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Abstract. Here, we consider the set F™ of formulas with modal degree k(< n) and having only propo-
sitional variables py, - -+, pp in modal logic S4. An exact model M for F" is one of the simplest Kripke
models satisfying M |= A & S4 F A for any A € F™. Therefore, the model is useful to investigate the
provability of formulas in S4. Moss [Mos07] constructed a Kripke model which can be shown to be exact
for F*. However, his construction depends on the provability of S4. Here, we construct an exact model
for F™ without using the provability of S4.

1 Introduction

Formulas are constructed from L (contradiction) and the propositional variables py, pe, - - - by using logical
connectives A (conjunction), V (disjunction), D (implication), and O (necessitation). We use upper case
Latin letters, A, B,C, ---, with or without subscripts, for formulas. Also, we use Greek letters, I') A, - - -,
with or without subscripts, for finite sets of formulas. The expressions OI' and I'" denote the sets
{OA| AeT}and {OA | OA € I'}, respectively. The depth d(A) of a formula A is defined as

d(pi) = d(1) =0,

d(BAC)=d(BVC)=d(B D>C)=max{d(B),d(C)},

d(OB) =d(B) + 1.

Let ENU be an enumeration of the formulas. For a non-empty finite set I' of formulas, the expressions
/\ I' and \/ I' denote the formulas

(o (AL AA)AAs) - AAy)  and (- (A1 V As) V Ag) -V Ay),

respectively, where {4;,---,A,} =T and A; occurs earlier than A;;; in ENU. Also, the expressions
/\0) and \/[I) denote the formulas 1 D L and L, respectively.

The set of propositional variables pi,--- ,p, (m > 1) is denoted by V and the set of formulas
constructed from V and L is denoted by F. Also, for any n = 0,1,---, we define F* as F* = {A € F |
d(A) < n}. In the present paper, we mainly treat the set F.

By S4, we mean the sequent system defined by Ohnishi and Matsumoto [OM57]. Below, we introduce
this system.
A sequent is the expression (I' = A). We often refer to I' — A as (I' = A) for brevity and refer to

Al;"' 7Ai7F17"' 7Fj _)Ala"' 7AkyBl7"' 7BZ

as
{Ay, -+, AU U---UT; = Ay U---UALU{By, -, By}

We use upper case Latin letters X,Y, Z,---, with or without subscripts, for sequents. The antecedent
ant(I' » A) and the succedent suc(I' = A) of a sequent I' = A are defined as

ant(I' > A)=T and suc(l' = A)=A,
respectively. Also, for a sequent X and a set S of sequents, we define for(X) and for(S) as

[ ANant(X) D Vsuc(X) ifant(X)#0
for(X) = { \/ suc(X) if ant(X) =0



and
for(S) = {for(X) | X € S}.

For a finite set S of formulas or sequents, the expression #(S) denotes the number of elements in S.
[OM57] defined the system by adding the following two inference rules to the sequent system LK
given by Gentzen [Gen35] for the classical propositional logic:

AT — A ar — A
OA, T — A or — dA

(— 0.

Here, we do not use — as a primary connective, so we use the additional axiom 1 — instead of the
inference rules (- —) and (— —). We write X € S4 if X is provable in S4. [OMS57] proved that this
system enjoys a cut-elimination theorem:

Lemma 1.1 ([OMS57]) If X € S4, then there exists a cut-free proof figure for X in S4.

We use A = B instead of = (A D B) A (B D A) € S4. Also, for any two equivalence classes [A] and
[B] in F/ =, we use [A] < [B] instead of A — B € S4. Thus, structure (F"/ =, <) expresses the mutual
relation of formulas.

A Kripke model is a structure (W, R, P) where W is a non-empty set, R is a binary relation on W,
and P is a mapping from the set of propositional variables to 2"'. We extend, as usual, the domain
of P to include all formulas. We call P a valuation and a member of W a world. For a Kripke model
M = (W, R, P), and for a world @ € W, we often write (M,«a) = A and M [ A instead of o € P(A)
and P(A) = W, respectively.

Let S be a set of formulas closed under D and A. We say that a Kripke model M = (W, R, P) is ezact
for S if the following two conditions hold:

o forany A€ S, M | Aif and only if - A € S4,

o {P(A)| Ae S} =2".

This model was introduced in de Bruijn [Bru75]. The following lemma is observed easily; therefore, exact
models are useful to investigate the structure (F"/ =, <).

Lemma 1.2 Let (W, R, P) be an exact model for F™. Then the mapping P* from F"/ = to 2V defined
as

P*([4]) = P(4)

is an isomorphism and the structure (F"/ =, <) is isomorphic to the structure (2" C).

As we mentioned, the Kripke model constructed in [Mos07] is an exact model for F”. The construction
depends on the provability of S4. On the other hand, [Sas09] constructed a way to list all exact models
for F" by using exact sets for F"*. The construction of the way does not depend on the provability of S4.
Here, we directly construct an exact model for F™ without using the provability of S4.

In the next section, we introduce an exact set and we give the way constructed in [Sas09]. In section
3, we construct an exact set for F”, and using a result in [Sas09], we obtain an exact model for F".

2 Exact sets and exact models for F"

In the present section, we introduce an exact set for F™ and a way to list all exact models for F™ following
[Sas09]. Every lemma in the present section has been proved in [Sas09].

First, we introduce the three sets G(n), G*(n), ED™ as follows. We can see the relation among these
three sets in Definition 2.2. Also, we can treat the set ED™ as the set of formulas, which behave like
elementary disjunctions in the classical propositional logic. In other words, ED" satisfies the following
two conditions:

o F"/ == {[\for(5))] | S CED"},



e for subsets S; and S, of ED",
S1 C S, if and only if /\ for(S,) — /\for(Sl) € S4.

Definition 2.1 The sets G(n) and G*(n) of sequents are defined inductively as follows.
G0)={(V-Vi—= V)| Vi CV}
G*(0) =10,
Gk+1) = U next(X),
XEG(k)—G*(k)
G'(k+1)={X €G(k+1) | (ant(X))"” C (ant(Y))"” implies (ant(X))” = (ant(Y))", for any Y €
Gk + 1)),
where for any X € G(k),
nextt(X) = {(Or,ant(X) — suc(X),0A) |[TUA = for(G(n)),TNA =0, for(X) € A},
prov(X) ={Y € next™(X) | Y € S4},
next(X) = next™ (X) — prov(X).

Definition 2.2 We define the sets ED" and G* as follows:

ED" = G(n) U D G*(i), G*= G G*(i).
1=0 i=0

Concerning with G(n), we have the following lemma.

Lemma 2.3
(1) None of the members in G(n) is provable in S4.
(2) Let X,Y and Z be sequent in G(ny), G(n2) and G(ns), respectively. Then

Ofor(X) € suc(Y) and Ofor(Y) € suc(Z) imply Ofor(X) € suc(Z),

(3) For any X € G(n), ant(X)Usuc(X)=V U no Ofor(G(7)) and ant(X) Nsuc(X) =0,
(4) For any X,Y € G(n), for(next(X)) — for()é?oe S4.

In Definition 2.1, we use the provability of S4 to define prov(X) for X € G(n). [Sas09] also gave the
set without using the provability of S4 as follows.

Definition 2.4 For any X € G(n), we define prov, (X), prov,(X) and prov;(X) as follows:
prov,(X) = {(I' - A, Ofor(Y)) € next’(X) | Y € G(n), (ant(X))” € (ant(Y))"},

prov,(X) = {(I' = A, Ofor(Y)) € next'(X) | Y € G(n), Ofor(Zs) € suc(Y),
Ofor({Z € next(Zg) | (ant(Y))" C (ant(Z))"}) C T for some Zg € G(n — 1) — G*(n — 1)},

provs(X) = {(Ofor(Y),I' - A,Ofor(Z)) € next™ (X) | Y, Z € G*(n), (ant(Y))" = (ant(2))"}.

Lemma 2.5 For any X € G(n) — G*(n),
prov(X) = prov,(X) U prov,(X) Uprovy(X).

For a sequent X € G(n+2), there exists a sequent Y € G(n+1) —G*(n+1) such that X € next(Y),
and similarly, there exists a sequent Z € G(n) — G*(n) such that ¥ € next(Z). Here, we can see a

relation between X and Z. In order to express this relation, we introduce some notions. We note that,
n—1

by the Lemma 2.3(3), every sequent in G(n) consists of the members in the set V U U Ofor(G(7)).
=0



Definition 2.6 For any X € G(n) and for any k, we define X (k) as

k—1 k—1
X (k) = (ant(X) NV U ] Ofor(G(i)) = suc(X) NV U | J Ofor(G(i))).
=0 1=0

Definition 2.7 For any X € G(n), we define the sets X} inductively as follows:
(1) X € X,
(2) if Y € next(Z) for some Z € X| —G*, then Y € X|.

Lemma 2.8 For any X € G(n) and for any Y € G(k),
(1) n # 0 implies X(n —1) € G(n — 1) — G*(n — 1) and X € next(X(n — 1)),
(2) n > k implies X (k) € G(k) — G*(k), X € X(k)} and Ofor(X (k)) € suc(X),
(3) the following three conditions are equivalent:
(3.1) ant(Y) C ant(X) and suc(Y) C suc(X),
B2)n>kandY = X (k),
(3.3) X e Y.

Below, we introduce an exact set for F” and show results in [Sas09] concerning with exact models for
Fn.

Definition 2.9
(1) A set & is said to be exact for F™ if the following three conditions hold:

11) [ JG*(i) C € C G,
=0

(1.
(1.2) for any X € ED", #(X| &) = 1,

(1.3) for any X € £ and for any Y € Wg, XRgY implies Y € €,

where Rg = {(X,Y) | Ofor(X) € suc(Y) or ((ant(X))", (suc(X))") = ((ant(Y))", (suc(¥))")}.

(2) For an exact set £ for F™, the Kripke model EMg¢ is defined as
EM¢ = (£, Re, Pg),
where Re = E2 N Rg and Pe(p;) = EN{X | p; € ant(X)}.

Lemma 2.10

(1) For any exact set & for F*, EM¢ is an exact model for F™.

(2) For any exact model M for F™, there exists an exact set & for F™ such that M is isomorphic to
EMg¢.

n+2#(ED" — Wg)
(3) Every exact set for F™ is a subset of U G* (7).
i=0
(4) Let £ be an exact set for F™*. Then for any A € F™,
A= N\{for(X(n)) | X € £,(EMe, X) [ A}.

By (2) of the above lemma and the exact model for F* in [Mos07], we can see that there exists an exact
set for F".

3 A construction of an exact set for F"" without the provability
of S4

In the present section, we construct an exact set for F” without using the provability of S4. As a result,
using Lemma 2.10(1), we obtain an exact model for F". First, we construct the sequent X* € X| NG*
for X € G(n), and using X*, we construct an exact set for F™.



Definition 3.1 Let X and Yg be sequents in G(n) and G(n + 1), respectively. Let A be a finite set of
sequents. Then we define three sequents n(X,A), n(X,Yy) and n(Yy) as follows.

n(X,A) = (Ofor(G(n) — {X}UA)),ant(X) — suc(X), Ofor({X} U A)),
n(X,Ys) = n(X, {Ofor(2) € suc(Yy) N Ofor(G(n)) | (ant(X))" C (ant(2))"}),
n(Yg) = n(Yy, {n(X,Yy) | Ofor(X) € suc(Yg) N Ofor(G(n) — G*(n))}).

We note that if A C G(n), then n(X,A) € next’(X). Also, by the following lemma, we can see that
n(Yy) € next™ (Yy).

Lemma 3.2 ([Sas09]) Let X and Yy be sequents in G(n) and G(n + 1), respectively. If Ofor(X) €
suc(Yy), then n(X,Yg) € next(X).

Definition 3.3 For any X € G(n), we define the set clus(X) as follows.
clus(X) = {Y € G(n) | (ant(X))" = (ant(Y))"}.
We note that, by Lemma 2.3(3),
Re =&*N{(X,Y) | Ofor(X) € suc(Y) or X € clus(Y)}.

Definition 3.4 For a sequent X € G(n), we define mnext*(X) as follows.
(1) mnext®(X) = X,
(2) mnext**!(X) = n(mnext*(X),G(n + k)).

By Lemma 2.5, we can see that mnext*(X) € G(n + k) for any X € G(0).
Our main purpose is to prove the following theorem.

Theorem 3.5
(1) G*(1) is an exact set for F°.
(2) For any k € {1,2,---} and for any X € G(k), we can define the sequent X* inductively as

X*:{ X if X € G*(k)
(X)) if X ¢ G*(k),
and the set
G* N ({Z | Ofor(Z) € suc((mnext™ ! (- V))*)} U clus((mnext™ ™ (— V))*))
is an exact set for FtL,

By Lemma 2.5, we have
G*(1) = {n(X,0) | X € G(0)},

and therefore, we obtain Theorem 3.5(1). To prove Theorem 3.5(2), we need some lemmas.

Lemma 3.6 Let X and Yg be sequents in G(n+ 1) and G(n) — G*(n), respectively. LetY be a sequent
in nextt(Yy). If (ant(X))"” = (ant(Y))", then Y € next(Ys).

Proof. By Lemma 2.5 and Lemma 2.8(1), we have X ¢ prov,(X(n))U prov,(X(n)) U provs(X(n)).
Using Y € next™(Y5) and (ant(X))” = (ant(Y))", it is not hard to see Y ¢ prov, (Ys) Uprov,(Ys) U
prov,(Ys). Using Lemma 2.5, we obtain ¥ € next(Yg). =

Lemma 3.7 Let X be a sequent in G(n+ 1) — G*(n + 1) and let A be a subset of G(n + 1) satisfying
n(X,A) € next(X). Then

(1) A C clus(X) implies n(X,A) € G*(n + 2),

(2) A € G*(n+ 1) Uclus(X) implies either n(X,A) € G*(n + 2) or n(n(X,A),clus(n(X,A)) €
G*(n +3).



Proof.
For (1). Suppose that n(X,A) € G*(n + 2). Then there exists a sequent Y,, 12 € G(n + 2) such that
(ant(n(X,A)))" C (ant(Y,+2))". Using Lemma 2.3(3) and Lemma 2.8(1), we have either

(ant(X))? € (ant(Vos(n)))° (1.1)
or
ant(n(X, A)) N Ofor(G(n)) C ant(Y,2) N Ofor(G(n)). (1.2)
We divide the cases.
The case that (1.1) holds. By (1.1), we have Y, 2(n) € G(n) — clus(X), and therefore,
Ofor(Y;,42(n)) € Ofor(G(n) — clus(X)) C (ant(n(X,A)))" C (ant(Y,42))". (1.3)

On the other hand, by Lemma 2.8(1), we have Y12 € next(Y,4+2(n)) and Ofor(Y,,42(n)) € suc(Y,12),
which is in contradiction with (1.3) and Lemma 2.3(3).
The case that (1.1) does not hold. We have (1.2) and

(ant(X))? = (ant(Yoss (n))". (L4)

By (1.2) and Lemma 2.3(3), there exists a sequent Z € {X} U A C clus(X) such that Ofor(Z) €
(ant(Y,42))". By Lemma 2.8(1), we have Z(n — 1) € G(n — 1) and Z € next(Z(n — 1)). Using Lemma
2.3(3), we have Ofor(next(Z(n—1)))Nclus(X) = {Ofor(Z)}. Using Ofor(next(Z(n—1))) —clus(X) C
(ant(n(X,A)))", we have

Ofor(next(Z(n — 1))) C (ant(n(X,A)))" U {Ofor(Z)} C (ant(Yn42))". (1.5)

On the other hand, by Ofor(Z(n — 1)) — Ofor(Z) € S4, Ofor(Z) € {X} U A C suc(X), and Lemma
2.3(1), we have Ofor(Z(n — 1)) € suc(X). Using Lemma 2.3(3) and (1.4) we have Ofor(Z(n — 1)) €
(suc(Yn42(n)))” C (suc(Yn42))”. Using (1.5) and Lemma 2.3(4), we have Y, » € S4, which is in
contradiction with Y12 € G(n + 2) and Lemma 2.4(1).

For (2). For brevity’s sake, we refer to X,, 12 as n(X, A). We note that X,, 12 = n(X,A) € next(X) C
G(n 4+ 2). Suppose that X,,12 € G*(n + 2). Then by (1),

n(Xp42,clus(X,42)) € next(X,42) implies n(Xp 42, clus(X,42)) € G*(n + 3).
Using Lemma 2.5, we have only to show
0( X2, clus(X,,42)) € next™ (X,12) — (prov, (Xnt2) Uprov,(X,42) Uprovy(X,2)).
It is not hard to see that
(X 42, clus(X,42)) € next™ (X,12) — (Provy (Xon42) Uprovy(X,42)).

We show
n(Xp 42, clus(Xns2)) ¢ Provy(Xnsz). (2.1)

Suppose that (2.1) does not hold. Then there exist sequents Y, 12 € G(n+2) and Z € G(n) — G*(n)
such that

Yito € clus(X,,12), (2.2)
Ofor(Z) € suc(Yn+12), (2.3)
Ofor({Zn+2 € next(Z) | (ant(Y,12))"” C (ant(Z,42))"}) C ant(n(X,42, clus(X,12))). (2.4)

By (2.2) and Lemma 2.3(3), we have (suc(Y,,42))” = (suc(X,12))". Using (2.3), we have
Ofor(Z) € (suc(X,42))” NOfor(G(n) — G*(n)) C Ofor(({X}UA) — G*(n)) C Ofor(clus(X));
and thus, Z € clus(X). We define Z,,1» as

Znis =n(Z,{X}UA).



Then by Ofor(Z) € (suc(X,42))" and Z € clus(X), we have
(ant(Z,12))" = (ant(X,.+2))°. (2.5)

Using (2.2), we have (ant(Z,42))” = (ant(Y,4+2))", and using Lemma 3.6, we have Z,,1» € next(Z,).
Using (2.4), we have
Ofor(Z,+2) € ant(n(X,42, clus(X,42))).

Using Lemma 2.3(3), we have Z,2 ¢ clus(X,,4+2), which is in contradiction with (2.5). -

Lemma 3.8 For any X € G*(n + 1),

(1) Ofor(Ys) € suc(X) N Ofor(G(n) — G*(n)) implies #(next(Ys) Nclus(X)) =1,

(2) suc(X) N Ofor(G(n)) C Ofor(clus(X(n)) UG*(n)),

(3) for any Y, Z € G*, Ofor(Y) € suc(X) U Ofor(clus(X)) and Y RgZ imply Ofor(Z) € suc(X) U
Ofor(clus(X)).

Proof.

For (1). By Lemma 3.2, we have n(Yys, X) € next(Ys) N G(n + 1). Using Lemma 2.4(3), we have
(ant(X))” C (ant(n(Ys,X)))". Using X € G*(n + 1), we have (ant(X))” = (ant(n(Ys, X)))", and
therefore, n(Yg, X) € clus(X). Using Lemma 2.9, we obtain (1).

For (2). We note that (ant(X))"” = (ant(n(Ys, X)))" implies (ant(X (n)))” = (ant(Ys))". Hence,
using the proof of (1), we obtain (2).

For (3). If Ofor(Y) € suc(X), then by Lemma 2.3(2) and Lemma 2.5, we have Ofor(Z) € suc(X).
If Y € clus(X), then we have that Ofor(Z) € suc(Y) implies Ofor(Z) € suc(X) and that Z € clus(Y)
implies Z € clus(X). =

Definition 3.9 Let X be sequents in G(n + 1). Two sets suc(X)° and suc(X)* and a number #(X)
are defined as follows:

suc(X)° = suc(X) N Ofor(G(n) — G*(n)), suc(X)" =suc(X) N Ofor(G*(n)).
#(X) = 2 (suc(X,41)°) + #(sue(Xnt1)").
Lemma 3.10 For any X € G(n + 1),

(1) n(X) € next(X),
(2) #(X) > #(n(X)).

Proof.

For (1). It is easily seen that n(X) € next+( ). By Lemma 2.5, it is not hard to see that, for any Y5,
Ofor(Yy) € suc(X)® implies (ant(X))” C (ant(n(Ys, X)))", and therefore, we have n(X) 9? prov, (X).
Also, it is not hard to see that n(X) ¢ prov,(X). Therefore by Lemma 2.5, it is sufficient to show

n(X) & provy(X).

Suppose that n(X) € prov,(X). Then there exist two sequents Y’ and Y in G*(n + 1) such that
Ofor(Y') € ant(n(X)), Ofor(Y") € suc(n(X)) and (ant(Y'))” = (ant(Y"))?. By Lemma 2.8(2), we
have Ofor(Y'(n)) € (suc(Y’))” = (suc(Y"))". Also, by Ofor(Y") € suc(n(X)), we have n(Y"(n), X) =
Y. Therefore, we have Ofor(Y'(n)) € (suc(X))", and thus,

Ofor(n(Y'(n), X)) € (suc(n(X)))". (1.1)
By Lemma 2.3(3), we have (suc(Y'(n)))” = (suc(Y"(n)))", and thus,
(suc(n(Y'(n), X)))” = (sue(n(Y"(n), X)))"” = (suc(¥"))” = (suc(y”))".
Hence, n(Y'(n), X) =Y. Using (1.1),

Ofor(Y') € (suc(n(X)))",



which is in contradiction with Lemma 2.3(3) and Ofor(Y’) € ant(n(X)).
For (2). By (1), we have

#(suc(X)?) = #(suc(n(X))®) + #(suc(n(X))*).
Therefore, if suc(X)* # 0, then

#(X) = 27 (suc(X)®) + #(suc(X)") > 2#(suc(X)?) > 2#(suc(n(X))%) + #(suc(n(X))") = #(n(X)).

Suppose that suc(X,4+1)* = 0. Then we note that there exits a sequent Yo € G(n) — G*(n) such that
Ofor(Yy) € suc(X)® and

{Zo € G(n) | Dfor(Z) € suc(X), (ant(Y5))° C (ant(Z0))?}

={Zs € G(n) | Ofor(Zs) € suc(X), (ant(Yy))" = (ant(Z2)s)" }.

By {Zo € G(n) | Ofor(Zs) € suc(X), (ant(Ys))" = (ant(Z5))"}) C clus(Ys) and Lemma 3.7(1), we
have n(Ys, X) € G*(n + 1). Hence,

#(X) = 2 (suc(X)°) + #(suc(X)") = 24 (suc(X)°) > 2#(suc(n(X))°) + #(suc(n(X))") = #(@n(X)).
_|

By the above lemma, for any X € G(n + 1) — G*(n + 1), we have n(X) € G(n + 2), and therefore,
we can define the sequent X* as in Theorem 3.5(2).

Lemma 3.11 For any X € G(n + 1),
(1) X* € X nG*,
(2) for any Y € ED", Ofor(Y) € suc(X) implies #(Y NE(X*)) =1,
(3) for any Y € ED", Ofor(Y) € ant(X) implies #(Y{ NE(X™*)) =0,
where £(X*) = G*N ({Z | Ofor(Z) € suc(X*)} Uclus(X*)).

Proof. We use an induction on #(X). Basis(#(X) = 2) is included Induction step by the following
two reasons:

e in Induction step, we treat the case that X € G*(n + 1),

e by Lemma 3.7(2), we have that suc(X) N Ofor(G(n)) = {Ofor(X (n))} implies X € G*(n + 1).
Induction step. We divide the cases.

The case that X € G*(n+1). Wehave X* = X and (1). Suppose that Y € ED". If Y ¢ G(n)—G*(n),
then we have {Y'} = Y|}, and therefore, we obtain the following two conditions:

e Ofor(Y) € suc(X) implies #(Y§ NE(X)) =1,

e Ofor(Y) € ant(X) implies #(Y'§ NE(X)) = 0.

We assume that Y € G(n) — G*(n).

We show (2). Suppose that Ofor(Y) € suc(X). By Y € G(n) — G*(n) and Lemma 3.8(2), there
exists Y, 41 such that {Y,41} = next(Y) N clus(X). Using the definition of G(n) and X € G*(n + 1),
we have Y41 € G*(n + 1), and using Lemma 2.9, {Y 41} =Y NE(X).

We show (3). Suppose that Ofor(Y) € ant(X) and Z € Y NE(X). f Z e Y NG*N{Z |
Ofor(Z) € suc(X)}, then by ¥ € G(n) — G*(n), we have Z € Y | NG*(n) = . We assume that
Z € Y| NG* Nclus(X). Then using the definition of G(n), we have Z € G*(n + 1). Using Lemma 2.8,
Ofor(Y) = Ofor(Z(n)) € (suc(Z))” = (suc(X))", which is in contradiction with Ofor(Y) € ant(X)
and Lemma 2.3(3).

The case that X ¢ G*(n + 1). By Lemma 3.10, we have n(X) € G(n + 2) and #(X) > #(n(X)).
Also, we have X* = (n(X))*. Therefore, using the induction hypothesis, the following three conditions
hold:

(4) X* € n(X)J NG*,

(5) for any Y € ED""!, Ofor(Y) € suc(n(X)) implies #(Y{ NE(X*)) = 1,



(6) for any Y € ED""! Ofor(Y) € ant(n(X)) implies #(Y{ NE(X*)) = 0.
By Lemma 3.10(1) and (4), we have (1).

We show (2). Suppose that Ofor(Y) € suc(X) N Ofor(ED"). If Y € G*, then we have Ofor(Y) €
suc(n(X)) N Ofor(ED"™), and using (5), we obtain (2). We assume that ¥ € G(n) — G*(n). Then
we have next(Y) N {Z | Ofor(Z) € suc(n(X))} = {n(Y,X)}, and using (5), we obtain #(n(Y,X){
NE(X*)) = 1. On the other hand, by Lemma 2.3(3), we have

Y NEX™) = ( U (YVosrd NE(X™))) U (m(Y, X) I NE(XT)).
Y, +1€next(Y),0for(Y, +1)€ant(n(X))

Using (6), we obtain (2).

We show (3). Suppose that Ofor(Y) € ant(X) N Ofor(ED™). Then similarly to the proof of (2),
we can assume that Y € G(n) — G*(n). Then we have Ofor(next(Y)) C ant(n(X)), and using (6), we
obtain (3).

_|

From Lemma 3.10, Lemma 3.8(3) and Lemma 3.11, we obtain Theorem 3.5(2).
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