), (ant(Y))” C (ant(X))"} and 4 (X) = &(X) — G*(n).

~ A~~~

Proof. We first show that

(6) X ¢ G*(n) implies ®(X) = &4 (X).
Suppose that for(Y) € ®(X). Then we have (ant(Y))” C (ant(X))”. Using X ¢ G*(n), we have
Y ¢ G*(n). Hence, we obtain (6).

We show (1) by an induction on n.

Basis (n = 0) is clear from ®(X) = for(G(0)) and for(G(0)) —€ L.

Induction step (n > 0). By the induction hypothesis,

®(X5) — Ofor(Xg) € L.
Using Xg € G(n—1) — G*(n — 1) and (6),
®4(Xg) — Ofor(Xp) € L.

Therefore,

®2(X5) — Ofor(X) € L. (1.1)
In order to prove (1), we show

Y, ®(X) — Ofor(X) € L (1.2)

for any subset ¥ of ant(X)NOfor(G(n —1)). In order to show (1.2), we use an induction on #(ant(X)N
Ofor(G(n—1)) — X). We show Basis (¥ = ant(X)NOfor(G(n —1))) and Induction step (X C ant(X)N
Ofor(G(n — 1))) simultaneously. We define the set ¥ as

U= U for({Y € next™(Y,,_1) | ant(Y) N Ofor(G(n — 1)) = £}).
Yo_1€P4(Xg)



We note that ¥—{Z | Z € L} C ®(X) and for any for(Y") € U,

suc(Y)Ndfor(G(n—1)) = 0Ofor(G(n—1))—-X
((suc(X) N Ofor(G(n —1))) U (ant(X) N Ofor(G(n — 1)))) — =
(suc(X) N Ofor(G(n —1))) U (ant(X) N Ofor(G(n — 1)) — X).

It is easily seen that
A — Ofor(X) € L for any A € suc(X) N Ofor(G(n —1)). (1.3)
Also, by the induction hypothesis, we have
A2, 9(X) - Ofor(X) € L for any A € ant(X) N Ofor(G(n — 1)) — X. (1.4)
By (1.1), (1.3) and (1.4), we have
¥, 9(X),¥ — Ofor(X) € L.

Using ¥—{Z | Z € L} C ®(X), we have (1.2). Considering the case that ¥ = ), we obtain (1).

(2) is clear from (6) and (1).

(3) can be shown similarly to Lemma 2.14(3) in [Sas10].

(4) is clear from (3).

We show (5). If n =0, then (5) is clear. So, we assume n > 0. Suppose that ¥ € pclus(X). Then
Ofor(Xs) € (ant(X))” = (ant(Y))”. Therefore,

ant(Y) — suc(Y),Ofor(X) € L
and thus,
— for(Y) v Ofor(X) € L. (5.1)
On the other hand, by (3),
{for(Y) vV Ofor(X) | Y € pclus(X)}, ®2(X) — Ofor(X) € L.

Using (5.1), we obtain (5). -

Lemma 2.14 For any X,, € G(n) and for any k € {1,2,---},
DfOI‘(Xn) = /\for(pCIUS(Xn)) A /\ P zf Xn c Go(n)
/\(I> ZangGo(n)

where ® = {for(Y') | Y € ED(n + k), Ofor(X,,) € suc(Y)}.

Proof. We only show the case that £k = 1. The other cases can be shown by an induction on k. It is
sufficient to show the following four conditions:

(1) Ofor(X,) > A ® € L,

(2) Ofor(X,) — /\for(pclus(Xn)) € Lif X, € G°(n),

(3) @ — Ofor(X,,) € Lif X,, # G°(n),

(4) for(pclus(X,)),® — Ofor(X,) € L if X,, € G°(n).

(1) is clear. (2) is also clear from Lemma 2.11(2). We show (3) and (4). By Corollary 2.9(3), for any
Zn € G(n) — G*(n),

{for(Zp11) | Znt1 € next(Z,), Ofor(X,,) € suc(Z,4+1)} — for(Z,), Ofor(X,,) € L.

Therefore,
{for(Z,41) | Zn+1 € G(n + 1), 0for(X,,) € suc(Zp4+1)} — /\for(G(n) — G*(n)),Ofor(X,,) € L.

Using Lemma 2.13(2) and Lemma 2.13(5); and Lemma 2.13(4), we obtain (3); and (4), respectively. -

By Corollary 2.9(2), we obtain Theorem 2.6(1). By Lemma 2.14 and Lemma 2.11(1), we obtain
Theorem 2.6(4). Theorem 2.6(2) and Theorem 2.6(3) can be shown easily.



3 A construction of EDg4(n) without K4-provability

Let L be a normal modal logic containing K4. In Definition 2.1, we use L-provability to define prov; (X)
for X € G(n). In the present section, we only consider the case that L = K4 and we give the set
provy,(X) without using K4-provability. First, we define five sets pry(X), pr;(X), pry(X), pry(X),
and pr,(X) for X € Gr(n), and prove that provg,(X) = pry(X)Upr, (X)Upr,(X)Upr;(X)Upr,(X).
We only use L-provability to define prov, (X) in Definition 2.1. Therefore, if the definition of the above
five sets does not depend on K4-provability, then we obtain a construction of EDk4(n), which does not
depend on K4-provability.

Definition 3.1 For any X € G(0), we define pry(X), pr;(X), pry(X), pry(X) and pr,(X) as

pro(X) = pr(X) = pry(X) = pry(X) = pr, (X) = 0.

For any X € Gr(n + 1), we define pry(X), pry(X), pry(X), pr3(X) and pr,(X) as follows:
pry(X) = {(Ofor(Ys),T — A,Ofor(Y)) € next} (X) | Y € GL(n)},

pr;(X) = {(T = A, Dfor(Y)) € next; (X) | Y € GL(n), (ant(X))” £ (ant(Y))"},
pry(X) = {(Ofor(next(Z', X)),T — A, Ofor(Z')) € next} (X) | Z' € Gr(n — 1) - G} (n — 1)},

pr;(X) = {(Ofor(next(Z',Y)), T — A, Dfor(Flz)Al, Ofor(Z'))) € next} (X)
Y eGr(n),Z' € GL(n—1)— G5 (n—1)},

pr,(X) = {(Ofor(Y),T — A,Ofor(Z)) € next} (X) | Y € G (n), Z € pclus(Y)},
where next(Z',Y) = {Z € nextr(Z') | (ant(Y))” C (ant(Z2))"}.
Theorem 3.2 For any X € Gka(n) — Gi,(n),
provg,(X) = pry(X) Upr, (X) U pr, (X) U pry(X) U pr, (X).

To prove Theorem 3.2, we provide some preparations. From now on, we only treat the case that
L = K4 and omit the subscript K4 from provg,(X), EDk4(n), Gka4(n), and so on.

Lemma 3.3 For any X € G(n) — G*(n),

Proof. (0) is clear. (1), (2), (3), and (4) can be shown similarly to Lemma 3.3 in [Sas10] using Lemma
2.10, Corollary 2.9(1), and Lemma 2.11(2). =

Lemma 3.4 Let X and Y be sequents in G(n)—G*(n) and let Xg be a sequent in next™ (X)— (pry(X)U
pr; (X)Upry(X)Upry(X) Upr,(X)). If Ofor(Y) € suc(Xg), then

Ve € nextt (V) — (pry(Y) Upr, (V) Upry(Y) Upry(Y) Upry(Y)),

where
Ye = (I'y,ant(Xg) N Ofor(G(n)),ant(Y) — suc(Y), Ay),
Ay = { suc(Xg) N Ofor(G(n)) ifn=20
{Ofor(Z) € suc(Xg) N Ofor(G(n)) | (ant(V))” C (ant(Z2))°, Ofor(Zs) € suc(Y)} ifn >0’
Iy = (suc(Xg) N Ofor(G(n))) — Ay.



Proof. From the definition of Ay, it is observed easily that Y5 € next™ (V) — (pry(Y) U pr, (Y)).
We show Yg & pry(Y). Suppose that Vg € pry(Y). Then there exists a sequent Z,,_; € G(n — 1) —
G*(n — 1) such that Yy is of the form of

-+, Ofor(next(Z,_1,Y)) i Ofor(Z,_1),---
Using ant(Yy) = I'y U (ant(Xg) N Ofor(G(n))) U ant(Y),
Ofor(next(Z,—1,Y)) Nsuc(Xg) CTy.
Also, we have Ofor(Z,,—1) € suc(Y), and using the definitions of next(Z,,—1,Y) and Ay,
Ofor(next(Z,—1,Y)) Nsuc(Xg) C Ay.

Hence,
Ofor(next(Z,-1,Y)) Nsuc(Xg) CTy NAy =0,

and therefore,
Ofor(next(Z,—1,Y)) C ant(Xg).

Hence, Xg is of the form of
.-+ Ofor(next(Z,-1,Y)) Xi? Ofor(- - - X Ofor(Z,—1), ), -,

which is in contradiction with Xg & pry(X).
We show Yy ¢& pry(Y). Suppose that Yy € pry(Y). Then there exist sequents V' € G(n) and
Zn—1 € G(n —1) — G*(n — 1) such that Yg is of the form of

.-+, Ofor(next(Z,_1,Y")) i Ofor(- - - Y Ofor(Zp—1), "), .

Similarly to the proof of Y & pry(Y),

Ofor(next(Z,_1,Y")) Nsuc(Xg) C Ty, (1)
Ofor(Y') € Ay C suc(Xg), (2)

and
Ofor(Z,—1) € (suc(Y"))". (3)

By (2), we have (ant(Y))” C (ant(Y”))", and using (3),
Ofor(Z,,—1) € (suc(Y))". (4)
Using the definition of next(Z,_1,Y”’) and (ant(Y"))" C (ant(Y"))",
Ofor(next(Z,_1,Y")) Nsuc(Xg) C Ay.
Using (1), we have
Ofor(next(Z,_1,Y")) Nsuc(Xg) = ) and Ofor(next(Z,—_1,Y")) C ant(Xg).

Using (2), we have Xg € pry(X).

We show Yy & pry(Y). Suppose that Yg € pry(Y). Then by Xg ¢ pry(X), there exist sequents
Z € G°(n) and Z' € pclus(Z) such that Ofor(Z) € I'y and Ofor(Z’) € Ay. By Ofor(Z') € Ay,
we have (ant(Y))” C (ant(Z))", and using Z' € pclus(Z), we have (ant(Y))” C (ant(Z))”. Using
Ofor(Z) € T'y, we have n > 0 and Ofor(Zg) € ant(Y) C (ant(Z))”, which is in contradiction with
Z € G°(n). -

n—1
By Lemma 2.5(3), every sequent in G*(n) consists of the members in the set V U U Ofor(G(7)).
i=0
We call this set the base of the sequents in G (n) and use it to define one of the notions.



Definition 3.5
(1) We define the set BG(n) as

BG(n)=V U D Ofor(G(7)).

=0
(2) For any X € G*(n) and for any k, we define X (k) as
X (k) = (ant(X) N BG(k) — suc(X) N BG(k)).
Here, we note that X (k) = X if ¥ > n; and that X(n —1) = Xg if n # 0.

Definition 3.6 For any X € G(n), we define the sets X} inductively as follows:
(1) X € X,

(2)if Z e XJ —UG*(i), then Y € X for any YV € next(Z2).

i=1

Example 3.7
(1) T2.3(3) =723, T23(2)=T2, T23(1)=T,
(2) T)={T1°} U T2 UT3| UT4},
(3) T2.3 € T23JCT2)C TJ.

Lemma 3.8 Let X and Y be sequents in GT(n) and G(k), respectively. Then
(1) n > k implies X (k) € G(k) — G*(k) and X € X (k)| Uprov(Xg),
(2) if X € G(n), then the following three conditions are equivalent:
(2.1) ant(Y) C ant(X) and suc(Y) C suc(X),
(22)n>kandY = X(k),
(23) X eY.

Proof. We obtain (1) by an induction on n. By (1), we have that (2.2) implies (2.3). By an induction
on X € Y|, we can show that (2.3) implies (2.1). By Lemma 2.5(3), (1), and (2.1), we have n > k,
X (k) € G(k), and ant(Y') = ant(X (k)); and hence, we obtain that (2.1) implies (2.2). =

Lemma 3.9 Let X,, and Y}, be sequents in G(n) and G*(k), respectively. If n > k and (ant(Y}))" #
(ant(X,(k)))", then (Ofor(X,,) D for(Y})) = for(Yy).

Proof. We show
(ant(Y%))” # (ant(X,(k)))” implies (— for(Y}), Ofor(X,)) € K4

by an induction on n. Basis (n = k) can be shown by Lemma 2.10. Induction step (n > k) can be shown
by Ofor(X, (n — 1)) — Ofor(X) € K4. -

Lemma 3.10 Let X,, be a sequent in G(n) — G*(n). Let X, 11 and Y}, be sequents in next™(X,) —
(pry(X,) Upr, (X,) Upry(X,) Upry(X,) Upry(X,)) and G(k), respectively. If n > k and Ofor(Y}) €
suc(X,11), then
(1) Vi, € G*(k) implies (Ofor(Z) D for(Y},)) = for(Yy), for any Z € {Z' | Ofor(Z') € ant(X,41)},
(2) Vi, € G*(k) implies (for(Z) D for(Yy)) = for(Yy,), for any Z € {Z' | Ofor(Z') € ant(X,, 1)},
(3) there exists a sequent Y € ED(n) such that Ofor(Y) € suc(X,+1) and Y € Y|}

Proof. First, we note that X,, ¢ K4 by Lemma 2.5(1).
For (1). Suppose that Ofor(Z) € (ant(X,+1))” N Ofor(G(i)) for some i < n. We divide the cases.
The case that i > k. By Lemma 3.9, we can assume that (ant(Y}))” = (ant(Z(k)))”. Using
Ve € G*(k) and Lemma 2.11(1), we have Z(k) € G*(k). Using Lemma 3.8(1), we have ¢ = k and
Z(k) = Z. Therefore, if Z € G°(k), then k = n is in contradiction with X, 1 & pr,(X,); and k < n

10



is in contradiction with Lemma 2.11(2) and X,, ¢ K4. If Z € G*(n), then we have Ofor(Z(k — 1)) €
(ant(Z))" = (ant(Y%))", and clearly, (Ofor(Z) D for(Y},)) = for(Y%).
The case that i < k can be shown similarly to Lemma 3.10 in [Sas10].

For (2). Suppose that Ofor(Z) € (ant(X,1))” N Ofor(G(i)) for some i < n. We divide the cases.
The case that 1 > k. If Y, # Z(k), then by Lemma 2.5(2), we have

for(Y;) v for(Z(k)) € K4,
and therefore,
for(Yy) V for(Z) € K4,
and hence, we obtain (2). If Y, = Z(k), then by Lemma 3.8(1), we have i = k and Z = Z(k) = Y}, which
is in contradiction with Ofor(Y}) € suc(X,41), Ofor(Z) € ant(X,, 1), and Lemma 2.5(3).
The case that i < k. If Y, (i) # Z, then by Lemma 2.5(2), we have
for(Y;(i)) V for(Z) € K4,
and therefore,
for(Yy) V for(Z) € K4,
and hence, we obtain (2). We assume that Y, (i) = Z. By i < k <n, we have
Ofor(Yy(i)) = Ofor(Z) € ant(X,,).
Using X, € K4 and Ofor (Y}, (7)) — Ofor(Y(k — 1)) € K4, we have
Ofor(Yy (k — 1)) € ant(X,,) C ant(X,,11),

which is in contradiction with Ofor(Y;) € suc(X,+1) and X, 41 & pro(X,).

For (3). We use an induction on n. Basis (n = k) is clear since Y}, satisfies the conditions.

Induction step (n > k). By n > k, Lemma 3.8, and Lemma 3.3, we have X,, € next(X,(n —1)) C
next* (X, (n—1)) — (pr(X,(n— 1)) Upr, (X, (n— 1)) Upry (X, (n— 1)) Uprs (X (n— 1)) Upr, (X, (n— 1))
and Ofor(Y},) € suc(X,,). Using the induction hypothesis, there exists a sequent Y' € ED(n — 1) such

n—1

that Ofor(Y') € suc(X,41(n)) and Y' € Y. Y’ € U G* (i), then Y’ satisfies the conditions. We
=0
assume that Y’ € G(n —1) — G*(n — 1). Then by Dfor(Y ) € suc(X,41(n)) and X, 11 & pry(Xy),
Ofor(next(Y', X,,11(n))) € ant(X,,41).

Therefore, there exists a sequent Y,, € next(Y") such that Ofor(Y},) ¢ ant(X,+1). Hence, Y,, satisfies
the conditions, and hence we obtain (2). =

Definition 3.11 Let X be a sequent in G*(n + 1) and Y be a sequent satisfying Ofor(Y) € suc(X) N

Ofor(G(n)). We define the sequents sat’(X,Y) and sat(X,Y), and the set SAT(X,Y) of a sequent as
follows:

sat’(X,Y) = ({4 | OA € ant(X)}, (ant(X))", ant(Y) — suc(Y)),
sat(X,Y) = (T'y,T.,ant(sat’(X,Y)) — suc(sat’(X,Y)), A., Ag, Ay),
SAT(X,Y) = {(®" —» ¥%) | ®* C ant(sat(X,Y)), ¥* C suc(sat(X,Y))},

WheIEf ={A\Z | £ CBG(n),T Cant(Y),#() > 1},
Ty ={\/T| T CBG®),T g suc(Y),#(T) > 1},
Ac={/\Z| T CBG(n), T Zant(Y),#(X) > 1}.
Ag={\/T| T CBG(n),T Csuc(Y),#() > 1}.
Ay ={for(Y(k)) |0 <k <n}.

11



Lemma 3.12 Let P be a cut-free proof figure in K4 whose end sequent is ® — V. Then for any
X, € G(n)— G*(n), for any X,4 € next*(X,) — (pro(X,) Upr, (X,) Upry(X,) Uprs(X,) Upry(X,)),
and for any Y satisfying Ofor(Y) € suc(X,11),

(® — T) ¢ SAT(X,41,Y).

Proof. First, we show the following three conditions:

(1) for any ke {07 T 7n}7 DfOI‘(Y(k)) g ant(Xn+1)7

(2) if Ay V Ay € suc(sat(X,,11,Y)), then 4; V Ay € Ay,

(3) if Aj vV Ay € ant(sat(Xn_H, Y)), then A; V Ay € T'y.

For (1). Suppose that Ofor(Y (k)) € ant(X,+1). If £ = n, then Ofor(Y) € ant(X,, 1) Nsuc(Xp41),
which is in contradiction with Lemma 2.5(3). If ¥ < n, then we have Ofor(Y (k)) € ant(X,). Using
Ofor(Y (k)) — Ofor(Y(n — 1)) € K4, we have Ofor(Y(n — 1)) € ant(X,,) C ant(X,,11), which is in
contradiction with X, 11 & pro(X,).

For (2). Suppose that A;VAs € suc(sat(X,+1,Y)). Then we have 41 VAs € AgUA,. If A1 VA, € Ay,
then (2) is clear. We assume that A; V A> € Ay. Then we have

Ay VvV Ay =for(Y (k) = \/suc(Y(k)) and suc(Y (k)) = BG(k).

Using suc(Y (k)) C suc(Y'), we obtain (2).

For (3). Suppose that A; V Ay € ant(sat(X,,;+1,Y)). Then we have A; V Ay € TyU{A | OA €
ant(X,11)}. If Ay V Ay € Ty, then (3) is clear. We assume that O(A; V As) € ant(X,,41). Then there
exists Z € G(k) such that

AV Ay = for(Z(k)) = \/ suc(Z(k)) and suc(Z(k)) = BG(k).
Also, by (1), we have Z(k) # Y (k). Therefore,
suc(Z(k)) = BG(k) € Y (k) C suc(Y).
Hence, we obtain (3).

In order to prove the lemma, we use an induction on P.

Basis (P consists of an axiom). By Lemma 2.5(3), we can show L ¢ ant(sat(X,y1,Y)). We show
ant(sat(X,41,Y)) Nsuc(sat(X,+1,Y)) = 0.

Suppose that A € ant(sat(X,+1,Y")) Nsuc(sat(X,11,Y)). We divide the cases.

The case that A = p;. By p; € suc(sat(X,,+1,Y)), we have p; € suc(Y). Using Lemma 2.5, we have
p; & ant(Y"). Using p; € ant(sat(X,1,Y")), we have Op; € ant(X,,41), and thus, i = m = 1. In other
words, Ofor(Y(0)) = Op; € ant(X,,11), which is in contradiction with (1).

The case that A = A; A A5 is shown from I'. N A, = (.

The case that A = A; V A, is shown from I'y N Ay =0, (2), and (3).

The case that A = 41 D A,. By A € suc(sat(X,41,Y)), we have A = for(Y (k)) € Ay. Using
A € ant(sat(X,,41,Y)), we have OA € ant(X,,4;), which is in contradiction with (1).

The case that A = OA;. By X,41 € pr,(X,), we have (ant(X,))” C (ant(Y))”. Therefore,
A € ant(Y) Nsuc(Y’), which is in contradiction with Lemma 2.5(3).

Induction step (P has the inference rule I introducing the end sequent ® — W¥). Suppose that
(® = ¥) € SAT(X,,+1,Y). We divide the cases.

The case that I is either a weakening rule or (—D) is clear.

The case that I is (A —). I is of the form of

Ai: - v
A1 A AQ, o = T’
where {A; AA>}UP" = &. We note that A1 A Ay € T'.. Therefore, 4; € T.Uant(Y) C ant(sat(X,1,Y))

and Ay € ant(Y") C ant(sat(X,1,Y)). Hence, the upper sequent of I belongs to SAT(X,4+1,Y), which
is in contradiction with the induction hypothesis.
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The case that I is (— A). I is of the form of

P — ‘I’I,Al b — \I’I,AQ
(ID—)\I”,Al/\AQ ’

where {4; A Ao} U ' = . We note that 43 A Ay € A.. If Ay € ant(Y), then either A; € A, or
A; € BG(n)—ant(Y) = suc(Y'), and hence, the left upper sequent of I belongs to SAT(X,,41,Y"), which
is in contradiction with the induction hypothesis. If Ay ¢ ant(Y"), then similarly, 45 € BG(n)—ant(Y) =
suc(Y’), and hence, the right upper sequent of I belongs to SAT(X,,11,Y), which is in contradiction
with the induction hypothesis.

The case that I is either (= V) or (V —). By (2) and (3), we can show the lemma similarly to the
above two cases, respectively.

The case that I is (OD—). I is of the form of

iy —)‘I’,Al A2,(I>, — ¥
Lo Ad 5T

where {4; D A2} U ®' = &. We note that O(A; D Ay) = Ofor(Z) € ant(X,,11) for some Z € G(k). By
(1), we have Z # Y (k). If ant(Z) € ant(Y (k)), then there exists a formula B € ant(Z)Nsuc(Y (k)), and
thus, ant(Z) ¢ ant(Y). Therefore, we have either 4, = /\ ant(Z) € Acor A = /\ant(Z) = B € suc(Y).
Hence, the left upper sequent of I belongs to SAT(X,,+1,Y), which is in contradiction with the induc-
tion hypothesis. If ant(Y (k)) € ant(Z), then we have suc(Z) ¢ suc(Y(k)), and similarly, we have
either Ay = \/ suc(Z) e Ty or Ay = \/ suc(Z) € ant(Y). Hence, the right upper sequent of I belongs

to SAT(X,4+1,Y), which is in contradiction with the induction hypothesis.
The case that I is (O). There exists a sequent Z; € G(k) (k < n) such that

¢ 0P — for(Zy)

IS A S Bfor(Zy) 5)
{Ofor(Z;)} = ¥ C (suc(Y))", (6)

and
0% C (ant(X,11))" U (ant(Y))". (7)

We define the sequent Y;,41 as the sequent Yg in Lemma 3.4. Then by Lemma 3.4, we have
Yai1 € next™ (1) — (pry(Y) Upr, (V) Upry(Y) Upry(Y) Upry(Y)),
Also, by (6) and (7), we have
Ofor(Z;) € suc(Y,41), (8)
0% C (ant(V,i1))". (9)
By (8) and Lemma 3.10(3), there exists a sequent Z € ED(n) such that

Ofor(Z) € suc(Yn41), (10)

Z e Zpl . (11)

We divide the cases.

The case that Z € G*(i) for some i < n. By (5) and (11), we have ®,0® — for(Z) € K4. Also, by
(9), (10), Lemma 3.10(1), and Lemma 3.10(2), we have for(®,0% — for(Z)) = for(Z). Therefore, we
have Z € K4, which is in contradiction with Z € ED(n) and Lemma 2.5(1).

The case that Z € G(n) — G*(n). By (9), (10), and (11), the upper sequent of I belongs to
SAT(Y,,+1,Z). This is in contradiction with the induction hypothesis. =
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Corollary 3.13
(1) Let P be a cut-free proof figure in K4 whose end sequent is ® — W. Then for any X, €
G(n) — G*(n) and for any X1 € next™ (X,,) — (pro(X,) Upr, (Xn) Upry(X,) Upry(X,) Upr,(X,)),

(@ = 0) g {(®* = T*) | ®* Cant(X,11), P" Csuc(Xpt1)}-
(2) Let X be a sequent in G(n) — G*(n). Then
pry(X) Upr, (X)Upry,(X)Upr;(X,) Upr,(X) D prov(X).

Proof. For (1). We use an induction on P.
Basis (P consists of an axiom) can be shown from L ¢ ant(X,,1;) and Lemma 2.5.
Induction step (P has the inference rule I introducing the end sequent ® — ¥). Suppose that

(& = ¥) e {(P* = ¥*) | ®* C ant(sat(X,11)), " C suc(sat(X,+1))}.

If I is a weakening rule, then the upper sequent also belongs to the above set, which is in contradiction
with the induction hypothesis. We assume that I is (). Then the upper sequent of I is also provable in
K4, which is in contradiction with Lemma 3.12.

For(2). By (1) and Lemma 1.1. =

By Lemma 3.3 and Corollary 3.13(2), we obtain Theorem 3.2.
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