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Abstract

We consider hierarchical facility location problems on a network called MLTP and FTPLP,
where ¢ facilities and p transfer points are located and each customer goes to one of the
facilities directly or via one of the transfer points. In FTPLP, we need to find an optimal
location of both the facilities and the transfer points while the location of facilities is given
in MLTP. Although good heuristics have been proposed for the minisum MLTP and FTPLP,
no exact optimal solution has been obtained due to the size of the problems. We show that
the minisum MLTP can be formulated as the p-median problem, which leads us to obtain an
optimal solution. We also present a new formulation of FTPLP and an enumeration-based
approach to solve the problems with a single facility.

keywords: hierarchical facility location problem, p-median problem, enumeration approach

1 Introduction

There are various systems of facilities operated within hierarchical structures such as postal
delivery systems, distribution systems, emergency aid systems and so on. These hierarchical
systems are generally huge and complicated that consist of different types of interacting facilities.
Therefore, it is significant to find a well-organized hierarchical structure and the establishment of
interactive facilities in each hierarchy. However, studies on hierarchical facility location problems
are scarce though a variety of facility location models have been studied so far [7].

Throughout this paper, we consider a system on a network that consists of facilities and
transfer points. The facilities provide the same service to n demand nodes, and customers at
each demand node can go to the facilities via a transfer point or directly to the facilities so
as to receive the service. This can be regarded as a hierarchical facility location model with 2
levels, where facilities and transfer points are interacting each other. The travel time from the
transfer points to the facilities is shorter than that of from the demand nodes to the transfer
points or the facilities due to a rapid transportation system. This system can be applied to an
emergency aid system where the transfer points and the facilities are associated with heliports
and hospitals, respectively. The patients are transferred by an ambulance to one of the heliports
then flown on a helicopter to one of the hospitals with faster speed. Another application could
be a distribution system where the transfer points and the facilities play a role as local depots

and distribution centers, respectively.
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There is some literature related to transfer point location models. Berman, Drezner and
Wesolowsky [2] proposed TPLP (The Transfer Point Location Problem), where an optimal lo-
cation of a single transfer point needs to be found on a plane under the condition that the
location of the single facility is given. They also considered TPLP on a network and proposed
an algorithm to solve the problems taking into account the continuously varying travel time
discount rate between the transfer point and the facility. Berman, Drezner and Wesolowsky [3]
proposed MTPLP (The Multiple Transfer Points Location Problem) as a natural extension of
TPLP, where the establishment of multiple tranfer points is allowed. They mentioned that the
minisum MTPLP on a network can be regarded as the p-median problem. Furthermore, Berman,
Drezner and Wesolowsky [4] considered a generalized model called MLTP (Multiple Location of
Transfer Points) and FTPLP (The Facility and Transfer Points Location Problem), where they
allowed to locate multiple facilities. The location of facilities is given in MLTP though an optimal
location of both facilities and transfer points need to be found in FTPLP. They proposed three
heuristics to solve the minisum MLTP and FTPLP on a network and reported comprehensive
computational results using the benchmark data set provided by OR-Library [1]. However, they
didn’t obtain any exact optimal solutions due to the size of the problems.

In this paper, we focus on the minisum version of MLTP and FTPLP on a network. We
show that the minisum MLTP on a network can be formulated as the p-median problem, which
enable us to obtain exact optimal solutions of the problem. We also propose a new flow-based
formulation for FTPLP in which the number of variables and constraints has been reduced, and
present an enumeration based approach for the minisum FTPLP with a single facility.

This paper is organized as follows. In Section 2, we explain the hierarchical location model.
In Section 3, we propose new formulations of MLTP and FTPLP. In Section 4, we briefly explain
an enumeration based approach for the minisum FTPLP. In Section 5, we show computational
results using the benchmark data provided by OR-Library [1]. Finally, we give concluding

remarks and mention our future work in Section 6.

2 Model Description

We consider a hierarchical system on a network composed of two levels in which transfer points
and facilities are located in each level (See Figure 1). Customers go to one of the facilities
directly or via one of the transfer points. They can travel between transfer points and facilities
with faster speed (See the thick lines in Figure 1).

Throughout this paper, let N be the index set of demand nodes (|N| =n), P be the index
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Figure 1: Hierarchical system on a network composed of two levels (n = 16,p = 4,9 = 2).
Customers go to one of the facilities directly or via one of the transfer points. Thick lines denote
the rapid links.

set of transfer points (P C N, |P| = p) and @ be the index set of facilities (Q C N, |Q| = q).
Let us denote #;; be the travel time between node i € N and node j € N, and d; be the weight
(demand) associated with node i € N. We assume that the travel time on the links between
transfer points and facilities is shorter than other links due to the rapid transportation system.
We introduce a discount factor o (0 < @ < 1) to represent the time discount rate. Then, the
travel time between transfer point j and facility k£ can be described as atjj.

In MLTP, we need to find an optimal P C N under the condition that @) C N is given. We
also have to find optimal assignments of each customer to transfer points and each transfer point
to the facilities. On the other hand, FTPLP is a natural extension of MLTP, where we need to
find optimal @ C N as well as P C N . Berman, Drezner and Wesolowsky [4] formulated the

MLTP and FTPLP with the minisum and minimax criteria, respectively.

3 Formulation

3.1 Minisum MLTP and the p—median problem

Suppose that  C N is given in MLTP. Then the minimum travel time from node ¢ € N via
transfer point j € N is given by mingeq(ti; + at;i), while the minimum travel time from node
i € N using nonstop route is given by mingeg t;;. Therefore, the minimum travel time from
node i € N is given by min(min e v req(tij + atji ), mingeg t;1,). Here we introduce the following
n X (n+ 1) matrix T as follows.

7. § minkeq(tij +atiy), j=1,-,n, 1)
Y| mingeq tiks j=n+1.



In addition, let N = {1,---,n,n + 1}, then the minisum MLTP can be formulated as the
following p-median problem.

[Minisum MLTP]

minimize Zdi Z Tijxi (2)

iEN  jEN

s.t. Z Tij = 1, 1 €N, (3)
JEN!
zij < yj, i€N,j€EN, (4)
> yi=nr (5)
kEN
zi; > 0, ieN,je N, (6)
Yj € {051}5 .7 € N. (7)

Note that x;; is a variable that specifies which node (a transfer point or a facility) is connected
from node 7« € N. More precisely, if 2;; = 1 for j € N then node i € N is connected to transfer
point j € N, and if 2;; = 1 for j € N'\N ie. j =n+1 then node i € N is connected directly
to the nearest facility. y; is a binary variable such that y; = 1 if node j € N is selected as a
transfer point and 0 otherwise.

In a similar manner, we can formulate the minimax MLTP as the following p-center problem
[5]. Note that z;; for all 7, j € N are binary variables.
[Minimax MLTP]

minimize L
s.t. Tijxi; < L, iEN,jENI,
:cijE{O,l}, iEN,jEN’,

(3) = (5),(7).
3.2 FTPLP

Berman et al. [4] formulated the minisum FTPLP as a 0-1 integer programming problem. In
addition to location variables, they employ path-based 0-1 variables x;;, taking 1 if node i
is assigned to facility k via a transfer point j and 0 otherwise. As a result, the model has
nd+n2+1 binary variables and 273 + n?2 4+ n + 2 constraints with n nodes problem. Hence,
even for a problem with n = 100, it has over a million variables and over 2 million constraints.
In this section, we propose more compact model of FTPLP using flow-based formulation, which

has 2n binary variables, 2n? continuous variables and 6n + 2 constraints. Narula and Obgu [6]



also addressed a similar hierarchical location problem and proposed a flow-based formulation of
the problem. Applying the same approach to the minisum FTPLP, the problem is reduced to
that with 2n binary variables, 3n? continuous variables and 5n 4 2 constraints.
In addition to the notation defined in Section 3.1, we introduce M as a large value and

employ the following decision variables.

zj: binary variable such that z; = 1 if node j € NV is selected as a facility or a transfer

point, and 0 otherwise.
wg:  binary variable such that wy =1 if node k € N is selected as a facility, and 0 otherwise.
pij:  flow volume between node i € N and transfer point (or facility) j € N.

¢jr:  flow volume between transfer point j € N and facility k € N.

Then the minisum FTPLP can be formulated as follows:

[Minisum FTPLP]

minimize Z Z tijpij + Z Z tikjk (8)

ieN jeN JEN kEN

s.t. Zgﬁij = Z Yiiks JEN, (9)
iEN keN
> i =di, i €N, (10)
JEN
ieN
> i < Mz, jEN, (12)
keN
Z Yik < Mwg, keN, (13)
JEN
wj < zj, JEN, (14)
> zi=p+aq, (15)
JEN
keN
wij 2 0, i€N,j€N, (17)
Yk 2 0, JENE€eN, (18)
zj € {01}, jEN, (19)
wy € {0,1}, ke N. (20)

The objective function (8) is the total sum of the travel time. Constraints (9) are the flow



conservation constraints at node j € N. Constraints (10) require all demand to be satisfied.
Constraints (11) ensure that no customer travels to other than transfer points and facilities.
Constraints (12) and (13) guarantee the hierarchical network structure, where customers should
travel from their origin to one of the facilities directly or via a transfer point. Constraints
(14), (15) and (16) require that exactly p transfer points and ¢ facilities have to be selected.
Constraints (11) and (14) allow customers to travel directly to facilities. Note that M =", d;
is large enough to solve the problem.

In the model proposed by Narula and Obgu [6], they employed three types of flow variables
associated with flow from nodes to transfer points, flow from nodes directly to facilities and flow
from transfer points to facilities. Each has n? variables then the total number of flow variables is
3n2. On the other hand, we employ two types of flow variables. One is associated with flow from
demand nodes and the other is associated with flow from transfer points. Thus we can further
reduce the number of flow variables to 2n?. For the constraints, we additionally incorporate
(12) to make the flow conservation consistent at the selected facilities. Hence, our model has n
more constraints compared to Narula et al.’s model.

In a similar manner, we can formulate the minimax FTPLP as follows. Note that ¢;; and

t;j for all 7,5 € N are binary variables.
[Minimax FTPLP]

minimize L

s.t. tijpij + atjpr < L jeN,jeN,keN,
vij € {0,1}, ieN,jeEN
¥ij € {0,1}, ieN,jEN
(19), (20).

This model has n? + 6n + 2 constraints while the one proposed by Berman et al. [4] has
3n3 + 2n? + n + 2 constraints.

4 Enumeration approach for the minisum FTPLP with a single
facility

We obtain a compact formulation of FTPLP in the previous section. However, it still requires a
long time to solve the problems using a solver even when ¢ = 1 from our preliminary computa-
tional experiments. In this section, we consider a straightforward enumeration based approach

to solve the minisum FTPLP with a single facility (¢ = 1).



From the definition of MLTP and FTPLP, the minisum FTPLP can be reduced to the minisum
MLTP if the set of facilities Q C N is given. Moreover, there are n possible facility candidates
for the minisum FTPLP with a single facility. Therefore, we can obtain an optimal solution of
the problems by solving all the n minisum MLTP. To make this straightforward enumeration
approach more efficient, we attempt to get a lower bound of the problem.

Suppose that the triangle inequality holds for travel time, and the facility is established. In
the following discussion, we use k € N as the index of the established facility. Let denote j()
be the index of the transfer point that minimize the travel time from node ¢ € N to facility
]As, ie j) = arg minjen (¢ + atjic). According to the discussion in Section 3.1, the travel time

between node ¢ € N and the facility k is given by min(¢,.:) + at ,t.i), hence, the optimal

2](

value is given by

Zd mm( +at k’tzk) (21)

Since the triangle inequality holds, ¢;; < ;) +d, ) 4 holds. In addition, because 0 < a < 1, the

following inequalities hold.

at; <othJ( +atj(,~) £ —}—at Di- (22)

Ottl.];: S tiic' (23)

From (22) and (23), we obtain
at; <m1n( )t at gt ), (24)

which implies that ot ; is a lower bound of the travel time from node : € N to the facility k.
Thus, the following inequality holds with d; > 0.
aZdt <Zd mm( +ozt(k,t ) (25)
iEN iEN

From (21) and (25), we confirm that
L(k) =a Z dit; (26)

is a lower bound of the optimal value of MLTP with established facility keN.

Another factor that can make the enumeration approach perform better is the order in which
the candidates are selected as facilities. Our preliminary test has shown that the travel-time-
based order produced a better upper bound in the early stage of iterations. Thus, for this

paper, we sort the candidates in the ascending order of §(k) = >,y dit;; because a node k



associated with smaller §(k) is expected to be a facility. We denote that the resultant order as
$1,82,° "+ ,Sp, which implies d(s1) < d(s2) < --- < (sy,). In addition, we add an upper bound
constraint that requires the objective value to be smaller than the best known upper bound.
More precisely, the constraint can be written as

D di Y Tijwij <u',

iEN  jEN
where u* is the best known upper bound. Now we summarize the enumeration algorithm.

[Enumeration Algorithm for the Minisum FTPLP with a single facility]

Step 0: Compute 6(k) =),y diti and sort them in the ascending order, s1,53,--- , s,, which

implies 6(s1) < §(s2) < --- < d(sy). Set u* := oo and m := 1.

Step 1: Compute lower bound L(s,,) according to the equation (26). If L(s,,) > u*, then go
to Step 3.

Step 2: Solve the minisum MLTP with established facility s, and obtain the optimal value
U(sm). fU(sm) < u*, then set u* := Ul(sp,).

Step 3: If m = n then terminate. u* is the optimal value. Otherwise, let m := m + 1 and go

to Step 1.

5 Computational Experiments

In this section, we report computational results of the proposed approach. All tests were carried
out on a DELL DIMENSION 8300 computer with Intel Pentium 4 processor available in speeds
of 3.0 GHz operated under Windows XP professional with 2.0 GB DDR-SDRAM memory. We
used the 40 data sets for p-median problems provided by OR-Library [1] and solved them using
AMPL and ILOG CPLEX 10.0. To compare our results with those presented by Berman et al.
[4], we assume that the demand at each node is equal to 1, i.e. d; =1 for alli € N, and o = 0.8
throughout the entire tests.

Table 1 and 2 show the results of the minisum MLTP with ¢ = 1 and ¢ = 5, respectively. In
each data set, the first ¢ nodes are given facilities as Berman et al. [4] did. The column labeled
“CPLEX” shows the total CPU time required to solve the problem by our approach. Note that
it is not including computational time to generate T;;. The column labeled “DA”, “SA” and
“TS” show that the total CPU time required using descent approach, simulated annealing and

tabu search presented by Berman et al. [4], respectively. Their heuristics were implemented in



Microsoft PowerStation Fortran 4.0 and run on a 2.8 GHz Pentium 4 computer with 256 MB
RAM. The descent heuristic was run 100 times for each problem and the other two heuristics
were run 10 times each, where each were run from a randomly generated feasible initial solution.
The CPU times presented in the tables are average CPU times. It is difficult to estimate the
computational speed of these different platforms, however, we are sure that we obtained exact
optimal solutions within a reasonable time. We also make sure that all the best-known solutions
found by Berman et al. [4] are exactly the same as the exact optimal solutions.

Table 3 shows the results of the minisum FTPLP with ¢ = 1. The column labeled “EA”
shows the total CPU time required to solve the problem using the enumeration based approach.
It rather requires a long time especially for large problems, however, it still works well. In all
40 cases, we obtained exact optimal solutions and made sure that all the best-known solutions
found by Berman et al. [4] are optimal. We also tried to solve the problems using directly our
new formulation of the minisum FTPLP. However, it takes about 100 to 400 seconds for 100
nodes problem, and for a 200 nodes problem, we didn’t get any solution even after 10 hours

computation.

6 Conclusion

In this paper, we showed that the minisum MLTP can be formulated as the p-median problem
and the minimax MLTP can be formulated as the p-center problem. We also proposed a new
flow-based formulation for the minisum FTPLP and the minimax FTPLP. We solved the minisum
MLTP exactly using proposed formulation and also solved the minisum FTPLP with ¢ = 1 by an
enumeration based approach. Finally, we found out exact optimal solutions of the 40 benchmark
problems provided by OR-Library [1] within a reasonable time.

Since the proposed enumeration based approach is straightforward, it may not work well on
large problems with ¢ > 2. Sophisticated procedures to find better lower and upper bounds

would be required to solve large problems.
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Table 1: Results for MLTP (¢ = 1,a = 0.8)
CPU sec.
Data n p Opt. val. CPLEX DA SA TS
pmedl 100 5 11827.8 0.30  0.00 0.65 0.03
pmed2 100 10 9279.2 0.38 0.01 0.98 0.10
pmed3 100 10 14137.6 0.38  0.01 0.98 0.11
pmed4 100 20 12956.8 0.33  0.03 1.36 0.29
pmed5 100 33 10887.6 0.33  0.06 1.77 0.57
pmed6 200 5 22588.4 1.89 0.01 2.80 0.14
pmed7 200 10 13603.8 1.48 0.04 3.73 0.40
pmed8 200 20 16412.8 1.67 0.14 5.19 1.33
pmed9 200 40 12503.2 1.91 0.41 7.16 4.09
pmedl10 200 67 9588.0 1.91 0.81 10.51 8.14
pmedll 300 5 12639.6 420 0.03 5.88 0.31
pmedl12 300 10 12760.2 436 0.10 8.26 0.96
pmedl13 300 30 15848.8 4.80 0.71 14.54 6.71
pmedl4 300 60 17035.2 5.11 2.21 22.90 21.10
pmedl5 300 100 11046.4 6.00 4.15 30.24  39.19
pmedl6 400 5 21194.8 7.69 0.08 17.57 0.85
pmedl7 400 10 13240.6 8.31 0.23 23.31 2.29
pmedl18 400 40 21685.6 10.52  2.80 46.93  29.30
pmedl19 400 80 14053.4 13.55 9.00 76.81  93.88
pmed20 400 133 15670.0 11.95 17.82 105.30 184.00
pmed21 500 5 15889.8 13.33  0.14  32.40 1.43
pmed22 500 10 17449.4 25.44 0.38 45.96 3.67
pmed23 500 50 16100.8 18.17  7.25 111.37 70.71
pmed24 500 100 16404.6 20.75 22.84 183.13 224.95
pmed25 500 167 20121.8 21.86 45.72 263.11 451.95
pmed26 600 5 16314.0 21.95 0.19 50.62 1.88
pmed27 600 10 14778.4 28.77  0.55 73.22 5.42
pmed28 600 60 13542.6 44.44 14.78 211.51 150.78
pmed29 600 120 12741.0 35.66 46.56 342.14 461.68
pmed30 600 200 14353.8 35.39 93.99 485.87 968.43
pmed31 700 5 16479.8 34.73  0.28 73.80 2.78
pmed32 700 10 21265.2 31.45 0.78 105.47 7.67
pmed33 700 70 18595.0 70.58 27.22 351.74 268.71
pmed34 700 140 24277.0 52.28 85.40 570.89 897.70
pmed35 800 5 15779.0 43.58 0.48  96.89 4.83
pmed36 800 10 18981.2 43.09 1.01 141.36 10.25
pmed37 800 80 16987.6 73.67 47.25 540.05 482.11
pmed38 900 5 17900.2 93.16 0.54 131.78 5.35
pmed39 900 10 19485.0 88.73 1.34 186.15 13.20
pmed40 900 90 20289.0 97.73 77.22 768.53 T77.52
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Table 2: Results for MLTP (¢ = 5, = 0.8)
CPU sec.
Data n p Opt. val. CPLEX DA SA TS
pmedl1 100 ) 7888.8 0.16 0.00 0.55 0.03
pmed?2 100 10 7075.4 0.14 0.01 0.86 0.09
pmed3 100 10 8415.0 0.16 0.01 0.88 0.11
pmed4 100 20 10064.4 0.17 0.03 1.31 0.28
pmed5 100 33 6932.6 0.14  0.05 1.70 0.52
pmed6 200 5 11491.0 0.73 0.01 2.22 0.13
pmed7 200 10 8856.4 0.73 0.04 3.33 0.42
pmed8 200 20 11270.0 0.69 0.13 4.87 1.34
pmed9 200 40 9105.4 0.69 040 6.86 3.94
pmedl10 200 67 7509.4 0.67 0.77 10.19 7.93
pmedll 300 5 10073.8 1.86 0.03 5.42 0.30
pmed12 300 10 9647.0 1.94 0.09 7.70 0.93
pmedl13 300 30 9656.0 1.78  0.66 13.76 6.66
pmedl4 300 60 10393.4 1.77 2.05 22.07 20.44
pmedl5 300 100 10033.4 1.64  3.89 29.69  38.69
pmedl16 400 ) 14813.2 3.42 0.07 16.29 0.74
pmedl7 400 10 10963.2 3.48 0.23 22.16 2.26
pmedl18 400 40 13325.0 3.45 2.85 46.03 28.14
pmedl19 400 80 10113.2 3.22 8.85 74.23 88.64
pmed20 400 133 11351.8 3.03 18.15 102.47 183.83
pmed21 500 ) 11894.4 5.66 0.12 29.63 1.26
pmed22 500 10 13654.0 5.78 0.37  43.12 3.70
pmed23 500 50 11735.2 5.50 7.01 109.78  69.27
pmed24 500 100 11552.2 5.30 22.51 181.66 230.65
pmed25 500 167 12345.0 5.19 45.26 258.00 454.84
pmed26 600 ) 13665.6 8.17 0.19  48.28 1.88
pmed27 600 10 12966.4 7.88 0.55 69.99 5.43
pmed28 600 60 11730.8 778 14.73 21296 144.63
pmed29 600 120 11155.6 7.70 46.93 341.59 469.4
pmed30 600 200 10671.6 7.91 93.29 475.33 938.12
pmed31l 700 5 13185.2 11.11 0.27 70.38 2.63
pmed32 700 10 14560.0 11.03 0.75 102.43 7.62
pmed33 700 70 11963.4 11.17 27.11 343.67 273.27
pmed34 700 140 14519.2 10.77 85.53 564.56 879.42
pmed35 800 ) 12574.6 15.14  0.37  92.76 3.73
pmed36 800 10 15909.6 14.94  0.99 136.25 10.04
pmed37 800 80 15188.2 14.72 45.95 534.63 468.89
pmed38 900 5 16562.6 20.14  0.37  92.76 3.73
pmed39 900 10 16710.2 19.42 0.99 136.25 10.04
pmed40 900 90 15750.8 18.59 45.95 534.63 468.89
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Table 3: Results for FTPLP (¢ = 1,«

=0.8)

CPU sec.
Data n p  Opt. val. EA DA SA TS
pmedl 100 5 9470.8 8.0 0.01 0.96 0.14
pmed2 100 10 8397.8 9.0 0.03 1.67 0.63
pmed3 100 10 10088.2 19.0 0.03 1.7 0.82
pmed4 100 20 10230.2 5.0 0.04 3.1 1.40
pmed5 100 33 7226.0 2.0 0.14 5.11 3.22
pmed6 200 5 11346.0 120.0 0.03 3.9 0.50
pmed7 200 10 9325.0 54.0 0.05 6.69 1.81
pmed8 200 20 10325.0 45.0 0.32 12.3 8.54
pmed9 200 40 9871.4 39.0 0.54 25.28 18.41
pmed10 200 67 7520.0 41.0 2.11 66.62 79.26
pmedll 300 5 9854.2 223.0 0.13 8.94 1.64
pmedl12 300 10 11851.0 516.0 0.15 15.49 4.14
pmed13 300 30 10049.8 174.0 1.55 41.29 40.90
pmedl4 300 60 11320.2 255.0 4.69 109.01 147.74
pmedl5 300 100 9230.6 71.0 5.35  282.66  253.81
pmedl6 400 5 11067.0  1007.0 0.22 22.5 3.27
pmedl7 400 10 11291.6 789.0 0.65 37 14.02
pmed18 400 40 12359.4 846.0 6.68 120.16 170.83
pmedl9 400 80 11167.0 412.0 17.19 415.1  575.50
pmed20 400 133 11387.6 236.0 45.09 784.82 1438.48
pmed21 500 5 12471.6  1950.0 0.23 41.72 3.87
pmed22 500 10 13813.0  2672.0 0.53 68.15 13.51
pmed23 500 50 12135.2 559.0 8.09 269.78 252.88
pmed24 500 100 11947.2 473.0  26.26  914.99 1070.13
pmed25 500 167 10123.4 178.0 100.94 1807.43 3333.97
pmed26 600 5 13027.4  2824.0 0.78 63.97 8.45
pmed27 600 10 12350.4  1940.0 1.09 102.12 19.67
pmed28 600 60 11454.6 838.0 16.45 599.16  582.45
pmed29 600 120 11924.0 981.0  54.54  1749.4 2214.71
pmed30 600 200 12679.6 576.0 231.65 3546.75 7039.86
pmed31 700 5 13802.4  7167.0 0.75 88.92 8.40
pmed32 700 10 14320.2  5692.0 1.79  142.96 40.81
pmed33 700 70 13072.8  1445.0 33.93 1211.75 1286.50
pmed34 700 140 12358.4  1893.0  97.83 3059.34 4021.96
pmed35 800 5 13962.6 12437.0 0.69 119.55 13.10
pmed36 800 10 15655.0 14782.0 2.02 189.18 38.17
pmed37 800 80 14691.0  2442.0 117.56 1985.41 3315.35
pmed38 900 5 14355.6 13168.0 0.99 152.85 13.24
pmed39 900 10 14052.6 10336.0 1.73  241.57 44.36
pmed40 900 90 15304.2  8827.0 107.31 2992.48 5004.59
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