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Abstract  The problem of constructing robust nonparametric confidence
intervals and tests for the median is considered when the data distribution
is unknown and the data may be contaminated. A new form of the (¢, ~)-
neighborhood is proposed and it is used in order to describe the contaminaton
of the data. The (c,y)-neighborhood is a generalization of the neighborhoods
defined in terms of e-contamination and total variation distance. A modifica-
tion of the sign test and its associated confidence intervals are proposed, and
their robustness and efficiency are studied under the (c,~y)-neighborhood of a
continuous distribution. The derived results are natural extensions of those in
the case of e-contamination. Some tables and figures of coverage probability
and maximum asymptotic length for the confidence intervals are also given.
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1 Introduction

Huber (1965) introduced censored probability ratio tests to robustify the Neyman-
Pearson optimal test, and showed that they are minimax for test problems between two
composite hypotheses described in terms of e-contamination or total variation neigh-
borhoods. Huber (1968) considered a class of neighborhoods including e-contamination
and total variation neighborhoods, and derived robust confidence intervals for a location
parameter which cover the target parameter with the nominal probability for all distri-
butions in the neighborhoods. Many contributions have been made to robust testing
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and interval inference since these Huber’s pioneer works appeared. Among them, there
are Huber and Strassen (1973), Rieder (1977, 1978, 1981, 1982), Bednarski (1981, 1982),
Hettmansperger and Sheather (1986), Morgenthaler (1986), He, Simpson and Portnoy
(1990), Friman, Yohai and Zamar (2001) and others.

Recently, Yohai and Zamar (2004) considered the problem of constructing robust non-
parametric confidence intervals and tests for the median when the data distribution is
unknown and the data may contain a small fraction of contamination. They proposed a
confidence interval associated with the sign test which attains the nominal significance
level for any distribution in the s-contamination neighborhood of a continuous distribu-
tion. They also defined some measures of robustness and efficiency for confidence intervals
and tests under e-contamination, and computed these measures for the proposed proce-
dures.

The purpose of this paper is to propose a new form of the (¢,)-neighborhood and
to extend Yohai and Zamar’s (2004) results to the case that the contamination in the
data is described by the (¢, v)-neighborhood. The (¢, v)-neighborhood was introduced by
Ando and Kimura (2003) as a generalization of the neighborhoods defined in terms of
e-contamination, total variation distance and Rieder’s (1977) (g, d)-contamination.

Let F° be a continuous distribution on the real line R and let M be the set of all
distributions on R. For 0 < v < 1/2, 1 — v < ¢ < oo the (¢, 7)-neighborhood of F* is
defined as

(1.1) Por(F?) = {G € M | G(B) < cF°(B) + 7, VB € B},

where B is the Borel o -field of subsets of R. Note that G' (F°) is used as both distribution
function and probability measure for convenience. Thus the (¢, y)-neighborhood is gener-
ated by the special capacity v defined as v(B) = min{cF°(B) +, 1} for ¢ # B € B and
v(B) = 0 for B = ¢. Therefore the (¢,v) -neighborhood has good properties such that
there exist the least favorable pairs of distributions between two (c,~y) -neighborhoods,
which are applicable to constructing the maximin tests (see Bednarski, 1981 for special
capacities). As easily seen, for ¢ > 0, § > 0 and £ +J < 1 we have the neighborhoods
Pi_ce(F°),P1s(F°) and Pi_..4s(F°) defined in terms of e-contamination, total varia-
tion and Rieder’s (1977) (e, d)-contamination, respectively. Applications of the (c,~)-
neighborhood to bias-robustness of estimates are found in Ando and Kimura (2003, 2004,
2005).

A new form of the (¢, y)-neighborhood we propose in this paper is defined as follows:
Let f° be the density function of F'° (with respect to Lebesgue measure) and let F, ,(F°)
be the set of all continuous distributions F' whose densities f satisfy 0 < f < (+%)f°,

1—v
that iS,
1 Y

where 0 < v < 1/2, 1 — v < ¢ < oo and M* is the set of all continuous distributions on
R. Then we define the (¢, v)-neighborhood of F*° as

(1.3) Pery(F°)={G=(1—-y)F+yK | F € F.,(F°), K € M}.

(1.2) Fo (F°) = {F e M

The following equivalence result is obtained from Proposition 1.2, which gives a char-
acterization of the (¢, y)- neighborhood.



Proposition 1.1 The two definitions (1.1) and (1.3) of the (¢, v)-neighborhood are equiv-
alent.

Proposition 1.2 (Theorem 2.1 of Ando and Kimura, 2003). The following characteri-
zation of the (¢, ~)-neighborhood holds:

Per(F°) ={G = c(F° = W) +vK | W € W,(F°), K € M},

where W, (F°) is the set of all measures W on B such that W (B) < F°(B) for VB € B
and W(R) =7=(c+v—1)/c.

Let x(1) < 2, -+, < 2(,) be the order statistics of a random sample X,, = (X1, -+, 2p)
with common distribution G in P, (F°), where F° is unknown. We assume the following
two conditions:

Al. F° is continuous with a unique median §(F°) = (F°) '(1/2).

A2 1< S <9
1=y

The first inequality in A2 is a restriction in the definition of the (¢, y)-neighborhood,
and the second one implies that 0 < F(f) < 1 holds for all F'in F,,(F°), that is, the
median f lies inside the support of F'.

Consider the null hypothesis Hy : § = 6, and the sign test statistic

where X(9,) denotes the indicator function of (0, c0).
The confidence interval for 0

(1.5) I(X0) = [T(es1)s Tin))

is obviously obtained by inverting the acceptance region of the sign test

(1.6) k<T,o(X,) <n-—k,

where k is an integer determined by a level o (0 < o < 1).

In Section 2 we are concerned with confidence intervals (1.5) based on the sign test
statistic and extend Theorems 1 and 2 in Yohai and Zamar (2004) to the case of the (c,)-
contamination. These extensions (Theorems 2.1 and 2.2) of robustness and efficiency are
natural. Theorem 2.1 shows that Yohai and Zamar’s nonparametric - robusut confidence
interval has coverage probability 1—« over not only the e-contamination neighborhood but
also (¢, y)-neighborhoods for all ¢ and v such that ¢ = ¢4 2y — 1. Theorem 2.2 establishes
robustness and efficiency of confidence intervals over y-contamination neighborhoods of F'
which does not need to be unimodal and symmetric, whereras Theorem 2 considers only



under e-contamination neighborhoods of a symmetric and unimodal F°. We also present
some tables and figures of coverage probability and maximum asymptotic length for the
confidence intervals. In Section 3 we consider a modified sign test and give a natural
extension (Theorem 3.2) of Theorems 3 in Yohai and Zamar (2004). All the proofs of our
results are collected in Section 4. We should point out that our proof of Theorem 2.2 is
essentially different from that of Theorem 2 due to Yohai and Zamar.

2 Robust nonparametric confidence intervals

We begin with the definition of a nonparametric robust confidence interval which we
try to construct.

Definition 2.1 A confidence interval I,, = [a,(X ), b,(X,,)) is said to have (¢, y)-robust
coverage 1 — « at F° if

2.1 inf P, X, < X)t=1-oqa.
(2.1) GEPICI,IV(F°) clan(Xn) <0 <b,(X,)} o

Definition 2.2 A confidence interval I = [a,,(X ), b,(X,)) is said to have nonparametric
(¢,7y)-robust coverage 1 — v if it has (¢, y)-robust coverage at F° for all F*° satisfying Al.

The following theorem is an extension of Theorem 1 of Yohai and Zamar (2004), which
enables us to construct robust nonparametric confidence intervals.

Theorem 2.1 Let X, = (X3,---,X,) be a random sample from G € P, ,(F°) with F*°
satisfying A1l. Then

(i) In = [®(k+1), T(n—k)) has nonparametric (c,7)-robust coverage 1 — o*, that is,

2.2 inf P, < mi=1-a"

( ) GEPICI}»Y(FO) G{x(kJrl) <0< T(n k)} a,

where

(2.3) o =a*(n,k,e,v)=1—-Pk< Z, <n—k),
1

with Z,, distributed as Binomial (n, %) and A=c+2y—-1(0< )\ <1).
(ii) The infimum in (2.2) is achieved for any 7 -contaminating distribution of F} (or F7}))
which places all its mass to the left (or the right) of §, where F} and Fj, are the

stochastically smallest and largest distributions in F..,(F°), respectively, that is,

Fp(x) = min{(lfv)Fo(x),l}, z € R,

Y ) = ma{(9) @) - (55 —1),0}, zeR

Remark 2.1 Theorem 2.1 states that the nonparametric (¢,7) - robust confidence in-
terval I, = [x(kﬂ),x(n,k)) with coverage probability 1 — a* is determined by ¢ and 7y
through A = ¢ + 2y — 1. Therefore, when A\ = ¢, the interval I,, is the same as the
nonparametric e-robust confidence interval with coverage probability 1 — o* in Yohai and



Zamar (2004). This fact implies that the Yohai and Zamar’s confidence interval has (c, 7y)-
robust coverage 1 — o* for all ¢ and 7 such that ¢ = ¢+ 2y — 1. Since the class of such
(¢,7)-neighborhoods of F° includes the e-contamination neighborhood of F*° as a special
case (i.e., ¢ = 1 —¢e,7 = €), Theorem 2.1 strengthens the robustness property of their
confidence interval. We should also point out that 0 < A < 1 whereas 0 < e < %

Tables 1 and 2 exhibit the minimum coverage probabilities of the interval I(X,) =
[Tkt 1), Tn-t)) for a=0.05 and a=0.10, respectively, which are calculated using Theorem
2.1. The values in Tables 1 and 2 are very low for large n. This fact shows that the
confidence interval I(X,) with confidence coefficient 1 — « in the uncontaminated case
(A = 0) is inappropreate in the contaminated case (A > 0). Note that the results for
A=0.00, 0.05, 0.10 and 0.15 are the same as Table 1 in Yohai and Zamar (2004).
Although their £ takes the value in the interval [0, ), our A does in the wider interval [0,
1).

Using Theorem 2.1, for given contamination sizes ¢ and v we can construct a confidence
interval I;, = [#(k41), T(n—k)) With (c,y)-robust coverage 1 — o*. Hereafter we denote the
real contamination sizes by ¢ and 7, and distinguish them from the design contamination
sizes ¢ and 7 which are used to construct (¢, y)-robust coverage 1 — v confidence intervals.

Table 1: Minimum coverage probability for contaminated sample, o = 0.05.

1—a=0.95
A
n 0.00 0.05 010 0.15 020 0.25 030 040 0.50 0.60
20 0959 0.954 0.938 0.912 0873 0.821 0.754 0.584 0.383 0.196
40 0.962 0952 0.922 0.868 0.788 0.684 0.559 0.297 0.103 0.019

100 0.943 0.912 0.815 0.655 0.457 0.266 0.125 0.012 0 0
200 0.944 0.881 0.689 0.414 0.174 0.047 0.008 0 0 0
500 0.946 0.789 0.376 0.074 0.005 0 0 0 0 0
1000 0.946 0.636 0.108 0.002 0 0 0 0 0 0
2000 0.948 0.385 0.006 0 0 0 0 0 0 0

Let us consider a sequence {I,} of intervals I,, = [a,(X,),b,(X,)). The maximum
asymptotic length L{I,, F°, (¢,7)} of {I,} under contamination of size (¢,7) at F*° is
defined by
(2.5) L{I,,F°,(¢,7)} = sup essup limsup (b,(X,) — a,(X,)),

GGP‘;,Q(FO) n—00

where essup stands for essential supremum. The following length breakdown point is

the confidence interval counterpart of breakdown point of a point estimate.

Definition 2.3 The sequence {I,,} of intervals I, = [a,(X 1), 0, (X 1)), n > ny, is said to
have (¢,7)-robust length at F*° if L{I,, F°,(¢,7)} < co. The length breakdown point of
the sequence {I,,} at F*° given ¢ is defined as

(2.6) Vo, F°, ¢} = sup{y = L{In, F*,(¢,7)} < oo}



Table 2: Minimum coverage probability for contaminated sample, o = 0.10.

1—a=0.90
A
n 0.00 0.05 010 0.15 020 0.25 030 040 0.5 0.6
20 0.885 0.876 0.849 0.804 0.744 0.668 0.582 0.392 0.214 0.087
40 0.919 0904 0.859 0.784 0.681 0.559 0.428 0.193 0.054 0.008

100 0.911 0.872 0.755 0.578 0.377 0.204 0.088 0.007 0 0
200 0.896 0.811 0.582 0.307 0.110 0.025 0.003 0 0 0
500 0.902 0.702 0.279 0.043 0.002 0 0 0 0 0
1000 0.906 0.537 0.068 0.001 0 0 0 0 0 0
2000 0.897 0.273 0.002 0 0 0 0 0 0 0

If 4*{I,, F°, ¢} does not depend on ¢, then it is called the breakdown point of {I,,} at F*°
and denoted by ¥*{I,, F°}.

For any o € (0,1) we consider the sequence {I,,} of intervals I,, = [k, 1), T(n—k,))
given in Theorem 2.1, where k,, are the integers defined by

(2.7) kn = kn(n,a, A) = argmin |a*(n, k, \) — o,

which satisfies

lim a*(n, ky, A) = a.
n—oo

The following lemma, which is Lemma 2 in Yohai and Zamar (2004) with ¢ replaced
by A, is used to prove Theorem 2.1.

Lemma 2.1 Let X, = (z1,---,2,) be i.i.d. random variables with distribution G.
Consider the sequence {I,} of intervals I, = [T(,+1), T(n—k,)) With length [,(X,) =
T(n—ky) — T(kp+1) and levels a*(n, kn, A) = o, 0 < a < 1. Then

b= (15) o (17)

The following theorem is an extension of Theorem 2 of Yohai and Zamar (2004), and
states the asymptotic length-robustness of the modified intervals based on sign tests.

Theorem 2.2 Suppose that F° is continuous and has a symmetric (around ) and uni-
modal density. Let 0 < a < 1 and consider the sequence {I,} of confidence intervals
I = [Tk, 41)> T(n—t,)) With k, given by (2.7). Then the following results hold:

(i) For 0 <7 < (1—\)/2,

L PG — (Fo) <1 +A+22(§+7— 1)) () (12—;\) .
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(11) 7{[naFac}:7{[naF}:T

(iii) The sequence {I,} has (¢, y)-robust length if and only if ¢ + 4y < 2.
(iv) Let {I,} be a sequence of confidence intervals I,, = [A,(X,), B,(X,)) such that

inf  Po{A,(X,) <G Y 1/2) < B,(X,)}=1-—
L Po{AW(X,) <Gy (1/2) < Bu(Xa)} = 1-a
for any continuous distribution Gy. Suppose that lim, ,,, A4,(X,) = Ay and
lim,, o B,(X,) = By almost surely when the sample comes from F°. Then

By > (F°)™! (%) and Ay < (F°)™! (?)

Remark 2.2

1. Whenec=1—-¢,y=¢,¢é¢=1-4¢ and ¥ =0, it is clear that Theorem 2.2 reduces to
Theorem 2 of Yohai and Zamar (2004). Although Theorem 2 considers the robust-
ness and efficiency of {I,,} under e-contamination neighborhoods of a symmetric
and unimodal F°, Theorem 2.2 does so under y-contamination neighborhoods of
any F' € F.,(F°). Therefore the latter treats y-contamination neighborhoods of F'
which does not need to be unimodal and symmetric.

2. The length breakdown point ¥*{I,, F°, ¢} = % does not depend on ¢.

3. Assertion (iv) of Theorem 2.2 shows that in the case of uncontaminated data (i.e.,
¢=1,9 =0, and hence A = 0), the interval I, is efficient in that it has the smallest
asymptotic length among all nonparametric (c,7) -robust confidence intervals for
the median whose upper and lower limits converge.

Tables 3 and 4 exhibit the exact minimum coverage probabilities (CP) and expected
lengths (EL) for two confidence intervals I, = [%(k,+41), T(n—k,)) With k, given by (2.7)
which have approximate (¢, ~)-robust coverages 0.95 and 0.90. The expected lengths
are computed under two cases: uncontaminated sample (ELU) and under contaminated
sample (ELC). The real contamination sizes ¢ and 74 are chosen to be equal to the design
contamination sizes ¢ and 7, where A = ¢+ 27 —1 and 7 = 0.05. As shown in the proof of
Theorem 2.2, the least favorable distribution in P, (F°) is given by (1 —~)F} +76, with
y — +o00 , where F}p, is defined by F}p(z) = Fy(z) for z < (F°)~'(L2), Fyp(z) = & for
(F°)""(52) <z < (F°)~'(1—52), Fpg(z) = Fp(z) for z > (F°)~'(1 — £2) and F} and
Fy, are given in (2.4). The expected lengths were computed using 8000 replications and
the contaminated distribution (1 —v)®pg(x)+~v®(x —10000) was used for the calculation
of ELC, where ® denotes the standard normal distribution.

Tables 5 and 6 give the maximum asymptotic length of the nonparametric robust
confidence intervals for the (¢, 7)-neighborhoods of F° = ®. The results for (¢,7) = (1,0),
(1—4,4) show the asymptotic length under ® and under the least favorable contamination
distribution in P;_5 5(®), respectively, which coincide with the values in Table 4 of Yohai
and Zamar (2004).



Figures 1 through 6 are the graphs of maximum asymptotic length of nonparametric
robust intervals when one of A | ¢ and 7 varies for the others fixed. They show that the
maximum asymptotic length is concave in ¢, convex in ¥ and nearly linear in A. These
features come from the different roles of A | ¢ and 7.

Table 3: Coverage probability (CP) and expected length (EL) for robust confidence interval
with approximate 95% coverage probability, A =c+ 2y —1, c=¢é, v =4 = 0.05.

A=0 A=0.05 A=0.1 A=0J3
n CP ELU CP ELU ELC CP ELU ELC CP ELU ELC
20 0959 1.16 0954 117 125 0938 1.17 133 095 190 2.28
40 0962 0.79 0952 079 0.88 0960 094 112 0936 143 1.85
60 0.948 057 0961 0.67 0.76 0955 0.76 095 0964 141 1.83
80 0.943 047 0949 054 064 0955 068 087 0939 122 1.66
100 0.943 041 0941 046 0.56 0957 062 082 0944 1.18 1.63
200 0944 026 0947 034 044 0949 047 068 0957 1.07 1.53
500 0946 0.15 0947 023 032 0952 035 057 0950 092 141
1000 0.946 0.10 0947 0.18 0.27 0948 0.29 0.51 0948 0.8 1.35
2000 0948 0.06 0.949 0.15 0.23 0950 0.25 047 0.952 082 1.31

Table 4: Coverage probability (CP) and expected length (EL) for robust confidence interval
with approximate 90% coverage probability, A =c+ 2y — 1, c=¢é, v =4 = 0.05.

A=0 A=0.05 A=0.1 A=03
n CP ELU CP ELU ELC CP ELU ELC CP ELU ELC
20 088 0.87 0876 0.87 095 0938 1.17 133 0.882 1.52 1.92
40 0919 065 0904 064 0.74 0922 079 097 0879 125 1.70
60 0.908 049 0883 0.48 058 0923 067 086 0890 1.18 1.62
80 0.907 041 0918 0.47 057 0.891 054 073 0903 1.14 1.59
100 0911 0.36 0912 041 051 0904 051 071 0915 1.11 1.57
200 0.896 0.22 0908 0.29 0.38 0912 041 062 0.897 097 1.44
500 0.902 0.13 089 019 0.28 0904 031 053 0.898 0.88 1.36
1000 0.906 0.08 0903 0.16 024 0904 027 0.48 0902 0.83 1.32
2000 0.897 0.056 0.899 0.13 021 0900 0.24 045 0.902 079 1.29




Table 5: Maximum asymptotic length of nonparametric robust intervals, F° = ®.

X =10.05
,.")’/
¢ 000 00l 005 010 0.5 0.20
08 — — 0151 0310
090 —  —  — 0141 0286 0.439
095 —  — 0.132 0267 0407 0.555
0.99 — 0127 0.229 0359 0.495 0.640

1.00 0.125 0.151 0.252 0.381 0.516 0.660
1.10 0.343 0.367 0.461 0.582 0.709 0.846
1.20 0.528 0.550 0.638 0.753 0.874 1.006

Table 6: Maximum asymptotic length of nonparametric robust intervals, F° = ®.

A =0.15

,.")’/
¢ 000 001 005 0.0 0.d5 020
08 — — — — 0458 0.629
090 —  —  — 0425 0.578 0.744
095 —  — 0.399 0.539 0.687 0.849
0.99 — 0382 0487 0.623 0.768 0.926

1.00 0.378 0.404 0.508 0.643 0.787 0.945
1.10 0.578 0.601 0.699 0.826 0.963 1.114
1.20 0.748 0.771 0.863 0.984 1.116 1.261

v=0.05 A=0.1
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of nonparametric robust intervals for ¢ of nonparametric robust intervals for ¢
(A =0.05,0.1,0.3,0.5) (7 =0.05,0.1,0.2,0.3)
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3 Robust nonparametric tests

Let F° be a fixed distribution satisfying A1 with # = 6, and consider the problem of
testing Hy : 0 = 0y versus Hy : 0 # 0.

Definition 3.1 A nonrandomized test yg, for Hy versus H; is said to have (¢, y)-robust
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level v at F° if

(3.1) sup  Po{we,(Xn) =1} = a.
GEPe, (F°)
Definition 3.2 A nonrandomized test ¢y, for Hy versus H; is said to have nonparametric

(¢,7)-robust level « if @y, has (c,7)-robust level a at F*° for all F° satisfying Al with
9 - 90.

The following theorem is a direct consequence of Theorem 2.1.

Theorem 3.1 A nonrandomized sign test g, (X ,,) derived from the nonparametric (¢, v)-
robust interval I(X,) in Theorem 2.1 has nonparametric (¢, y)-robust level « at F*°, and
is given by

_ 17 Zf Tn,GO(Xn) < k or Tn,GO(Xn) >n— k‘,
B enx) = (g e b Tl

where T}, 9(X,,) is defined by (1.4) and a*(n,k, \) = a.

Definition 3.3 Let Fy(z) = F°(z —n). A sequence (¢,4,), n > ng, of nonrandomized
tests is said to have (¢,#)-robust power at F° if there exists a positive real number M
such that

. inf  lim P, X,)=1}=1, forall M.
(3.3) gl ML c{eno0(Xn) =1} =1, forall |n| >
Definition 3.4 The (¢, 7)-consistency distance M{(pn9,), F°, (¢,7)} of a sequence (¢n.g,),
n > ng, of tests at F° is the infimum of the set of values M for which (3.3) holds.

Definition 3.5 The power breakdown point 7*{(¢,4,), F°, ¢} of a sequence (p,4,), 1 >
ng of tests at F° given ¢ is the supremum of the set of values ¥ for which the sequence
of tests is (¢,7)-robust. If ¥*{(yne,), F°,¢} does not depend on ¢, then it is called the
power breakdown point and denoted by ¥*{(¢n.0,), F°}-

The following theorem is an extension of Theorem 3 of Yohai and Zamar (2004).

Theorem 3.2 Let 0 < o < 1 and 0 < 7 < %, and consider the sequence of tests
(Vnp,), n > ng, for Hy : 6 = 6y versus Hy : 6 # 6y given by (3.2). Suppose that F° is
continuous and has a symmetric (around 6) and unimodal density. Then the following
results hold:

(i) The (¢, ¥)-consistency distance for the sequence (¢, 4,), 7 > ng, of tests at F*° is

M{(gn)s F° (7)) = (F°)! (1 FAHACHT - ”) |

2c

(ii) The power breakdown point of the sequence (¢y4,),n > ng, of tests at F*° is
1-A

f?*{(gon,ao)aFo} = T

(iii) The sequence (¢y.g,),m > ng, of tests has (c,y)-robust power at F° if and only if
c+4y < 2.

11



4 Proofs

Proof of Proposition 1.1

Let G be any distribution in P, (F°) of (1.3). Then, by Proposition 1.2 there exist a
measure W € W, (F°) and a distribution K € M such that G = ¢(F° — W) + vK.

This can be written as G = (1 — 7)F + 7K, where F' = (:)(F° — W). Obviously,
we see that 0 < F/(B) < (1) F°(B) holds for VB € B and that F'(R) =1, which implies
that F' belongs to F,,(F°). Therefore G is in P, ,(F°) of (1.2).

Conversely, let G = (1 — v)F + vK be any distribution in P.,(F°) of (1.2), where
F € F.,(F°) and K € M. Define W = F° — (=2)F. Then we have W € W,(F°). As
easily seen, it follows that G(B) = ¢F°(B) + v holds for VB € B. This implies that G
is in P, (F°) of (1.3). O

Proof of Theorem 2.1
For any G € P, (F°) we have

Pg(x(k_H) <0< x(n_k)) = Pg(k < Tn,g(Xn) <n-— k)
Pk < Z, <n—k),

where Z, is distributed as Binomial (n,1 — G(#)). Since G(0) = (1 — y)F(0) + vK (),
F e F.,(F°), K € M, it follows that

. 14
GO) < (1-F0) +v =12
and
. 1-
GO) > (- Fa0) = 52
where F} and F7, are given in (2.4). This implies that
1—A 1+ A
— <1- < —.
2 - Go) < 2

Noting that
n—k
n i n—i
h(p) = ( : >p(1—p)
i=k
satisfies i (p) = h(1 — p) and is nondecreasing on 0 < p < 1 for all k = 0,1,---,[n/2] (see
Lemma 1 of Yohai and Zamar, 2004), we obtain (i) and (ii) of the theorem. O

Proof of Theorem 2.2
(i) For any K € M let
Gr(z) = (1-9)F°(z)+7K(z), z€R,
(4.1) GL,K(x) = (1-9)F;(x)+9K(z), =€ R,
Grr(r) = (1-79)Fp(z) +7K(z), =€R,



where F7 and Fj, are given in (2.4). First we show that for any K € M

A [T+ A A [1—=A (14X (1= A
o6 ()a () ()0 ()

where K is defined by either (4.3) or (4.7), and G is given by (4.4).

In order to show (4.2) we first consider Case A and then Case B (=not Case A).

Case A : There exist real numbers z; and a € (%, %) such that G x(x1) = a.

In this case, it follows from 0 < 7 < % that
0<a—7K(z)<1-7.
Therefore, by the continuity of Fij(x) there exists a real number z5(zy > x;) such that
(1 = ) Fp(z2) + YK (1) = a.

Let
(4.3) K(z)=K(x1), =€ R,

and let

A Gpi(x), if z <y,
(4.4) Gp(z) = a, if ©1 <z < @,
Gri(r), if x>z,

where GL,f( and GRJA( are G x and G g x with K replaced by K. Then for any K € M
we have

(4.5) K(z) > K(z), if z<umx,
and hence
(4.6) Gi(r) > Gg(z), if =<,

Gy(z) < Gg(x), if x>y

Note that K is the distribution with mass K (21) and 1—K (21) at —oo and oo, respectively,
and hence that Gz () is continuous and strictly increasing on (—oo, z1) U (x3, 00).

Since G’;(%) < xp and @;(%) > 1, it follows from (4.6) that @;(%) <

G (152) and G H(142) > GH(H2). This implies (4.2).

Case B: There exists a real number x; such that

I1—X 142X

GL,K(IL'l—O) < 2 < 5

< Gp K (z1).
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In this case, there exist real numbers a € (%, %) and & € (0, 1) such that

Grr(z1 = 0) + &Y(K(21) — K(21 —0)) =a,
that is,
(1- “?)F"(ffl) + {1 =K (21 = 0) + EK (1)} = a.
Since it follows from 0 < 7 < =2 that
a— i{(l —K(x1 —0) + EK (1)} <1 -7,
there exists a real number z5 (> 27 ) such that
(1 = ) Fr(r2) + H{ (1 = K (21 = 0) + EK(21)} = a.

Let A
(4.7) K(z)=(1-¢&K(z1 —0)+ K ()

and define G by (4.4). Then for any K € M we have

K(z) > K(z), if z <z,

4. A
and hence
. Gi(r) <Gg(x), if 2>,

Since é;(%) < xp and ;(%A) > 1, it follows from (4.9) that @;(%) <
Gx'(1532) and G (H2) > G&'(42). This implies (4.2).

Next, let n = n(K) = K(x1) in Case A, and n = n(K) = (1 = §)K(z1 — 0) + EK (1)
in Case B. Then we have

GLi(r) = ¢F°(z) +n
GR,f((x) ¢

Therefore it follows that

(411) G (?) -G (%)
_ (Fo) ()\ —1+29(1—n) +25> () (1 - A= 2177) ‘

(4.10)

I
™
ﬁ
[e]
—~

8
~

|
—~

2¢ 2¢

We denote the right hand side of (4.11) by g¢(n), i.e

o) = (F°)! ()\— 1+2a(} —n) +25> () (1 —A—wy)

2¢ 2¢
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and find the maximum value of ¢g(n) on [0, 1].

Differentiating g(n) with respect to 1, we have

g'(n) =—

|2t

1 1
(fo ((FO)*l (Af1+2a2(c}fn)+25)) o fo ((FO)*l (1)\2621~ﬂ))) .

It is easy to see that

A—=14+291-n)+2¢ 1 ¢+A-1 74
= = -+ — -
2¢ 2 2¢ ¢

and

Since fo(z) is unimodal and symmetric about 0, the sign of ¢'(n) is determined by the
. ~ ~ . . . . 1

sizes of Z(1 —n) and %773 that is, Jd(n) <,=,>0 ac‘co-rdn‘lg as 1 <,=, > 5. Therefore the
maximum value of ¢g(n) is attained at n=0, 1, and it is given by

4(0) = (F)! <1+)\+2(E+i— 1)) _(Fo) (1 —A) —o0).

2¢ 2¢

Let G5, be defined by (4.4) with K replaced by 68,,, where d,, denotes the point mass
distribution at m . Then it is easy to see that G5, € Pz5(F°) and

i (G (%)—Gﬂsﬁ <¥>} _ () <1+A+2(5+a— 1)>—(F°)1 (1 —)\>‘

m—00 2¢ 2¢

This completes the proof of (i).

(ii) From (i) it follows that L{L,, F°, (¢,7)} < oo is equivalent to % < 1, that
is, ¥ < %, which implies the assertion (ii).

(iii) When ¥ = ~, the equivalence of ¥ < 152 and ¢+ 4y < 2 follows from A = ¢+2y—1.

(iv) To show (F°)~H(H2) < By, let

and



Also, let
Gola) = (1) Fia) + (1= 7) Vintaran (@)

where Uy a41) denotes the uniform distribution on (M, M + 1) with a constant M sat-
isfying M > (F°)"'(42). Then, it is clear that Gy is a continuous distribution and
F}, € F.,(Gy). Since F° = (1 — ~)F}, + vH;}, we have F° € P.,(Gy). Let m = G5 (3).
Then, from Gy(m) = % it follows that F°(m) = 2. By the assumptions of (iv),
this implies (F°) ' ($2) = Gg'(3) € [Ao, Bo] and hence (F°) 1(112) < B,.

On the other hand, to show (F°) '(152) > Ay, let

F°(x) : o\—1(1 __
FL*(QT) — { 1— if x < (F ) (]' 7)7

1, if x> (F°)~'(1—7),
and
H*( ) { 07 if =< (Fo)il(]' _7)7
) = o(r)—(1— . o\ —
R PE0=) > (Fo) (1 - ).
Also, let

Ga(o) = () Filw) + (1= *7) Ursan o),

where M is a constant satisfying M < (F°)7'(452). Then, it is clear that Gy is a
continuous distribution and FL € F.,(Gy). Since F° = (1 — ~)F} + vHj, we have
F° € P, (Gy). Let m = Gy'(L). Then, from Go(m) = ZUEL g follows that
F°(m) = 152, This implies (F°) 1(152) = G5'(3) € [4o, Bo) and hence (F°) '(152) >
Ag. O

Proof of Theorem 3.2

We assume # = 0 without loss of generality. First we note that

Pofpno(Xn) =1} = Po{0 & [2(k,), T(n—ka)) }-

Since, by lemma 2 we have z(,) — G7'(152) and z(,_,) — G~ (H2), it follows that

1, if G7Y(52) >0,
nlg{oloPG{SOn 0( ) - 1} = 0, if G (%) <0< G_l(%)’
1, if G7H(12) <o.
Then
oAy 0 Pl () = 1) = 1, forall g > 0,

holds either if

14+ A 14+ A
(4.12) sup G7! <L> =n+ sup G7! <L> <0,
GG'Pg,:Y (F;) 2 GG'Pa,:Y (Fo) 2
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or

1—A 1—A
4.1 inf == inf =
(4.13) GGPI‘;I,]:Y(FWO)G ( 2 ) mE GGPI‘;I}@(FO)G ( 2 ) >0,

It is easily seen that

(14 NS (1At 2@E+7 -1
a6 () = e (152 =y (PR,
GEPsz 5(F°) &

and

, (1= (1= L (1-A-2
1 _ o 1 — o\—1
gt O ( 2 ) (G1) ( 2 ) (F7) ( 2% )

where

G%(x) = max{0,cF°(x) — (c+~v—1)}, z= € R,
G () min{cF°(z) + 7,1}, =z € R.

Therefore, we obtain (4.12) or (4.13) if

il > (F*)! <1+/\+2(§+&—1)>'

2¢

This implies the assertion (i). The assertion (ii) follows from the assertion (i) and the
I+ A+2(¢+79-1)

inequality < 1. The assertion (iii) is obtained from the assertion (i)

¢
and the substitution of ¥ = 7 into the above inequality. O
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