NANZAN-TR-2003-02

Sequent Systems and Provability Logic R^- for Rosser Sentences

Katsumi Sasaki

November 2003

Technical Report of the Nanzan Academic Society Mathematical Sciences and Information Engineering

Sequent Systems and Provability Logic \mathbf{R}^- for Rosser Sentences

Katsumi Sasaki

Department of Mathematical Sciences, Nanzan University, 27 Seirei-Cho, Seto 489-0863, Japan e-mail: sasaki@ms.nanzan-u.ac.jp

Abstract

To discuss Rosser sentences, Guaspari and Solovay [GS79] enriched the modal language by adding, for each $\Box A$ and $\Box B$, the formulas $\Box A \prec \Box B$ and $\Box A \preceq \Box B$, with arithmetic realizations. They introduced provability logics \mathbf{R}^- , \mathbf{R} and \mathbf{R}^{ω} with enriched language by extending the unimodal provability logic \mathbf{GL} and proved kinds of arithmetic completeness for them.

A sequent system for \mathbf{R}^- , the most preliminary logic among the logics they introduced, was given in Sasaki and Ohama [SO03]. They proved a cut-elimination theorem in weakened form, and as a result, a kind of subformula property was shown. However, considering a cut-free system for **GL**, their system has a cut, which seems to be removable. Here we introduce another system with a kind of subformula property and discuss what kinds of cuts are removable from the system in [SO03]. Also we give a proof of completeness theorem without the extension lemma in [GS79], which was used in [SO03].

1 The logic R^-

In this section, we introduce the logic \mathbb{R}^- . We use logical constant \perp (contradiction), and logical connectives \wedge (conjunction), \vee (disjunction), \supset (implication), \square (provability), \preceq (witness comparison), and \prec (witness comparison). Formulas are defined inductively as follows:

(1) propositional variables and \perp are formulas,

(2) if A and B are formulas, then so are $(A \land B), (A \lor B), (A \supset B), (\Box A), (\Box A \prec \Box B)$ and $(\Box A \preceq \Box B)$. A formula of the form $\Box A$ is said to be a \Box -formula. Also a formula of the form $\Box A \preceq \Box B$ $(\Box A \prec \Box B)$ is said to be a \preceq -formula). By Σ , we mean the set of all \Box -formulas, all \prec -formulas and all \preceq -formulas.

The modal system \mathbf{R}^- is defined by the following axioms and inference rules. Axioms of \mathbf{R}^-

 $\begin{array}{l} A1: \mbox{ all tautologies,} \\ A2: \Box(A \supset B) \supset (\Box A \supset \Box B), \\ A3: \Box(\Box A \supset A) \supset \Box A, \\ A4: A \supset \Box A, \mbox{ where } A \in \Sigma, \\ A5: (\Box A \preceq \Box B) \supset \Box A, \\ A6: ((\Box A \preceq \Box B) \land (\Box B \preceq \Box C)) \supset (\Box A \preceq \Box C), \\ A7: (\Box A \lor \Box B) \supset ((\Box A \preceq \Box B) \lor (\Box B \prec \Box A)), \\ A8: (\Box A \prec \Box B) \supset ((\Box A \preceq \Box B), \\ A9: ((\Box A \preceq \Box B) \land (\Box B \prec \Box A)) \supset \bot, \\ \mbox{Inference rules of } \mathbf{R}^- \\ MP: A, A \supset B \in \mathbf{R}^- \mbox{ implies } B \in \mathbf{R}^-, \\ N: A \in \mathbf{R}^- \mbox{ implies } \Box A \in \mathbf{R}^-. \\ \end{array}$

In [GS79] and Smoriński [Smo85], the following two formulas are also axioms of \mathbb{R}^- , but they are redundant (cf. De Jongh [Jon87] and Voorbraak [Voo90]).

 $A10: \Box A \supset (\Box A \preceq \Box A),$ $A11: (\Box A \land (\Box B \supset \bot)) \supset (\Box A \prec \Box B).$

We introduce Kripke semantics for \mathbf{R}^- , following [Smo85].¹

¹[Smo85] uses a rooted frame, but our frame does not necessarily be rooted.

Definition 1.1. A Kripke pseudo-model for \mathbf{R}^- is a triple $\langle \mathbf{W}, <, \models \rangle$ where

(1) \mathbf{W} is a non-empty finite set,

(2) < is an irreflexive and transitive binary relation on W satisfying

 $\alpha < \gamma$ and $\beta < \gamma$ imply either one of $\alpha = \beta$, $\alpha < \beta$ or $\beta < \alpha$,

 $(3) \models$ is a valuation satisfying, in addition to the usual boolean laws,

 $\alpha \models \Box A$ if and only if for any $\beta \in \alpha \uparrow (= \{\gamma \mid \alpha < \gamma\}), \beta \models A$.

Definition 1.2. A Kripke pseudo-model $\langle \mathbf{W}, <, \models \rangle$ for \mathbf{R}^- is said to be a Kripke model for \mathbf{R}^- if the following conditions hold, for any formula D,

(1) if $D \in \Sigma$ and $\alpha \models D$, then for any $\beta \in \alpha \uparrow, \beta \models D$,

(2) if D is either one of the axioms A5, A6, A7, A8 and A9, then $\alpha \models D$.

Lemma 1.3([GS79]). $A \in \mathbf{R}^-$ if and only if A is valid in any Kripke model for \mathbf{R}^- .

2 A sequent system GR⁻

In this section we introduce a sequent system \mathbf{GR}^- for \mathbf{R}^- . We use Greek letters, Γ and Δ , possibly with suffixes, for finite sets of formulas. The expression $\Box\Gamma$ denotes the set $\{\Box A \mid A \in \Gamma\}$. By a sequent, we mean the expression $\Gamma \to \Delta$. For brevity's sake, we write

$$A_1, \cdots, A_k, \Gamma_1, \cdots, \Gamma_\ell \to \Delta_1, \cdots, \Delta_m, B_1, \cdots, B_n$$

instead of

$$\{A_1, \cdots, A_k\} \cup \Gamma_1 \cup \cdots \cup \Gamma_\ell \to \Delta_1 \cup \cdots \cup \Delta_m \cup \{B_1, \cdots, B_n\}$$

By Sub(A), we mean the set of subformulas of A. We put

$$\begin{split} \mathsf{Sub}^+(A) &= \mathsf{Sub}(A) \cup \{ \Box B \preceq \Box C | \Box B, \Box C \in \mathsf{Sub}(A) \} \cup \{ \Box B \prec \Box C | \Box B, \Box C \in \mathsf{Sub}(A) \}, \\ \mathsf{Sub}(\Gamma \to \Delta) &= \bigcup_{B \in \Gamma \cup \Delta} \mathsf{Sub}(B), \quad \mathsf{Sub}^+(\Gamma \to \Delta) = \bigcup_{B \in \Gamma \cup \Delta} \mathsf{Sub}^+(B). \end{split}$$

By the sequent system **LK** for the classical propositional logic, we mean the system defined by the following axioms and inference rules in the usual way.

Axioms of LK:

$$A \to A$$

Inference rules of LK:

$$\begin{array}{cc} \displaystyle \frac{\Gamma \to \Delta}{A, \Gamma \to \Delta}(w \to) & \displaystyle \frac{\Gamma \to \Delta}{\Gamma \to \Delta, A}(\to w) \\ \\ \displaystyle \frac{\Gamma \to \Delta, A \quad A, \Pi \to \Lambda}{\Gamma, \Pi \to \Delta, \Lambda}(cut) \\ \\ \displaystyle \frac{A_i, \Gamma \to \Delta}{A_1 \land A_2, \Gamma \to \Delta}(\land \to_i) & \displaystyle \frac{\Gamma \to \Delta, A \quad \Gamma \to \Delta, B}{\Gamma \to \Delta, A \land B}(\to \land) \\ \\ \displaystyle \frac{A, \Gamma \to \Delta}{A \lor B, \Gamma \to \Delta}(\lor \to) & \displaystyle \frac{\Gamma \to \Delta, A \land B}{\Gamma \to \Delta, A \land B}(\to \land) \\ \\ \displaystyle \frac{\Gamma \to \Delta, A \quad B, \Gamma \to \Delta}{A \lor B, \Gamma \to \Delta}(\lor \to) & \displaystyle \frac{A, \Gamma \to \Delta, B}{\Gamma \to \Delta, A_1 \lor A_2}(\to \lor i) \\ \\ \displaystyle \frac{\Gamma \to \Delta, A \quad B, \Gamma \to \Delta}{A \to B, \Gamma \to \Delta}(\supset \to) & \displaystyle \frac{A, \Gamma \to \Delta, B}{\Gamma \to \Delta, A \supset B}(\to \supset) \end{array}$$

The system \mathbf{GR}^- is obtained from the sequent system \mathbf{LK} by adding the following axioms and inference rules in the usual way.

Additional axioms of GR⁻

 $\begin{array}{l} GA1: \ \Box A \preceq \Box B, \Box B \preceq \Box C \rightarrow \Box A \preceq \Box C \\ GA2: \ \Box A \rightarrow \Box A \preceq \Box B, \Box B \prec \Box A \\ GA3: \ \Box B \rightarrow \Box A \preceq \Box B, \Box B \prec \Box A \\ GA4: \ \Box A \prec \Box B \rightarrow \Box A \preceq \Box B \\ GA5: \ \Box A \preceq \Box B, \Box B \prec \Box A \rightarrow \end{array}$

Additional inference rules of GR⁻

$$\frac{\Box A, \Sigma^f, \Gamma \to A}{\Sigma^f, \Box \Gamma \to \Box A} (\to \Box) \qquad \qquad \frac{\Box A, \Gamma \to \Delta}{\Box A \preceq \Box B, \Gamma \to \Delta} (\preceq \to) \qquad \qquad \frac{\Gamma \to \Delta, \Box A}{\Gamma \to \Delta, \Box A \preceq \Box A} (\to \preceq)$$

where Σ^f is a finite subset of Σ .

The system \mathbf{GR}_1^- is the system obtained from \mathbf{GR}^- by restricting a cut to the following form:

$$\frac{\Gamma \to \Delta, \Box A \odot \Box B \quad \Box A \odot \Box B, \Gamma \to \Delta}{\Gamma \to \Delta}$$

where $\odot \in \{\prec, \preceq\}$, and $\Box A$ and $\Box B$ are subformulas of a formula occurring in the lower sequent.

Theorem 2.1([SO03]). The following conditions are equivalent:

(1) $A_1, \cdots, A_m \to B_1, \cdots, B_n \in \mathbf{GR}_1^-,$

(2) $A_1, \cdots, A_m \to B_1, \cdots, B_n \in \mathbf{GR}^-$

(3) $A_1 \wedge \cdots \wedge A_m \supset B_1 \vee \cdots \vee B_n \in \mathbf{R}^-$,

(4) $A_1 \wedge \cdots \wedge A_m \supset B_1 \vee \cdots \vee B_n$ is valid in any Kripke model for \mathbf{R}^- .

Corollary 2.2. If a sequent S is provable in **GR**⁻, then there exists a proof figure \mathcal{P} for S such that each formula occurring in \mathcal{P} belongs to $\mathsf{Sub}^+(S)$.

3 A sequent system for R^- without additional axioms

Theorem 2.1 provides the decision procedure for the provability of \mathbf{R}^- , but does not say that every cut in \mathbf{GR}_1^- is necessary. For instance, the following cut seems to be removable if $\Gamma \to \Delta$ does not have any \prec -formula and \preceq -formula. Because we can easily see the \prec -free and \preceq -free fragment of \mathbf{GR}^- is the system for the provability logic \mathbf{GL} , the \prec -free and \preceq -free fragment of \mathbf{R}^- , described in Valentini [Val83] and Avron [Avr84] and enjoying a cut-elimination theorem.

$$\frac{\frac{\Gamma \to \Delta, \Box A}{\Gamma \to \Delta, \Box A \preceq \Box A} (\to \preceq) \quad \frac{\Box A, \Gamma \to \Delta}{\Box A \preceq \Box A, \Gamma \to \Delta} (\preceq \to)}{\Gamma \to \Delta} (cut)$$

Here we introduce another system for \mathbf{R}^- by adding only inference rules to $\mathbf{L}\mathbf{K}$ and prove cutelimination theorem. Also we consider what kind of cuts are removable from \mathbf{GR}_1^- .

The system \mathbf{GR}_2^- is obtained from **LK** by adding the following inference rules in the usual way.

Additional inference rules of GR₂⁻

$$(\rightarrow \Box), (\rightarrow \preceq), (\preceq \rightarrow)$$
 are as in **GR**⁻,

$$\begin{array}{c} \frac{\Box A \preceq \Box B, \Gamma \to \Delta, \Box B \preceq \Box A}{\Box A \prec \Box B, \Gamma \to \Delta} (\prec \to) \\ \\ \frac{\Gamma \to \Delta, \Box C \preceq \Box D \quad \Gamma \to \Delta, \Box D \preceq \Box E \quad \Box C \preceq \Box E, \Gamma \to \Delta}{\Gamma \to \Delta} (tran) \\ \\ \frac{\Gamma \to \Delta, \Box C, \Box D \quad \Box C \prec \Box D, \Gamma \to \Delta \quad \Box D \prec \Box C, \Gamma \to \Delta \quad \Box C \preceq \Box D, \Box D \preceq \Box C, \Gamma \to \Delta}{\Gamma \to \Delta} (tran) \end{array}$$

where $\Box C$, $\Box D$ and $\Box E$ are different subformulas occurring in the lower sequent.

The system \mathbf{GR}_3^- is the system obtained from \mathbf{GR}_2^- by removing cuts.

Lemma 3.1. The following conditions are equivalent: (1) $\Gamma \to \Delta \in \mathbf{GR}^-$, (2) $\Gamma \to \Delta \in \mathbf{GR}_2^-$.

Proof. For "(1) implies (2)". Additional inference rules of \mathbf{GR}^- are also inference rule in \mathbf{GR}_2^- . So, it is sufficient to show the provability of the additional axioms of \mathbf{GR}^- in \mathbf{GR}_2^- . Axioms $GA4(\Box A \prec$ $\Box B \to \Box A \preceq \Box B$) and $GA5(\Box A \preceq \Box B, \Box B \prec \Box A \to)$ are shown by the following figures.

$$\begin{array}{c} \square A \leq \square B \to \square A \leq \square B \\ \hline \square A \leq \square B \to \square A \leq \square B, \square B \prec \square A \\ \hline \square A \prec \square B \to \square A \leq \square B \\ \hline \square A \prec \square B \to \square A \leq \square B \\ \hline \hline \square B \leq \square A, \square A \leq \square B \to \square A \leq \square B \\ \hline \hline \square B \leq \square A, \square A \leq \square B \to \square A \leq \square B \\ \hline \square A \prec \square B, \square B \prec \square A \to \\ \hline \end{array} \begin{array}{c} (\to w) \\ (\to w) \\ (\to w) \\ (\to w) \\ (\to w) \end{array}$$

For $GA1(\Box A \preceq \Box B, \Box B \preceq \Box C \rightarrow \Box A \preceq \Box C)$. If A, B and C are different, then the provability can be shown by (tran) and weakening rules. If A = B or B = C, then it can be shown by weakening rules. If A = C, by the following figure.

$$\frac{\Box A \to \Box A}{\Box A \to \Box A \preceq \Box A} (\to \preceq)$$

$$\frac{\Box A \preceq \Box B \to \Box A \preceq \Box A}{\Box A \preceq \Box B, \Box B \preceq \Box A \to \Box A \preceq \Box A} (\preceq \to)$$

$$(w \to)$$

For $GA2(\Box A \rightarrow \Box A \preceq \Box B, \Box B \prec \Box A)$. If $A \neq B$, then the provability can be shown by (*lin*), the provability of GA4 and weakening rules. If A = B, then it can be shown by $(\rightarrow \preceq)$ and weakening rules. The provability of GA3 can be shown similarly to GA2.

For "(2) implies (1)". By the figures in the next page, each inference rule in \mathbf{GR}_2^- preserves the provability of \mathbf{GR}^{-} . \neg

Theorem 3.2. The following conditions are equivalent:

(1) $A_1, \dots, A_m \to B_1, \dots, B_n \in \mathbf{GR}_3^-,$ (2) $A_1, \dots, A_m \to B_1, \dots, B_n \in \mathbf{GR}_2^-.$

"(1) implies (2)" is clear. To prove "(2) implies (1)", we need some preparations.

Definition 3.3. A sequent $\Gamma \to \Delta$ is said to be saturated if the following conditions hold: (1) if $A \wedge B \in \Gamma$, then $A, B \in \Gamma$, (2) if $A \wedge B \in \Delta$, then $A \in \Delta$ or $B \in \Delta$, (3) if $A \lor B \in \Gamma$, then $A \in \Gamma$ or $B \in \Gamma$, (4) if $A \lor B \in \Delta$, then $A, B \in \Delta$, (5) if $A \supset B \in \Gamma$, then $A \in \Delta$ or $B \in \Gamma$, (6) if $A \supset B \in \Delta$, then $A \in \Gamma$ and $B \in \Delta$, (7) if $\Box A \preceq \Box B \in \Gamma$, then $\Box A \in \Gamma$, (8) if $\Box A \preceq \Box A \in \Delta$, then $\Box A \in \Delta$, (9) if $\Box A \prec \Box B \in \Gamma$, then $\Box A \preceq \Box B \in \Gamma$ and $\Box B \preceq \Box A \in \Delta$, (10) if $\Box C, \Box D$ and $\Box E$ is distinct subformulas in $\mathsf{Sub}(\Gamma \to \Delta)$, then either one of $\Box C \preceq \Box E \in \Gamma$, $\Box C \preceq \Box D \in \Delta$, or $\Box D \preceq \Box E \in \Delta$ holds,

(11) if $\Box C$ and $\Box D$ is distinct subformulas in $\mathsf{Sub}(\Gamma \to \Delta)$, then either one of $\Box C, \Box D \in \Delta, \Box C \prec \Box D \in \Gamma$, $\Box D \prec \Box C \in \Gamma \text{ or } \Box C \preceq \Box D, \Box D \preceq \Box C \in \Gamma \text{ holds.}$

Lemma 3.4. If $\Gamma \to \Delta \notin \mathbf{GR}_3^-$, then there exists a sequent $\Gamma' \to \Delta'$ satisfying the following three conditions:

 $\begin{array}{l} (1) \ \Gamma' \to \Delta' \not\in \mathbf{GR}_3^-, \\ (2) \ \Gamma' \to \Delta' \ is \ saturated, \end{array}$

(3) $\Gamma \subseteq \Gamma' \subseteq \mathsf{Sub}^+(\Gamma \to \Delta)$ and $\Delta \subseteq \Delta' \subseteq \mathsf{Sub}^+(\Gamma \to \Delta)$.

Proof. Let it be that $p \notin \mathsf{Sub}(\Gamma \to \Delta)$. Since $\mathsf{Sub}^+(\Gamma \to \Delta)$ is finite, there exist formulas

$$A_0, A_1 \cdots, A_{n-1}$$

such that

$$\begin{aligned} \mathsf{Sub}^+(\Gamma \to \Delta) \cup \{ \Box B \land \Box C \land \Box D \land p \mid \Box B, \Box C, \Box D \in \mathsf{Sub}(\Gamma \to \Delta), B \neq C, C \neq D, D \neq B \} \\ &= \{A_0, A_1 \cdots, A_{n-1}\}. \end{aligned}$$

We define a sequence of sequents

$$(\Gamma_0 \to \Delta_0), (\Gamma_1 \to \Delta_1), \cdots, (\Gamma_k \to \Delta_k), \cdots$$

inductively as follows.

Step 0: $(\Gamma_0 \to \Delta_0) = (\Gamma \to \Delta).$ Step k + 1: If $A_k \mod n = \Box B \preceq \Box C$, then

$$(\Gamma_{k+1} \to \Delta_{k+1}) = \begin{cases} (\Box B, \Gamma_k \to \Delta_k) & \text{if } \Box B \preceq \Box C \in \Gamma \\ (\Gamma_k \to \Delta_k, \Box B) & \text{if } \Box B \preceq \Box C \in \Delta \text{ and } B = C \\ (\Gamma_k \to \Delta_k) & \text{otherwise} \end{cases}$$

If $A_k \mod n = \Box B \prec \Box C$ and $B \neq C$, then

$$(\Gamma_{k+1} \to \Delta_{k+1}) = \begin{cases} S_1 & \text{if } S_1 \notin \mathbf{GR}_3^-\\ (\Box B \preceq \Box C, \Box B \prec \Box C, \Gamma_k & \\ \to \Delta_k, \Box C \preceq \Box B) & \text{if } S_1 \in \mathbf{GR}_3^- \text{ and } S_2 \notin \mathbf{GR}_3^-\\ S_3 & \text{if } S_1, S_2 \in \mathbf{GR}_3^- \text{ and } S_3 \notin \mathbf{GR}_3^-\\ S_4 & \text{if } S_1, S_2, S_3 \in \mathbf{GR}_3^- \text{ and } S_4 \notin \mathbf{GR}_3^-\\ (\Gamma_k \to \Delta_k) & \text{otherwise} \end{cases}$$

where

 $S_1 = (\Gamma_k \to \Delta_k, \Box B, \Box C),$ $S_2 = (\Box B \prec \Box C, \Gamma_k \to \Delta_k),$ $S_3 = (\Box C \prec \Box B, \Gamma_k \to \Delta_k)$ and $S_4 = (\Box B \preceq \Box C, \Box C \preceq \Box B, \Gamma_k \to \Delta_k).$ If $A_k \mod n = \Box B \prec \Box B$, then $(\Gamma_{k+1} \to \Delta_{k+1}) = (\Gamma_k \to \Delta_k)$ If $A_k \mod n = \Box B \land \Box C \land \Box D \land p$, then

$$(\Gamma_{k+1} \to \Delta_{k+1}) = \begin{cases} S_1 & \text{if } S_1 \notin \mathbf{GR}_1^-\\ S_2 & \text{if } S_1 \in \mathbf{GR}_1^- \text{ and } S_2 \notin \mathbf{GR}_1^-\\ S_3 & \text{if } S_1, S_2 \in \mathbf{GR}_1^- \text{ and } S_3 \notin \mathbf{GR}_1^-\\ (\Gamma_k \to \Delta_k) & \text{otherwise} \end{cases}$$

where

 $S_1 = (\Gamma_k \to \Delta_k, \Box B \preceq \Box C),$ $S_2 = (\Gamma_k \to \Delta_k, \Box C \preceq \Box D) \text{ and }$ $S_3 = (\Box B \preceq \Box D, \Gamma_k \to \Delta_k).$

If $A_k \mod n$ is a \square -formula, then $(\Gamma_{k+1} \to \Delta_{k+1}) = (\Gamma_k \to \Delta_k)$. In the other cases, $(\Gamma_{k+1} \to \Delta_{k+1})$ is defined in the usual way.

Also in the usual way, we can prove that $\bigcup_{i=1}^{\infty} \Gamma_i \to \bigcup_{i=1}^{\infty} \Delta_i$ is a sequent and satisfies the conditions (1),(2) and (3).

Definition 3.5. For a sequent $S \notin \mathbf{GR}_3^-$, we fix a sequent satisfying the three conditions in the above lemma and call it *a saturation* of *S*, write sat(S). For $S \in \mathbf{GR}_3^-$, we put sat(S) = S.

Remark 3.6. For a sequent $S \notin \mathbf{GR}_3^-$,

(1) $sat(S) \notin \mathbf{GR}_3^-$,

(2) sat(S) is saturated,

(3) $\operatorname{Sub}(\operatorname{sat}(S)) = \operatorname{Sub}(S).$

A sequence of formulas is defined as follows:

(1) [] is a sequence of formulas,

(2) if $[A_1, \dots, A_n]$ is a sequence of formulas, then so is $[A_1, \dots, A_n, B]$.

A binary operator \circ is defined by

$$[A_1, \dots, A_m] \circ [B_1, \dots, B_n] = [A_1, \dots, A_m, B_1, \dots, B_n].$$

We use τ and σ , possibly with suffixes, for sequences of formulas.

Definition 3.7. Let S_0 be a sequent, which is not provable in \mathbf{GR}_3^- . We define the set $\mathbf{W}(S_0)$ of pairs of a sequent and a sequence of formulas as follows:

(1) $(sat(S_0); []) \in \mathbf{W}(S_0),$

(2) if a pair $(\Gamma \to \Delta, \Box A; \tau)$ belongs to $\mathbf{W}(S_0)$, then so does the pair

$$(sat(\Box A, \{D \mid \Box D \in \Gamma\}, \Gamma \cap \Sigma \to A); \tau \circ [\Box A]).$$

Lemma 3.8. Let S_0 be a sequent, which is not provable in \mathbf{GR}_3^- and let $(S; \tau)$ be a pair in $\mathbf{W}(S_0)$. Then

(1) S is saturated,

(2) $S \notin \mathbf{GR}_3^-$,

(3) S consists of only formulas in $Sub^+(S_0)$,

(4) τ consists of only \Box -formulas in Sub(S₀).

Proof. We use an induction on $(S; \tau)$ as an element in $\mathbf{W}(S_0)$. If $(S; \tau) = (sat(S_0); [])$, then the lemma is clear from Definition 3.5. Suppose that $(S; \tau) \neq (sat(S_0); [])$. Then by Definition 3.7, there exists a pair $(\Gamma \to \Delta, \Box A; \sigma) \in \mathbf{W}(S_0)$ such that

$$(S;\tau) = (sat(\Box A, \{D \mid \Box D \in \Gamma\}, \Gamma \cap \Sigma \to A); \sigma \circ [\Box A]).$$

So, we obtain (1). By the induction hypothesis, we have the following three:

(5) $\Gamma \to \Delta, \Box A \notin \mathbf{GR}_3^-,$

(6) $\Gamma \to \Delta, \Box A$ consists only formulas in $\mathsf{Sub}^+(S_0)$

(7) σ consists of only \Box -formulas in $\mathsf{Sub}(S_0)$.

From (6) and (7), we obtain (4). By Remark 3.6(3) and (6), we have (3). Also by (5), we have $\Gamma \cap \Sigma \to \Box A \notin \mathbf{GR}_3^-$. Using $(\to \Box)$, we have $\Box A, \{D \mid \Box D \in \Gamma\}, \Gamma \cap \Sigma \to A \notin \mathbf{GR}_3^-$, and by Remark 3.6(1), neither is its saturation S. We have (2).

Lemma 3.9. Let S_0 be a sequent, which is not provable in \mathbf{GR}_3^- . Then

(1) $S_1 = S_2$ for any $(S_1; \tau), (S_2; \tau) \in \mathbf{W}(S_0)$,

(2) $(\Gamma_1 \to \Delta_1; \tau), (\Gamma_2 \to \Delta_2; \tau \circ \sigma) \in \mathbf{W}(S_0)$ implies $\Gamma_1 \cap \Sigma \subseteq \Gamma_2$,

(3) if there exists a \Box -formula in the antecedent of $sat(S_0)$, then $Sub^+(S_0) \cap \Sigma = Sub^+(S) \cap \Sigma$, for any $(S; \tau) \in \mathbf{W}(S_0)$,

(4) $(\Gamma \to \Delta; \tau \circ \sigma) \in \mathbf{W}(S_0)$ implies $(\Gamma_1 \to \Delta_1; \tau) \in \mathbf{W}(S_0)$ for some $\Gamma_1 \to \Delta_1$,

(5) $(\Gamma \to \Delta; \tau \circ [\Box A] \circ \sigma) \in \mathbf{W}(S_0)$ implies $\Box A \in \Gamma$,

(6) $(S; \tau_1 \circ [\Box A] \circ \tau_2 \circ [\Box A] \circ \tau_3) \notin \mathbf{W}(S_0)$, for any A and S,

(7) $\mathbf{W}(S_0)$ is finite.

Proof. For (1). We use an induction on τ . If $\tau = []$, then we have $S_1 = S_2 = sat(S_0)$. Suppose that $\tau = \sigma \circ [\Box A]$. Then by Definition 3.7, there exist

$$(\Gamma_1 \to \Delta_1, \Box A; \sigma), (\Gamma_2 \to \Delta_2, \Box A; \sigma) \in \mathbf{W}(S_0)$$

such that

$$S_1 = sat(\Box A, \{D \mid \Box D \in \Gamma_1\}, \Gamma_1 \cap \Sigma \to A)$$

and

$$S_2 = sat(\Box A, \{D \mid \Box D \in \Gamma_2\}, \Gamma_2 \cap \Sigma \to A)$$

By the induction hypothesis, we have $(\Gamma_1 \to \Delta_1) = (\Gamma_2 \to \Delta_2)$, and so $\Gamma_1 = \Gamma_2$. Hence we obtain $S_1 = S_2$.

For (2). We use an induction on σ . If $\sigma = []$, then by (1), we have $\Gamma_1 = \Gamma_2$. Suppose that $\sigma = \sigma' \circ [\Box A]$. Then by Definition 3.7, there exists $(\Gamma_3 \to \Delta_3, \Box A; \tau \circ \sigma') \in \mathbf{W}(S_0)$ such that $(\Gamma_2 \to \Delta_2) = sat(\Box A, \{D \mid \Box D \in \Gamma_3\}, \Gamma_3 \cap \Sigma \to A)$. By the induction hypothesis, $\Gamma_1 \cap \Sigma \subseteq \Gamma_3$. Using Remark 3.6(3), $\Gamma_1 \cap \Sigma \subseteq \Gamma_3 \cap \Sigma \subseteq \Gamma_2$.

For (3). By Lemma 3.8(2), we have $\mathsf{Sub}^+(S_0) \cap \Sigma \supseteq \mathsf{Sub}^+(S) \cap \Sigma$. We show $\mathsf{Sub}^+(S_0) \cap \Sigma \subseteq \mathsf{Sub}^+(S) \cap \Sigma$. We put $S_0 = \Gamma_0 \to \Delta_0$. Suppose that $\Box C \in \Gamma_0$ and $E \in \mathsf{Sub}^+(S_0) \cap \Sigma$.

If $E = \Box A$, then either one of the following four holds since $sat(S_0)$ is saturated:

(3a) $\Box C, \Box A \in \Delta_0,$

(3b) $\Box C \prec \Box A, \Box C \preceq \Box A \in \Gamma_0,$

 $(3c) \Box A \prec \Box C, \Box A \preceq \Box C \in \Gamma_0,$

(3d) $\Box C \preceq \Box A, \Box A \preceq \Box C \in \Gamma_0.$

By Lemma 3.8(1) and $\Box C \in \Gamma_0$, we note that (3a) does not hold. So, one of the formulas $\Box C \prec \Box A$ and $\Box A \preceq \Box C$ belongs to Γ_0 , and by (2), it also belongs to the antecedent of S. Hence $\Box A \in \mathsf{Sub}^+(S) \cap \Sigma$.

If E is either a \leq -formula $\Box A \leq \Box B$ or a \prec -formula $\Box A \prec \Box B$, then $\Box A, \Box B \in \mathsf{Sub}^+(S_0) \cap \Sigma$. So similarly to the proof for the case that $E = \Box A$, we have $\Box A, \Box B \in \mathsf{Sub}^+(S) \cap \Sigma$, and so, $E \in \mathsf{Sub}^+(S) \cap \Sigma$.

For (4). We use an induction on σ . If $\sigma = []$, then the lemma is clear. Suppose that $\sigma = \sigma' \circ [A]$. Then by Definition 3.7, there exists $(\Gamma_1 \to \Delta_1, \Box A; \tau \circ \sigma') \in \mathbf{W}(S_0)$ such that

$$(\Gamma \to \Delta) = sat(\Box A, \{D \mid \Box D \in \Gamma_1\}, \Gamma_1 \cap \Sigma \to A).$$

By the induction hypothesis, $(\Gamma_2 \to \Delta_2; \tau) \in \mathbf{W}(S_0)$ for some $\Gamma_2 \to \Delta_2$.

For (5). By (4), $(\Gamma_1 \to \Delta_1; \tau \circ [\Box A]) \in \mathbf{W}(S_0)$ for some $\Gamma_1 \to \Delta_1$. Using Definition 3.7, we have $\Box A \in \Gamma_1$. Using (2), we have $\Box A \in \Gamma$.

For (6). Suppose that $(S; \tau_1 \circ [\Box A] \circ \tau_2 \circ [\Box A] \circ \tau_3) \in \mathbf{W}(S_0)$. Then by (4), $(\Gamma \to \Delta; \tau_1 \circ [\Box A] \circ \tau_2 \circ [\Box A]) \in \mathbf{W}(S_0)$ for some $\Gamma \to \Delta$. By Definition 3.7, there exists $(\Gamma_1 \to \Delta_1, \Box A; \tau_1 \circ [\Box A] \circ \tau_2) \in \mathbf{W}(S_0)$. Using (5), $\Box A \in \Gamma_1$. So, $\Gamma_1 \to \Delta_1, \Box A \in \mathbf{GR}_3^-$. This is contradictory to Lemma 3.8.

For (7). By (1), (6) and Lemma 3.8(4).

8

Definition 3.10. Let S_0 be a sequent, which is not provable in \mathbf{GR}_3^- . We define a structure $\mathcal{K}(S_0) = \langle \mathbf{W}(S_0), <, \models \rangle$ as follows:

(1) $(\Gamma_1 \to \Delta_1; \tau_1) < (\Gamma_2 \to \Delta_2; \tau_2)$ if and only if $\tau_2 = \tau_1 \circ \sigma$ for some $\sigma \neq []$,

 $(2) \models$ is a valuation satisfying, in addition to the conditions in Definition 1.1(3),

(2.1) $p \in \Gamma$ if and only if $(\Gamma \to \Delta; \tau) \models p$, for any propositional variable p,

(2.2) $A \in \Gamma$ if and only if $(\Gamma \to \Delta; \tau) \models A$, for any \prec -formula $A \in \mathsf{Sub}^+(S_0)$,

(2.3) $(\Gamma \to \Delta; \tau) \models \Box A$ if and only if $(\Gamma \to \Delta; \tau) \models \Box A \preceq \Box A$, for any $\Box A \in \mathsf{Sub}(S_0)$,

(2.4) $\Box A \preceq \Box B \in \Gamma$ if and only if $(\Gamma \to \Delta; \tau) \models \Box A \preceq \Box B$, for any $\Box A, \Box B \in \mathsf{Sub}(S_0)$ such that $A \neq B$.

Lemma 3.11. Let S_0 be a sequent, which is not provable in \mathbf{GR}_3^- . Then for any A and for any $(\Gamma \to \Delta; \tau) \in \mathbf{W}(S_0)$,

(1) $A \in \Gamma$ implies $(\Gamma \to \Delta; \tau) \models A$,

(2) $A \in \Delta$ implies $(\Gamma \to \Delta; \tau) \not\models A$.

Proof. We use an induction on A.

If $A = \bot$, then by Lemma 3.8(1), $A \notin \Gamma$. So we have (1). On the other hand, from $(\Gamma \to \Delta; \tau) \not\models A$, we have (2).

If A is a propositional variable, then (1) is clear. Suppose that $p \in \Delta$. By Lemma 3.8(1), $p \notin \Gamma$, and so, we have (2).

Suppose that A is not a propositional variable. If A is a \leq -formula $\Box B \leq \Box C$ with $B \neq C$ or a \prec -formula, then the lemma can be shown similarly to the case that A is a propositional variable. Other cases can be shown in the usual way (cf. [Avr84]). Here we show the case that $A = \Box B \leq \Box B$ and the case that $A = \Box B$.

For the case that $A = \Box B \preceq \Box B$. Suppose that $\Box B \preceq \Box B \in \Gamma$. Since $\Gamma \to \Delta$ is saturated, we have $\Box B \in \Gamma$. By the induction hypothesis, $(\Gamma \to \Delta; \tau) \models \Box B$. From Definition 2.8(2.4), we obtain $(\Gamma \to \Delta; \tau) \models \Box B \preceq \Box B$.

Suppose that $\Box B \preceq \Box B \in \Delta$. Since $\Gamma \to \Delta$ is saturated, we have $\Box B \in \Delta$. By the induction hypothesis, $(\Gamma \to \Delta; \tau) \not\models \Box B$. From Definition 2.8(2.4), we obtain $(\Gamma \to \Delta; \tau) \not\models \Box B \preceq \Box B$.

For the case that $A = \Box B$. Suppose that $\Box B \in \Gamma$ and $(\Gamma \to \Delta; \tau) < (\Gamma_1 \to \Delta_1; \tau_1)$. Then $\tau_1 = \tau \circ \sigma \circ [\Box C]$ for some σ and C. Hence there exists $(\Gamma_2 \to \Delta_2, \Box C; \tau \circ \sigma) \in \mathbf{W}(S_0)$ such that

$$(\Gamma_1 \to \Delta_1) = sat(\Box C, \{D \mid \Box D \in \Gamma_2\}, \Gamma_2 \cap \Sigma \to C).$$

By Lemma 3.9(2), we have $\Box B \in \Gamma_2$. Using Definition 3.5, $B \in \Gamma_1$. By the induction hypothesis, we have $(\Gamma_1 \to \Delta_1; \tau_1) \models B$. Hence $(\Gamma \to \Delta; \tau) \models \Box B$.

Suppose that $\Box B \in \Delta$. Then $(\Gamma \to \Delta; \tau) < (sat(\Box B, \{D \mid \Box D \in \Gamma\}, \Gamma \cap \Sigma \to B); \tau \circ [\Box B]) \in \mathbf{W}(S_0)$. By Definition 3.5, *B* belongs to the succeedent of the above saturation. By the induction hypothesis, *B* is false at the new pair above. Hence $(\Gamma \to \Delta; \tau) \not\models \Box B$.

Corollary 3.12. Let $A_1, \dots, A_m \to B_1, \dots, B_n$ be a sequent, which is not provable in \mathbf{GR}_3^- . Then in $\mathcal{K}(A_1, \dots, A_m \to B_1, \dots, B_n)$,

$$(sat(A_1, \dots, A_m \to B_1, \dots, B_n); []) \not\models A_1 \land \dots \land A_m \supset B_1 \lor \dots \lor B_n.$$

Lemma 3.13. Let S_0 be a sequent, which is not provable in \mathbf{GR}_3^- . If there exists a \Box -formula in the antecedent of $\operatorname{sat}(S_0)$, then $\mathcal{K}(S_0)$ is a Kripke pseudo-model for \mathbf{R}^- satisfying the two conditions in Definition 1.2 for any D such that $\operatorname{Sub}(D) \cap \Sigma \subseteq \operatorname{Sub}^+(S_0)$.

Proof. By Lemma 3.9(7), $\mathbf{W}(S_0)$ is finite. The irreflexivity and the transitivity of < can be shown easily. We show

 $\alpha < \gamma$ and $\beta < \gamma$ imply either one of $\alpha = \beta$, $\alpha < \beta$ or $\beta < \alpha$.

Suppose that $(S_1; \tau_1) < (S_3; \tau_3)$ and $(S_2; \tau_2) < (S_3; \tau_3)$. Then $\tau_3 = \tau_1 \circ \sigma_1 = \tau_2 \circ \sigma_2$ for some non-empty sequences σ_1 and σ_2 . Hence either $\tau_1 = \tau_2 \circ \sigma'_2$ or $\tau_1 \circ \sigma'_1 = \tau_2$ holds. Using Lemma 3.9(1), we have either one of $(S_1; \tau_1) = (S_2; \tau_2)$, $(S_1; \tau_1) < (S_2; \tau_2)$ or $(S_2; \tau_2) < (S_1; \tau_1)$. Hence $\mathcal{K}(S_0)$ is a Kripke pseudo-model for \mathbf{R}^- .

We show the two conditions in Definition 1.2 for any D such that $\mathsf{Sub}(D) \cap \Sigma \subseteq \mathsf{Sub}^+(S_0)$.

For (1). If D is \Box -formula, then (1) is clear by the definition of \models . Suppose that D is either a \preceq -formula or a \prec -formula, $(\Gamma_1 \to \Delta_1; \tau_1) \models D$ and $(\Gamma_1 \to \Delta_1; \tau_1) < (\Gamma_2 \to \Delta_2; \tau_2)$. Then $D \in \Gamma_1$. By Lemma 3.9(2), $D \in \Gamma_2$. Hence $(\Gamma_2 \to \Delta_2; \tau_2) \models D$.

For (2). We divide the cases.

For the case that D is A5 (i.e., $D = (\Box A \preceq \Box B) \supset \Box A$). Suppose that $(\Gamma \to \Delta; \tau) \models \Box A \preceq \Box B$. If A = B, then immediately $(\Gamma \to \Delta; \tau) \models \Box A$. So, we assume that $A \neq B$. Since $\mathsf{Sub}(D) \cap \Sigma \subseteq \mathsf{Sub}^+(S_0)$, we have $\Box A \preceq \Box B \in \mathsf{Sub}^+(S_0)$, and so $\Box A \preceq \Box B \in \Gamma$. Since $\Gamma \to \Delta$ is saturated, we have $\Box A \in \Gamma$. Using Lemma 3.11, $(\Gamma \to \Delta; \tau) \models \Box A$.

For the case that D is A6 (i.e., $D = ((\Box A \preceq \Box B) \land (\Box B \preceq \Box C)) \supset (\Box A \preceq \Box C)$. Suppose that $(\Gamma \to \Delta; \tau) \models \Box A \preceq \Box B$ and $(\Gamma \to \Delta; \tau) \models \Box B \preceq \Box C$. If either A = B or B = C, then $(\Gamma \to \Delta; \tau) \models \Box A \preceq \Box C$ is clear. So, we assume that $A \neq B$ and $B \neq C$. Since $\mathsf{Sub}(D) \cap \Sigma \subseteq \mathsf{Sub}^+(S_0)$, we have $\Box A \preceq \Box B, \Box B \preceq \Box C \in \mathsf{Sub}^+(S_0)$, and so, $\Box A \preceq \Box B, \Box B \preceq \Box C \in \Gamma$.

If $A \neq C$, then $\Box A \preceq \Box C \in \Gamma$ since $\Gamma \to \Delta$ is saturated. Using Lemma 3.11, $(\Gamma \to \Delta; \tau) \models \Box A \preceq \Box C$. If A = C, then $\Box A \in \Gamma$ since $\Gamma \to \Delta$ is saturated. Using Lemma 3.11, $(\Gamma \to \Delta; \tau) \models \Box A$, and so $(\Gamma \to \Delta; \tau) \models \Box A \preceq \Box C$.

For the case that D is A7 (i.e., $D = (\Box A \lor \Box B) \supset ((\Box A \preceq \Box B) \lor (\Box B \prec \Box A)))$. Suppose that $(\Gamma \to \Delta; \tau) \models \Box A \lor \Box B$, i. e. ,either $\Box A$ or $\Box B$ is true at the pair.

If A = B, then $\Box A$ is true at $(\Gamma \to \Delta; \tau)$, and so are $\Box A \preceq \Box B$ and $(\Box A \preceq \Box B) \lor (\Box B \prec \Box A)$.

So, we assume that $A \neq B$. Since $\mathsf{Sub}(D) \cap \Sigma \subseteq \mathsf{Sub}^+(S_0)$, we have $\Box A, \Box B \in \mathsf{Sub}^+(S_0)$, and using Lemma 3.9(3), we also have $\Box A, \Box B \in \mathsf{Sub}^+(\Gamma \to \Delta)$, Since $\Gamma \to \Delta$ is saturated, either one of the following four conditions holds:

 $\Box A, \Box B \in \Delta,$

 $\Box A \prec \Box B, \Box A \preceq \Box B \in \Gamma,$

 $\Box B \prec \Box A, \Box B \preceq \Box A \in \Gamma,$

 $\Box A \preceq \Box B, \Box B \preceq \Box A \in \Gamma.$

If $\Box A, \Box B \in \Delta$, then by Lemma 3.11, $\Box A$ and $\Box B$ are false at $(\Gamma \to \Delta; \tau)$, which is in contradiction with $(\Gamma \to \Delta; \tau) \models \Box A \lor \Box B$. So, either one of $\Box A \preceq \Box B$ or $\Box B \prec \Box A$ is true at $(\Gamma \to \Delta; \tau)$, and so is $(\Box A \preceq \Box B) \lor (\Box B \prec \Box A)$.

For the case that D is A8 (i.e., $D = (\Box A \prec \Box B) \supset (\Box A \preceq \Box B)$). Suppose that $(\Gamma \to \Delta; \tau) \models \Box A \prec \Box B$. Since $\operatorname{Sub}(D) \cap \Sigma \subseteq \operatorname{Sub}^+(S_0)$, we have $\Box A \prec \Box B \in \operatorname{Sub}^+(S_0)$, and so, $\Box A \prec \Box B \in \Gamma$. Since $\Gamma \to \Delta$ is saturated, $\Box A \preceq \Box B \in \Gamma$, and by Lemma 3.11, $(\Gamma \to \Delta; \tau) \models \Box A \preceq \Box B$.

For the case that D is A9 (i.e., $D = ((\Box A \preceq \Box B) \land (\Box B \prec \Box A)) \supset \bot)$. Suppose that $(\Gamma \to \Delta; \tau) \models \Box A \preceq \Box B$ and $(\Gamma \to \Delta; \tau) \models \Box B \prec \Box A$. Since $\mathsf{Sub}(D) \cap \Sigma \subseteq \mathsf{Sub}^+(S_0)$, we have $\Box B \prec \Box A \in \Gamma$. Since $\Gamma \to \Delta$ is saturated, $\Box A \preceq \Box B \in \Delta$. and by Lemma 3.11, $(\Gamma \to \Delta; \tau) \not\models \Box A \preceq \Box B$, which is contradictory to $(\Gamma \to \Delta; \tau) \models \Box A \preceq \Box B$.

Lemma 3.14([GS79]). Let \mathbf{S} be a set of formulas satisfying

 $A \in \mathbf{S} \text{ implies } \mathsf{Sub}^+(A) \subseteq \mathbf{S}$

and Let \mathcal{K}^* be a Kripke pseudo-model for \mathbf{R}^- satisfying the two conditions in Definition 1.2 for any D such that $\mathsf{Sub}(D) \cap \Sigma \subseteq \mathbf{S}$. Then there exists a Kripke model \mathcal{K} for \mathbf{R}^- such that for any $A \in \mathbf{S}$,

A is valid in \mathcal{K}^* if and only if A is valid in \mathcal{K}

The lemma above sometimes called "extension lemma".

Theorem 3.15. Let $A_1, \dots, A_m \to B_1, \dots, B_n$ be a sequent, which is not provable in \mathbf{GR}_3^- . Then there exists a Kripke model \mathbf{K} for \mathbf{R}^- , in which the formula $A_1 \wedge \dots \wedge A_m \supset B_1 \vee \dots \vee B_n$ is not valid.

Proof. Let Γ and Δ be the antecedent and succeedent of $sat(A_1, \dots, A_m \to B_1, \dots, B_n)$, respectively. For any $\Box A \in \Delta$, S(A) denotes the sequent $\Box A, \{D \mid \Box D \in \Gamma\}, \Gamma \cap \Sigma \to A$. By $(\to \Box)$, we note $S(A) \notin \mathbf{GR}_3^-$. Also we note that there exists a \Box -formula in the antecedent of the saturation of S(A). Using Corollary 3.12, Lemma 3.13 and Lemma 3.14, there exists a Kripke model $\mathcal{K}_A = \langle \mathbf{W}_A, \langle_A, \models_A \rangle$ for \mathbf{R}^- such that for any $B \in \mathsf{Sub}^+(S(A))$,

B is valid in $\mathcal{K}(S(A))$ if and only if B is valid in \mathcal{K}_A .

We construct a structure $\mathcal{K} = \langle \mathbf{W}, <, \models \rangle$ as follows:

- (1) $\mathbf{W} = \{r\} \cup \bigcup_{\Box A \in \Delta} \{(w, A) \mid w \in \mathbf{W}_A\},\$
- (2) <is a binary relation on **W** satisfying

(2.1) $r < \alpha$ if and only if $\alpha \neq r$,

 $(2.2) (w_1, A_1) < (w_2, A_2)$ if and only if $A_1 = A_2$ and $w_1 <_{A_1} w_2$,

- $(3) \models$ is a valuation satisfying, in addition to the conditions in Definition 1.1(3),
 - (3.1) $r \models \Box B \preceq \Box B$ if and only if $r \models \Box B$,
 - (3.2) $(w, A) \models \Box B \preceq \Box B$ if and only if $w \models_A \Box B$,
 - (3.3) $r \models C$ if and only if $C \in \Gamma$,
 - (3.4) $(w, A) \models C$ if and only if $w \models_A C$,

where C is either one of a propositional variable, a \prec -formula $\Box B \preceq \Box C$ with $B \neq C$ or a \preceq -formula. We note that for any formula D and for any $w \in \mathbf{W}_A$,

$$w \models_A D$$
 if and only if $(w, A) \models D. \dots (*)$

We show

(4) $B \in \Gamma$ implies $r \models B$ and

(5) $B \in \Delta$ implies $r \not\models B$

by an induction on B.

If B is either one of a propositional variable, a \prec -formula $\Box C \preceq \Box D$ with $C \neq D$ or a \preceq -formula, then (4) is clear. Suppose that $B \in \Delta$. Then we have $B \notin \Gamma$ since $\Gamma \to \Delta \notin \mathbf{GR}_3^-$. By (3.3), we have $r \not\models B$.

Among the other cases, we only show the case that $B = \Box C \preceq \Box C$ and the case that $B = \Box C$. For the case that $B = \Box C \preceq \Box C$.

	$\Box C \preceq \Box C \in \Gamma$	
\Rightarrow	$\Box C \in \Gamma$	since $\Gamma \to \Delta$ is saturated
\Rightarrow	$r \models \Box C$	by the induction hypothesis
\Rightarrow	$r \models \Box C \preceq \Box C$	by (3.3)

and

	$\Box C \preceq \Box C \in \Delta$	
\Rightarrow	$\Box C \in \Delta$	since $\Gamma \to \Delta$ is saturated
\Rightarrow	$r \not\models \Box C$	by the induction hypothesis
\Rightarrow	$r \not\models \Box C \prec \Box C$	by (3.3).

For the case that $B = \Box C$.

Suppose that $\Box C \in \Gamma$ and let $\Box A$ be an formula in Δ . Then $C, \Box C$ belong to the antecedent of S(A). By Lemma 3.11, in $\mathcal{K}(S(A))$,

$$(sat(S(A)); []) \models C \text{ and } (sat(S(A)); []) \models \Box C.$$

Since (sat(S(A)); []) is the root of $\mathcal{K}(S(A))$, C is valid in $\mathcal{K}(S(A))$. Hence C is valid in \mathcal{K}_A . Using (*), in \mathcal{K} , we have $(w, A) \models B$ for any $w \in \mathbf{W}_A$. Hence $r \models \Box B$.

Suppose that $\Box C \in \Delta$. Then C belongs the succeedent of S(C). By Lemma 3.11, in $\mathcal{K}(S(C))$,

$$(sat(S(A)); []) \not\models C.$$

So, C is not valid in \mathcal{K}_B , and there exists $w \in \mathbf{W}_B$ such that $w \not\models C$. Using (*), in \mathcal{K} , $(w, C) \not\models C$. Since r < (w, B), we have $r \not\models \Box C$.

Hence we obtain (4) and (5), and so,

$$r \not\models (A_1 \land \dots \land A_m) \supset (B_1 \lor \dots \lor B_n).$$

We show \mathcal{K} is a pseudo-Kripke model for \mathbf{R}^- satisfying two conditions in Definition 1.2 for any Dsuch that $\mathsf{Sub}(D) \cap \Sigma \subseteq \mathsf{Sub}^+(A_1, \dots, A_m \to B_1, \dots, B_n)$. Since \mathcal{K}_A is a Kripke model, we can see that \mathcal{K} is a Kripke pseudo-model for \mathbf{R}^- from the definition of \mathcal{K} . Also since \mathcal{K}_A is a Kripke model, two conditions in Definition 1.2 are clear if $\alpha \neq r$. So, it is sufficient to show the following two:

(6) if $D \in \Sigma$ and $r \models D$, then for any $\Box A \in \Delta$ and for any $w \in \mathbf{W}_A$, $(w, A) \models D$,

(7) if D is either one of the axioms A5, A6, A7, A8 and A9, then $r \models D$.

For (6): If $D = \Box E$, then (6) is clear by the definition of \models . If $D = \Box E \prec \Box E$, then by (3.1), we obtain (6). So, we assume that $D = \Box E \preceq \Box F$ with $E \neq F$ or D is a \prec -formula. Suppose that $r \models D$ and let it be that $\Box A \in \Delta$. Then by (3.3), $D \in \Gamma \cap \Sigma$. Hence D belongs the antecedent of sat(S(A)). Using Lemma 3.9(2) and $(sat(S(A)); []) \in \mathbf{W}(S(A)), D \in \Phi$ for any $(\Phi \to \Psi; \sigma) \in \mathbf{W}(S(A))$. Using Lemma 3.11, D is valid in $\mathcal{K}(S(A))$, and hence, D is valid in \mathcal{K}_A . Using (*), we obtain for any $w \in \mathbf{W}_A$, $(w, A) \models D$.

For (7): We divide the cases.

For the case that D is A5 (i.e., $D = (\Box E \preceq \Box F) \supset \Box E$). If E = F, then by (3.1),

$$r \models \Box E \preceq \Box F \Rightarrow r \models \Box E.$$

If $E \neq F$, then

	$r \models \Box E \preceq \Box F$	
\Rightarrow	$\Box E \preceq \Box F \in \Gamma$	by (3.3)
\Rightarrow	$\Box E \in \Gamma$	since $\Gamma \to \Delta$ is saturated
\Rightarrow	$r\models \Box E$	by (4) .

For the case that D is A6 (i.e., $D = ((\Box E \preceq \Box F) \land (\Box F \preceq \Box G)) \supset (\Box E \preceq \Box G)$. If E = F or F = G, then

$$r \models \Box E \preceq \Box F, r \models \Box F \preceq \Box G \Rightarrow r \models \Box E \preceq \Box G.$$

If $E \neq F$ and E = G, then

	$r \models \Box E \preceq \Box F, r \models \Box F \preceq \Box E$	
\Rightarrow	$\Box E \preceq \Box F \in \Gamma$	by (3.3)
\Rightarrow	$\Box E \in \Gamma$	since $\Gamma \to \Delta$ is saturated
\Rightarrow	$r \models \Box E$	by (4)
\Rightarrow	$r \models \Box E \preceq \Box E$	by (3.1) .

If $E \neq F, F \neq G$ and $E \neq G$, then

	$r\models \Box E \preceq \Box F, r\models \Box F \preceq \Box G$	
\Rightarrow	$\Box E \preceq \Box F, \Box F \preceq \Box G \in \Gamma$	by (3.3)
\Rightarrow	$\Box E \prec \Box G \in \Gamma$	since $\Gamma \to \Delta$ is saturated
\Rightarrow	$r\models \Box E\prec \Box G$	by (4) .

For the case that D is A7 (i.e., $D = (\Box E \lor \Box F) \supset ((\Box E \preceq \Box F) \lor (\Box F \prec \Box E)))$. If E = F, then

$$\begin{aligned} r &\models \Box E \text{ or } r \models \Box E \\ \Rightarrow \quad r &\models \Box E \preceq \Box E \\ \Rightarrow \quad r &\models (\Box E \prec \Box F) \lor (\Box F \prec \Box E). \end{aligned}$$
by (3.1)

If $E \neq F$, then

$$\begin{aligned} r &\models \Box E \text{ or } r \models \Box F \\ \Rightarrow & \Box E \notin \Delta \text{ or } \Box F \notin \Delta \\ \Rightarrow & \Box E \preceq \Box F \in \Gamma \text{ or } \Box F \preceq \Box E \in \Gamma \\ \Rightarrow & r \models \Box E \preceq \Box F \in \Gamma \text{ or } r \models \Box F \preceq \Box E \in \Gamma \end{aligned} \qquad \text{since } \Gamma \to \Delta \text{ is saturated} \end{aligned}$$

For the case that D is A8 (i.e., $D = (\Box E \prec \Box F) \supset (\Box F \preceq \Box E)$).

	$r \models \Box E \prec \Box F$	
\Rightarrow	$\Box E \prec \Box F \in \Gamma$	by (3.3)
\Rightarrow	$\Box E \preceq \Box F \in \Gamma$	since $\Gamma \to \Delta$ is saturated
\Rightarrow	$r \models \Box E \preceq \Box F$	by (4).

For the case that D is A9 (i.e., $D = ((\Box E \preceq \Box F) \land (\Box F \prec \Box E)) \supset \bot)$.

	$r \models \Box F \prec \Box E$	
\Rightarrow	$\Box F \prec \Box E \in \Gamma$	by (3.3)
\Rightarrow	$\Box E \preceq \Box F \in \Delta$	since $\Gamma \to \Delta$ is saturated
\Rightarrow	$r \not\models \Box E \preceq \Box F$	by (5) .

Hence using Lemma 3.14, we obtain the theorem.

Corollary 3.16. The following conditions are equivalent: (1) $A_1, \dots, A_m \to B_1, \dots, B_n \in \mathbf{GR}_3^-$, (2) $A_1, \dots, A_m \to B_1, \dots, B_n \in \mathbf{GR}_2^-$, (3) $A_1 \wedge \dots \wedge A_m \supset B_1 \vee \dots \vee B_n \in \mathbf{R}^-$, (4) $A_1 \wedge \dots \wedge A_m \supset B_1 \vee \dots \vee B_n$ is valid in any Kripke model for \mathbf{R}^- .

Corollary 3.17. If $S \in \mathbf{GR}^-$, then there exists a proof figure in \mathbf{GR}^- whose cuts are of the form of cuts occurring in page 5.

Proof. Suppose that $S \in \mathbf{GR}^-$. By Lemma 3.1 and Corollary 3.16, $S \in \mathbf{GR}_3^-$. So, there exists a proof figure \mathcal{P} for S in \mathbf{GR}_3^- . Let \mathcal{Q} be the figure obtained from \mathcal{P} by replacing $(\prec \rightarrow)$, (tran) and (lin) with the corresponding figure in page 5. We note that \mathcal{Q} is a proof figure for S in \mathbf{GR}^- and each cut is of the form of cuts occurring in page 5.

4 A proof without extension lemma

In the previous section, we proved Theorem 3.15 using the extension lemma (Lemma 3.14) several times. So, for a sequent $S_0 \notin \mathbf{GR}_3^-$, a concrete Kripke model, in which the corresponding formula to S_0 is not valid, is not clearly given. Here we show Theorem 3.15 without the extension lemma by modifying $\mathcal{K}(S_0)$ in Definition 3.10. The proof also gives a concrete Kripke model, in which the corresponding formula to a sequent $S_0 \notin \mathbf{GR}_3^-$ is not valid.

Definition 4.1. Let S_0 be a sequent, which is not provable in \mathbf{GR}_3^- . We define a structure $\mathcal{K}^*(S_0) = \langle \mathbf{W}(S_0), <, \models^* \rangle$ as follows:

- (1) < is as in Definition 3.10, we also write $\alpha \leq \beta$ if $\alpha < \beta$ or $\alpha = \beta$,
- (2) \models^* is a valuation satisfying, in addition to the conditions in Definition 1.1(3),
 - (2.1) $(\Gamma \to \Delta; \tau) \models^* p$ if and only if $p \in \Gamma$, for any propositional variable p,
 - (2.2) $(\Gamma \to \Delta; \tau) \models^* \Box A \prec \Box B$ if and only if either one of the following three holds: (2.2.1) $\Box A \prec \Box B \in \Gamma$,
 - (2.2.2) there exists $\alpha \leq (\Gamma \to \Delta; \tau)$ such that $\alpha \models^* \Box A$ and $\alpha \not\models^* \Box B$,
 - (2.2.3) $\Box B \notin \mathsf{Sub}(\Gamma \to \Delta)$ and there exist C and $(\Gamma_1 \to \Delta_1; \tau_1) \leq (\Gamma \to \Delta; \tau)$ such that $\Box A \prec \Box C \in \Gamma_1$,
 - $\Box A, \Box B, \Box C$ are true at $(\Gamma_1 \to \Delta_1; \tau_1),$
 - for any $\alpha < (\Gamma_1 \to \Delta_1; \tau_1), \alpha \not\models^* \Box A, \alpha \not\models^* \Box B, \alpha \not\models^* \Box C,$
 - (2.3) $(\Gamma \to \Delta; \tau) \models^* \Box A \preceq \Box B$ if and only if either one of the following two holds:
 - $(2.3.1) \ (\Gamma \to \Delta; \tau) \models^* \Box A \prec \Box B,$
 - (2.3.2) $(\Gamma \to \Delta; \tau) \models^* \Box A$ and $(\Gamma \to \Delta; \tau) \not\models^* \Box B \prec \Box A$.

 \dashv

Let S_0 be a sequent, which is not provable in \mathbf{GR}_3^- . Then for any A and for any Lemma 4.2. $(\Gamma \to \Delta; \tau) \in \mathbf{W}(S_0),$ (1) $A \in \Gamma$ implies $(\Gamma \to \Delta; \tau) \models^* A$, (2) $A \in \Delta$ implies $(\Gamma \to \Delta; \tau) \not\models^* A$. Proof. We use an induction on A. We only show the case that A is a \prec -formula or a \prec -formula. For the case that $A = \Box B \prec \Box C$. From Definition 4.1(2.2), (1) is clear. Suppose that (3) $\Box B \prec \Box C \in \Delta$. By Lemma 3.8(1), (4) $\Box B \prec \Box C \notin \Gamma$. By (3), we have (5) $\Box C \in \mathsf{Sub}(\Gamma \to \Delta).$ So, we have only to show (6) there does not exist $\alpha \leq (\Gamma \to \Delta; \tau)$ such that $\alpha \models^* \Box B$ and $\alpha \not\models^* \Box C$. Suppose (7) there exists $(\Phi \to \Psi; \sigma) \leq (\Gamma \to \Delta; \tau)$ such that $(\Phi \to \Psi; \sigma) \models^* \Box B$ and $(\Phi \to \Psi; \sigma) \not\models^* \Box C$. Immediately, we have (8) $B \neq C$. Also by the induction hypothesis, (9) $\Box C \notin \Phi$ and $\Box B \notin \Psi$. Since $(\Phi \to \Psi; \sigma) \in \mathbf{W}(S_0), \Phi \to \Psi$ is saturated, and hence (10) $\Box C \preceq \Box B \notin \Phi$ and $\Box C \prec \Box B \notin \Phi$. By Definition 3.3(11), (11) $\Box B \prec \Box C \in \Phi$. Using Lemma 3.9(2), (12) $\Box B \prec \Box C \in \Gamma$. This is contradictory to (3) and Lemma 3.8(1). For the case that $A = \Box B \preceq \Box C$. Suppose (13) $\Box B \preceq \Box C \in \Gamma$. Since $\Gamma \to \Delta$ is saturated, (14) $\Box B \in \Gamma$ and either (15a) $\Box B \prec \Box C \in \Gamma$ or (15b) $\Box C \preceq \Box B \in \Gamma$. holds. If (15a) holds, then by the definition, (16) $(\Gamma \to \Delta; \tau) \models^* \Box B \prec \Box C$, and hence (17) $(\Gamma \to \Delta; \tau) \models^* \Box B \preceq \Box C.$ So, we assume that (15b) holds. By (15b), we have $\Box C \preceq \Box B \notin \Delta$, and hence (18) $\Box B \prec \Box C \notin \Gamma$. Similarly by (13), we have (19) $\Box C \prec \Box B \notin \Gamma$. Let it be that $(\Gamma_1 \to \Delta_1; \tau_1) \leq (\Gamma \to \Delta; \tau)$. By (18), (19) and Lemma 3.9(2), (20) $\Box C \prec \Box B \notin \Gamma_1$ and $\Box B \prec \Box C \notin \Gamma_1$. By (13), (21) $\Box B, \Box C \in \mathsf{Sub}(\Gamma \to \Delta) \subseteq \mathsf{Sub}(\Gamma_1 \to \Delta_1).$ Since $\Gamma_1 \to \Delta_1$ is saturated, (22) either $\Box C \preceq \Box B, \Box B \preceq \Box C, \Box B, \Box C \in \Gamma_1 \text{ or } \Box B, \Box C \in \Delta_1 \text{ holds.}$ By the induction hypothesis, (23) at $(\Gamma_1 \to \Delta_1; \tau_1)$, both of $\Box B$ and $\Box C$ are true or none of $\Box B$ and $\Box C$ is true. Hence (24) for any $\alpha \leq (\Gamma \to \Delta; \tau), \alpha \not\models^* \Box C$ or $\alpha \models^* \Box B$. Also by (13), we have

(25) $\Box B \in \mathsf{Sub}(\Gamma \to \Delta).$ By (18), (24) and (25), we have (26) $(\Gamma \to \Delta; \tau) \not\models^* \Box C \prec \Box B.$ Using (14), we obtain (26) $(\Gamma \to \Delta; \tau) \models^* \Box B \preceq \Box C.$ Suppose (27) $\Box B \preceq \Box C \in \Delta$. Then we have (28) $\Box B, \Box C \in \mathsf{Sub}(\Gamma \to \Delta).$ and $(29) \ \Box B \preceq \Box C \notin \Gamma.$ Since $\Gamma \to \Delta$ is saturated, $(30) \Box B \prec \Box C \notin \Gamma,$ and (31) either $\Box B, \Box C \in \Delta$ or $\Box C \prec \Box B \in \Gamma$ holds. Let it be that $(\Gamma_1 \to \Delta_1; \tau_1) \leq (\Gamma \to \Delta; \tau)$. Then by (29), (30) and Lemma 3.9(2), we have (32) $\Box B \preceq \Box C \notin \Gamma_1$ and $\Box B \prec \Box C \notin \Gamma_1$. By (28), we have (33) $\Box B, \Box C \in \mathsf{Sub}(\Gamma \to \Delta) \subseteq \mathsf{Sub}(\Gamma_1 \to \Delta_1).$ Since $\Gamma_1 \to \Delta_1$ is saturated, (33) either $\Box B, \Box C \in \Delta_1$ or $\Box C \prec \Box B, \Box C \in \Gamma_1$ holds. By the induction hypothesis, (33) either $(\Gamma_1 \to \Delta_1; \tau_1) \not\models^* \Box B$ or $(\Gamma_1 \to \Delta_1; \tau_1) \not\models^* \Box C$ Hence (34) for any $\alpha \leq (\Gamma \to \Delta; \tau), \ \alpha \not\models^* \Box B \text{ or } \alpha \models^* \Box C.$ Using (28) and (30), we have (35) $(\Gamma \to \Delta; \tau) \not\models^* \Box B \prec \Box C.$ On the other hand, by (31), the induction hypothesis and a result in the above case, (36) either $(\Gamma \to \Delta; \tau) \not\models^* \Box B$ or $(\Gamma \to \Delta; \tau) \not\models^* \Box C \preceq \Box B$ holds. Hence we obtain (37) $(\Gamma \to \Delta; \tau) \not\models^* \Box B \preceq \Box C.$

Corollary 4.3. Let $A_1, \dots, A_m \to B_1, \dots, B_n$ be a sequent, which is not provable in \mathbf{GR}_3^- . Then in $\mathcal{K}^*(A_1, \dots, A_m \to B_1, \dots, B_n)$,

 \neg

$$(sat(A_1, \dots, A_m \to B_1, \dots, B_n); []) \not\models^* A_1 \land \dots \land A_m \supset B_1 \lor \dots \lor B_n.$$

Lemma 4.4. Let S_0 be a sequent, which is not provable in \mathbf{GR}_3^- . Then $(\Gamma \to \Delta; \tau) \models^* \Box A \preceq \Box B$ implies $(\Gamma \to \Delta; \tau) \models^* \Box A$.

Proof. Suppose that $(\Gamma \to \Delta; \tau) \models^* \Box A \preceq \Box B$. If $(\Gamma \to \Delta; \tau) \not\models^* \Box A \prec \Box B$, then by the definition we have $(\Gamma \to \Delta; \tau) \models^* \Box A$. So, we assume that $(\Gamma \to \Delta; \tau) \models^* \Box A \prec \Box B$. Then either one of the following three holds:

(1) $\Box A \prec \Box B \in \Gamma$,

(2) there exists $(\Gamma_1 \to \Delta_1; \tau_1) \leq (\Gamma \to \Delta; \tau)$ such that $(\Gamma_1 \to \Delta_1; \tau_1) \models^* \Box A$ and $(\Gamma_1 \to \Delta_1; \tau_1) \not\models^* \Box B$,

(3) there exist a formula C and $(\Gamma_1 \to \Delta_1; \tau_1) \leq (\Gamma \to \Delta; \tau)$ such that

 $\Box A \prec \Box C \in \Gamma_1,$ $\Box B \notin \mathsf{Sub}(\Gamma_1 \to \Delta_1),$ $\Box A, \Box B, \Box C \text{ are true at } (\Gamma_1 \to \Delta_1; \tau_1),$ $\text{ for any } \alpha < (\Gamma_1 \to \Delta_1; \tau_1), \ \alpha \not\models^* \Box A, \ \alpha \not\models^* \Box B, \ \alpha \not\models^* \Box C.$

If (1) holds, then $\Box A, \Box A \preceq \Box B \in \Gamma$. Using Lemma 4.2, we have $(\Gamma \to \Delta; \tau) \models^* \Box A$.

If either (2) or (3) holds, then there exists $(\Gamma_1 \to \Delta_1; \tau_1) \leq (\Gamma \to \Delta; \tau)$ such that $(\Gamma_1 \to \Delta_1; \tau_1) \models^* \Box A$. So, $(\Gamma_2 \to \Delta_2; \tau_2) \models^* A$ for any $(\Gamma_2 \to \Delta_2; \tau_2) \in (\Gamma_1 \to \Delta_1; \tau_1) \uparrow$. So, $(\Gamma_2 \to \Delta_2; \tau_2) \models^* A$ for any $(\Gamma_2 \to \Delta_2; \tau_2) \in (\Gamma \to \Delta; \tau) \uparrow$. Hence $(\Gamma \to \Delta; \tau) \models^* \Box A$.

Lemma 4.5. Let S_0 be a sequent, which is not provable in \mathbf{GR}_3^- Then $\mathcal{K}^*(S_0)$ is a Kripke pseudomodel for \mathbf{R}^-

Proof. By Lemma 3.13.

 \dashv

Lemma 4.6. Let S_0 be a sequent, which is not provable in \mathbf{GR}_3^- . Then for any $D \in \Sigma$, $(\Gamma_1 \to \Delta_1; \tau_1) \models^* D$ and $(\Gamma_1 \to \Delta_1; \tau_1) < (\Gamma_2 \to \Delta_2; \tau_2)$ imply $(\Gamma_2 \to \Delta_2; \tau_2) \models^* D$.

Proof. Suppose that D is either a \leq -formula or a \prec -formula, $(\Gamma_1 \to \Delta_1; \tau_1) \models^* D$ and $(\Gamma_1 \to \Delta_1; \tau_1) < (\Gamma_2 \to \Delta_2; \tau_2)$.

If D is \Box -formula, then the lemma is clear by the definition of \models^* .

If $D = \Box A \prec \Box B$, then either one of the following three holds:

(1) $\Box A \prec \Box B \in \Gamma_1$,

(2) there exists $\alpha \leq (\Gamma_1 \to \Delta_1; \tau_1)$ such that $\alpha \models^* \Box A$ and $\alpha \not\models^* \Box B$,

(3) $\Box B \notin \mathsf{Sub}(\Gamma_1 \to \Delta_1)$ and there exist C and $(\Gamma_3 \to \Delta_3; \tau_3) \leq (\Gamma_1 \to \Delta_1; \tau_1)$ such that $\Box A \prec \Box C \in \Gamma_3$,

 $\Box A, \Box B, \Box C$ are true at $(\Gamma_3 \to \Delta_3; \tau_3),$

for any $\alpha < (\Gamma_3 \to \Delta_3; \tau_3), \alpha \not\models^* \Box A, \alpha \not\models^* \Box B, \alpha \not\models^* \Box C.$

If (1) holds, then by Lemma 3.9(2), $\Box A \prec \Box B \in \Gamma_2$, and by Lemma 4.2, $(\Gamma_2 \to \Delta_2; \tau_2) \models^* D$. If (2) holds, then we have $\alpha < (\Gamma_2 \to \Delta_2; \tau_2)$, and hence $(\Gamma_2 \to \Delta_2; \tau_2) \models^* D$. If (3) holds, then similarly, $(\Gamma_3 \to \Delta_3; \tau_3) < (\Gamma_2 \to \Delta_2; \tau_2)$. We also note that $\Box B \notin \mathsf{Sub}(\Gamma_1 \to \Delta_1) \supseteq \mathsf{Sub}(\Gamma_2 \to \Delta_2)$. Hence we obtain $(\Gamma_2 \to \Delta_2; \tau_2) \models^* D$.

If $D = \Box A \preceq \Box B$, then either one of the following two holds:

(4) $(\Gamma_1 \to \Delta_1; \tau_1) \models^* \Box A \prec \Box B$,

(5) $(\Gamma_1 \to \Delta_1; \tau_1) \models^* \Box A$ and $(\Gamma_1 \to \Delta_1; \tau_1) \not\models^* \Box B \prec \Box A$.

If (4) holds, then by the case above, $(\Gamma_2 \to \Delta_2; \tau_2) \models^* \Box A \prec \Box B$, and hence $(\Gamma_2 \to \Delta_2; \tau_2) \models^* \Box A \preceq \Box B$. Assume that (5) holds. From the definition, we have $(\Gamma_2 \to \Delta_2; \tau_2) \models^* \Box A$. So, it is sufficient to show $(\Gamma_2 \to \Delta_2; \tau_2) \not\models^* \Box B \prec \Box A$. Suppose that $(\Gamma_2 \to \Delta_2; \tau_2) \models^* \Box B \prec \Box A$. Then either one of the following three holds:

(6) $\Box B \prec \Box A \in \Gamma_2$ and $A \neq B$,

(7) there exists $(\Gamma_3 \to \Delta_3; \tau_3) \leq (\Gamma_2 \to \Delta_2; \tau_2)$ such that $(\Gamma_3 \to \Delta_3; \tau_3) \models^* \Box B$ and $(\Gamma_3 \to \Delta_3; \tau_3) \not\models^* \Box A$,

(8) $\Box B \notin \mathsf{Sub}(\Gamma_2 \to \Delta_2)$ and there exist a formula C and $(\Gamma_3 \to \Delta_3; \tau_3) \leq (\Gamma_2 \to \Delta_2; \tau_2)$ such that $\Box A \prec \Box C \in \Gamma_3$,

 $\Box A, \Box B, \Box C$ are true at $(\Gamma_3 \to \Delta_3; \tau_3)$,

for any $\alpha < (\Gamma_3 \to \Delta_3; \tau_3), \alpha \not\models^* \Box A, \alpha \not\models^* \Box B, \alpha \not\models^* \Box C.$

If (6) holds, then $\Box A \leq \Box B \in \Delta_2$ and $\Box A \leq \Box B \in \mathsf{Sub}^+(\Gamma_2 \to \Delta_2) \subseteq \mathsf{Sub}^+(\Gamma_1 \to \Delta_1)$. On the other hand, by (5) and Lemma 4.2, we have $\Box A \notin \Delta_1$ and $\Box B \prec \Box A \notin \Gamma_1$. Hence $\Box A \leq \Box B \in \Gamma_1$. Using Lemma 3.9(2), $\Box A \leq \Box B \in \Gamma_2$. This is in contradiction with $\Box A \leq \Box B \in \Delta_2$ and Lemma 3.8.

If (7) holds, then by (5), $(\Gamma_3 \to \Delta_3; \tau_3) < (\Gamma_1 \to \Delta_1; \tau_1)$. So, we have $(\Gamma_1 \to \Delta_1; \tau_1) \models^* \Box B \prec \Box A$. This is in contradiction with (5).

If (8) holds, then by (5), $(\Gamma_3 \to \Delta_3; \tau_3) < (\Gamma_1 \to \Delta_1; \tau_1)$. So, if $\Box B \notin \mathsf{Sub}(\Gamma_1 \to \Delta_1)$, then we have $(\Gamma_1 \to \Delta_1; \tau_1) \models^* \Box B \prec \Box A$, and this is in contradiction with (5). Assume that $\Box B \in \mathsf{Sub}(\Gamma_1 \to \Delta_1)$. By (8), $\Box A \in \mathsf{Sub}(\Gamma_3 \to \Delta_3) \subseteq \mathsf{Sub}(\Gamma_1 \to \Delta_1)$. By (5), Lemma 4.2 and Lemma 3.9(3), we have $\Box A \preceq \Box B \in \Gamma_1 \cap \Sigma \subseteq \Gamma_2$, similarly to the case that (6) holds. Hence $\Box B \in \mathsf{Sub}(\Gamma_2 \to \Delta_2)$. This is contradictory to (8).

Lemma 4.7. Let S_0 be a sequent, which is not provable in \mathbf{GR}_3^- and let be that $\alpha \models^* \Box A \preceq \Box B$. Then for any $\beta \leq \alpha$, $\beta \models^* \Box B$ implies $\beta \models^* \Box A$. Proof. We put $\alpha = (\Gamma \to \Delta; \tau)$. Then either one of the following four holds:

- (1) $\alpha \models^* \Box A$ and $\alpha \not\models^* \Box B \prec \Box A$.
- (2) $\Box A \prec \Box B \in \Gamma$,
- (3) there exists $\gamma \leq \alpha$ such that $\gamma \models^* \Box A$ and $\gamma \not\models^* \Box B$,
- (4) $\Box B \notin \mathsf{Sub}(\Gamma \to \Delta)$ and there exist C and $(\Gamma_1 \to \Delta_1; \tau_1) \leq (\Gamma \to \Delta; \tau)$ such that $\Box A \prec \Box C \in \Gamma_1,$ $\Box A, \Box B, \Box C$ are true at $(\Gamma_1 \to \Delta_1; \tau_1),$
 - for any $\delta < (\Gamma_1 \to \Delta_1; \tau_1), \delta \not\models^* \Box A, \delta \not\models^* \Box B, \delta \not\models^* \Box C.$

If (1) holds, then we obtain the lemma by the definition.

If (2) holds, then $\Box B \preceq \Box A \in \Delta$. Since $\Gamma \to \Delta \notin \mathbf{GR}_3^-$, $\Box B \preceq \Box A \notin \Gamma$. Hence $\Box B \prec \Box A \notin \Gamma$. Using Lemma 3.9(2) for any $(\Gamma_1 \to \Delta_1; \tau_1) \leq (\Gamma \to \Delta; \tau)$ we have $\Box B \prec \Box A \notin \Gamma_1$. Using $\Box A, \Box B \in \mathsf{Sub}(\Gamma \to \Delta) \subseteq \mathsf{Sub}(\Gamma_1 \to \Delta_1)$, we have either $\Box B \in \Delta_1, \Box A \prec \Box B \in \Gamma_1$ or $\Box A \preceq \Box B \in \Gamma_1$. Hence $\Box B \in \Delta_1$ or $\Box A \in \Gamma_1$. Using Lemma 4.2, $(\Gamma_1 \to \Delta_1; \tau_1) \not\models^* \Box B$ or $(\Gamma_1 \to \Delta_1; \tau_1) \not\models^* \Box A$.

If (3) holds, then by Lemma 4.6, $\gamma_1 \models^* \Box A$ for any $\gamma_1 \in \gamma \uparrow$ and $\gamma_2 \not\models^* \Box B$ for any $\gamma_2 \leq \gamma$. We note that for any $\beta \leq \alpha$, either $\beta \leq \gamma$ or $\gamma < \beta$. So, we obtain the lemma.

If (4) holds, then $(\Gamma_1 \to \Delta_1; \tau_1) \leq \alpha$. Suppose that $\beta \leq \alpha$. By Lemma 4.5, $(\Gamma_1 \to \Delta_1; \tau_1) \leq \beta$ or $\beta < (\Gamma_1 \to \Delta_1; \tau_1)$. By (4), $\beta \models^* \Box A$ if $(\Gamma_1 \to \Delta_1; \tau_1) \leq \beta$; and $\beta \not\models^* \Box B$ if $\beta < (\Gamma_1 \to \Delta_1; \tau_1)$. So, $\beta \models^* \Box B$ implies $\beta \models^* \Box A$.

Lemma 4.8. Let S_0 be a sequent, which is not provable in \mathbf{GR}_3^- . then $\mathcal{K}^*(S_0)$ is a Kripke model for \mathbf{R}^- .

Proof. By Lemma 4.5 and Lemma 4.6, it is sufficient to show the condition (2) in Definition 1.2. We divide the cases.

The case that D is A5 (i.e., $D = (\Box A \preceq \Box B) \supset \Box A$) is shown by Lemma 4.4.

For the case that D is A6 (i.e., $D = ((\Box A \preceq \Box B) \land (\Box B \preceq \Box C)) \supset (\Box A \preceq \Box C)$. If either A = B or B = C, then $(\Gamma \to \Delta; \tau) \models D$ is clear. So, we assume that $A \neq B$ and $B \neq C$. Suppose that

- (1) $(\Gamma \to \Delta; \tau) \models^* \Box A \preceq \Box B$,
 - (2) $(\Gamma \to \Delta; \tau) \models^* \Box B \preceq \Box C$ and
- (3) $(\Gamma \to \Delta; \tau) \not\models^* \Box A \preceq \Box C.$
- By (3), we have
 - (4) $(\Gamma \to \Delta; \tau) \not\models^* \Box A \prec \Box C$ and
 - (5) $(\Gamma \to \Delta; \tau) \not\models^* \Box A$ or $(\Gamma \to \Delta; \tau) \models^* \Box C \prec \Box A$.
- By (1) and Lemma 4.4, we have
- (6) $(\Gamma \to \Delta; \tau) \models^* \Box A.$

Using (5), we have $(\Gamma \to \Delta; \tau) \models^* \Box C \prec \Box A$. So, either one of the following three holds:

(3a) $\Box C \prec \Box A \in \Gamma$,

(3b) there exists $(\Gamma_1 \to \Delta_1; \tau_1) \leq (\Gamma \to \Delta; \tau)$ such that $(\Gamma_1 \to \Delta_1; \tau_1) \models^* \Box C$ and $(\Gamma_1 \to \Delta_1; \tau_1) \not\models^* \Box A$,

(3c) $\Box A \notin \mathsf{Sub}(\Gamma \to \Delta)$, and there exist a formula D and $(\Gamma_1 \to \Delta_1; \tau_1) \leq (\Gamma \to \Delta; \tau)$ such that $\Box C \prec \Box D \in \Gamma_1$,

 $\Box A, \Box C, \Box D$ are true at $(\Gamma_1 \to \Delta_1; \tau_1),$

for any $\alpha < (\Gamma_1 \to \Delta_1; \tau_1), \alpha \not\models^* \Box A, \alpha \not\models^* \Box C, \alpha \not\models^* \Box D.$

By (1), either one of the following four holds:

(1a) $(\Gamma \to \Delta; \tau) \not\models^* \Box B \prec \Box A$.

(1b) $\Box A \prec \Box B \in \Gamma$,

(1c) there exists $(\Gamma_1 \to \Delta_1; \tau_1) \leq (\Gamma \to \Delta; \tau)$ such that $(\Gamma_1 \to \Delta_1; \tau_1) \models^* \Box A$ and $(\Gamma_1 \to \Delta_1; \tau_1) \not\models^* \Box B$,

(1d) $\Box B \notin \mathsf{Sub}(\Gamma \to \Delta)$, and there exist a formula D and $(\Gamma_1 \to \Delta_1; \tau_1) \leq (\Gamma \to \Delta; \tau)$ such that $\Box A \prec \Box D \in \Gamma_1$, $\Box A, \Box B, \Box D$ are true at $(\Gamma_1 \to \Delta_1; \tau_1)$,

- for any $\alpha < (\Gamma_1 \to \Delta_1; \tau_1), \alpha \not\models^* \Box A, \alpha \not\models^* \Box B, \alpha \not\models^* \Box D.$
- for any $\alpha < (1 \rightarrow \Delta_1, \gamma_1), \alpha \not\models \Box A, \alpha \not\models \Box D, \alpha$

By (2), either one of the following four holds:

(2a) $(\Gamma \to \Delta; \tau) \not\models^* \Box C \prec \Box B.$

(2b)
$$\Box B \prec \Box C \in \Gamma$$
,

(2c) there exists $(\Gamma_1 \to \Delta_1; \tau_1) \leq (\Gamma \to \Delta; \tau)$ such that $(\Gamma_1 \to \Delta_1; \tau_1) \models^* \Box B$ and $(\Gamma_1 \to \Delta_1; \tau_1) \not\models^* \Box C$,

(2d) $\Box C \notin \mathsf{Sub}(\Gamma \to \Delta)$ and there exist a formula D and $(\Gamma_1 \to \Delta_1; \tau_1) \leq (\Gamma \to \Delta; \tau)$ such that $\Box B \prec \Box D \in \Gamma_1,$ $\Box C, \Box C, \Box D$ are true at $(\Gamma_1 \to \Delta_1; \tau_1),$

for any $\alpha < (\Gamma_1 \to \Delta_1; \tau_1), \alpha \not\models^* \Box B, \alpha \not\models^* \Box C, \alpha \not\models^* \Box D.$

We divide the subcases.

The subcase that (3a) and $\Box B \in \mathsf{Sub}(\Gamma \to \Delta)$ hold. We note that $\Box A, \Box B, \Box C \in \mathsf{Sub}(\Gamma \to \Delta)$. By (1) and (2) and Lemma 4.2, we have $\Box A \preceq \Box B \notin \Delta$ and $\Box B \preceq \Box C \notin \Delta$. Since $\Gamma \to \Delta$ is saturated, we have $\Box A \preceq \Box C \in \Gamma$. Using Lemma 4.2, $(\Gamma \to \Delta; \tau) \models^* \Box A \preceq \Box C$. This is contradictory to (3).

The subcase that (3a), (2a) and $\Box B \notin \mathsf{Sub}(\Gamma \to \Delta)$ hold. By (3a), we have $\Box A \preceq \Box C \in \Delta$, and hence $\Box A \preceq \Box C \notin \Gamma$ and $\Box A \prec \Box C \notin \Gamma$. Let $(\Gamma_1 \to \Delta_1; \tau_1)$ be a world in $(\Gamma \to \Delta; \tau) \downarrow \cup \{(\Gamma \to \Delta; \tau)\}$. By Lemma 3.9(2), $\Box A \preceq \Box C \notin \Gamma_1$ and $\Box A \prec \Box C \notin \Gamma_1$. So, either $\Box C \prec \Box A, \Box C \preceq \Box A, \Box C \in \Gamma_1$ or $\Box A, \Box C \in \Delta_1$. Using Lemma 4.2, either $(\Gamma_1 \to \Delta_1; \tau_1) \models^* \Box C$ or $(\Gamma_1 \to \Delta_1; \tau_1) \not\models^* \Box A$ Using (1),(2) and Lemma 4.7, either each of $\Box A, \Box B, \Box C$ is true or none of $\Box A, \Box B, \Box C$ is true at $(\Gamma_1 \to \Delta_1; \tau_1)$ By Lemma 4.5, $((\Gamma \to \Delta; \tau) \downarrow \cup \{(\Gamma \to \Delta; \tau)\}, <)$ is a linear ordered set and is not empty. So, there exists the minimal element $(\Gamma_2 \to \Delta_2; \tau_2)$ that makes each of $\Box A, \Box B, \Box C$ true. We note that

 $(\Gamma_2 \to \Delta_2; \tau_2) \le (\Gamma \to \Delta; \tau)$

 $\Box C \prec \Box A \in \Gamma_2,$

 $\Box C, \Box B, \Box A \text{ are true at } (\Gamma_2 \to \Delta_2; \tau_2),$

for any $\alpha < (\Gamma_2 \to \Delta_2; \tau_2), \alpha \not\models^* \Box C, \alpha \not\models^* \Box B, \alpha \not\models^* \Box A.$

Also by the assumption, $\Box B \notin \mathsf{Sub}(\Gamma \to \Delta)$. So, we have $(\Gamma \to \Delta; \tau) \models^* \Box C \prec \Box B$. This is contradictory to (2a).

The subcase that (3a) and (2b) hold. We note that $\Box A, \Box B, \Box C \in \mathsf{Sub}(\Gamma \to \Delta)$. So, this subcase resolves into the first subcase.

The subcase that (3a) and (2c) hold. By (2c), we have $(\Gamma_1 \to \Delta_1; \tau_1) \models^* \Box B$ and $(\Gamma_1 \to \Delta_1; \tau_1) \not\models^* \Box C$. Using (1) and Lemma 4.7, $(\Gamma_1 \to \Delta_1; \tau_1) \models^* \Box A$. Using Lemma 4.2, $\Box A \notin \Delta_1$ and $\Box C \notin \Gamma_1$. So, $\Box C \prec \Box A \notin \Gamma_1$ and $\Box C \preceq \Box A \notin \Gamma_1$. By (3a), we have $\Box A, \Box C \in \mathsf{Sub}(\Gamma \to \Delta) \subseteq \mathsf{Sub}(\Gamma_1 \to \Delta_1)$. Hence $\Box A \prec \Box C \in \Gamma_1$. Using Lemma 3.9(2), $\Box A \prec \Box C \in \Gamma$. This is contradictory to (3a).

The subcase that (3a) and (2d) hold. By (3a), we have $\Box C \prec \Box D \in \Gamma_1$. Using Lemma 3.9(2), $\Box C \prec \Box D \in \Gamma$. So, $\Box C \in \mathsf{Sub}(\Gamma \to \Delta)$. This is contradictory to (2d).

The subcase that (3b) holds. Using (1) and Lemma 4.7, $(\Gamma_1 \to \Delta_1; \tau_1) \not\models^* \Box B$. Using (2) and Lemma 4.7, $(\Gamma_1 \to \Delta_1; \tau_1) \not\models^* \Box A$. This is contradictory to (3b).

The subcase that (3c), (1a) and $\Box B \in \mathsf{Sub}(\Gamma \to \Delta)$ hold. We note that $\Box B \in \mathsf{Sub}(\Gamma \to \Delta) \subseteq \mathsf{Sub}(\Gamma_1 \to \Delta_1)$ hold. Using (3c), we have $\Box B, \Box C, \Box D \in \mathsf{Sub}(\Gamma_1 \to \Delta_1)$. On the other hand, by (2) and Lemma 4.2, $\Box B \preceq \Box C \notin \Delta$, and hence $\Box C \prec \Box B \notin \Gamma$. Using Lemma 4.6, $\Box C \prec \Box B \notin \Gamma_1$. Also by (3c) and Lemma 4.2, $\Box C \notin \Delta_1$. Hence we have either $\Box B \prec \Box C, \Box B \preceq \Box C \in \Gamma_1$ or $\Box B \preceq \Box C, \Box C \preceq \Box B \notin \Gamma_1$. So, we have $\Box B \preceq \Box C \in \Gamma_1$. By (3c), $\Box C \prec \Box D, \Box C \preceq \Box D \in \Gamma_1$. So, $\Box B \preceq \Box D \in \Gamma_1$. Also, $\Box B \in \Gamma_1$ and that $\Box D \prec \Box B \in \Gamma_1$ implies $\Box B \preceq \Box D \in \Delta_1$. Hence $\Box B \notin \Delta_1$ and $\Box D \prec \Box B \notin \Gamma_1$. Since $\Gamma_1 \to \Delta_1$ is saturated, we have either $\Box B \prec \Box D \in \Gamma_1$ or $\Box D \preceq \Box B \in \Gamma_1$. If $\Box D \preceq \Box B \in \Gamma_1$, then by $\Box B \preceq \Box C \in \Gamma_1$, we have $\Box D \preceq \Box C \in \Gamma_1$. By $(\Gamma_1 \to \Delta_1; \tau_1) \models^* \Box B$. By $\alpha \not\models^* \Box A$ for any $\alpha < (\Gamma_1 \to \Delta_1; \tau_1)$, (1) and Lemma 4.7, we have $\alpha \not\models^* \Box B$ for any $\alpha < (\Gamma_1 \to \Delta_1; \tau_1)$. So, using (3c), we have $(\Gamma \to \Delta; \tau) \models^* \Box B \prec \Box A$. This is in contradiction with (1a).

The subcase that (3c)[,(1a)], $\Box B \notin \mathsf{Sub}(\Gamma \to \Delta)$ and (2a) hold. By (3c), (1), (2) and Lemma 4.7, we have $(\Gamma_1 \to \Delta_1; \tau_1) \models^* \Box B$. $\alpha \not\models \Box B$ for any $\alpha < (\Gamma_1 \to \Delta_1; \tau_1)$.Using (3c) and $\Box B \notin \mathsf{Sub}(\Gamma \to \Delta)$, we have $(\Gamma \to \Delta; \tau) \models^* \Box C \prec \Box B$. This is in contradiction with (2a).

The subcase that [(3c),(1a)], $\Box B \notin \mathsf{Sub}(\Gamma \to \Delta)$ and (2b) hold. By (2b), $\Box B \in \mathsf{Sub}(\Gamma \to \Delta)$, which is in contradiction with $\Box B \notin \mathsf{Sub}(\Gamma \to \Delta)$.

The subcase that $(3c)[,(1a), \Box B \notin Sub(\Gamma \to \Delta)]$ and (2c) hold. By (2c), there exists $\alpha \leq (\Gamma \to \Delta; \tau)$ such that $\alpha \models^* \Box B$ and $\alpha \not\models^* \Box C$. By (3c), there exists $\beta \leq (\Gamma \to \Delta; \tau)$ such that $\beta \models^* \Box C$ and $\gamma \not\models^* \Box A$ for any $\gamma \in \beta \downarrow$. Using Lemma 4.5, $\alpha < \beta$ or $\beta \leq \alpha$. By $\alpha \not\models^* \Box C$, $\beta \models^* \Box C$ and Lemma 4.6, we have $\alpha < \beta$. Since $\gamma \not\models^* \Box A$ for any $\gamma \in \beta \downarrow$, $\alpha \not\models^* \Box A$. Using (1) and Lemma 4.7, we have $\alpha \not\models^* \Box B$. This is in contradiction in $\alpha \models^* \Box B$.

The subcase that $(3c)[,(1a), \Box B \notin \mathsf{Sub}(\Gamma \to \Delta)]$ and (2d) hold. By (3c) and Lemma 3.9(2), we have $\Box A \prec \Box C \in \Gamma_1 \subseteq \Gamma$, and hence $\Box A \in \mathsf{Sub}(\Gamma \to \Delta)$. This is in contradiction with $\Box C \notin \mathsf{Sub}(\Gamma \to \Delta)$ from (2d).

The subcase that (3c) and (1b) hold. By (3c), we have $\Box A \notin \mathsf{Sub}(\Gamma \to \Delta)$. By (1b), we have $\Box A \in \mathsf{Sub}(\Gamma \to \Delta)$. This is a contradiction.

The subcase that (3c) and (1c) hold. By (1c), there exists $\alpha \leq (\Gamma \to \Delta; \tau)$ such that $\alpha \models^* \Box A$ and $\alpha \not\models^* \Box B$. By (3c), there exists $\beta \leq (\Gamma \to \Delta; \tau)$ such that $\beta \models^* \Box C$ and $\gamma \not\models^* \Box A$ for any $\gamma \in \beta \downarrow$. Using Lemma 4.5, $\alpha < \beta$ or $\beta \leq \alpha$. Since $\alpha \models^* \Box A$ and $\gamma \not\models^* \Box A$ for any $\gamma \in \beta \downarrow$, we have $\beta \leq \alpha$. Using Lemma 4.6, we have $\alpha \models^* \Box C$. Using (2) and Lemma 4.7, we have $\alpha \models^* \Box B$. This is in contradiction in $\alpha \not\models^* \Box B$.

The subcase that (3c) and (1d) hold. By (1d) and Lemma 3.9(2), we have $\Box A \prec \Box D \in \Gamma_1 \subseteq \Gamma$, and hence $\Box A \in \mathsf{Sub}(\Gamma \to \Delta)$. This is in contradiction with $\Box A \notin \mathsf{Sub}(\Gamma \to \Delta)$ from (3c).

For the case that D is A7 (i.e., $D = (\Box A \lor \Box B) \supset ((\Box A \preceq \Box B) \lor (\Box B \prec \Box A)))$. Suppose that $(\Gamma \to \Delta; \tau) \models \Box A \lor \Box B$, i. e. ,either $\Box A$ or $\Box A$ is true at the pair.

If $(\Gamma \to \Delta; \tau) \models^* \Box A$, then from the definition, $(\Gamma \to \Delta; \tau) \not\models^* \Box B \prec \Box A$ implies $(\Gamma \to \Delta; \tau) \models^* \Box A \preceq \Box B$. So, $(\Gamma \to \Delta; \tau) \models^* (\Box A \preceq \Box B) \lor (\Box B \prec \Box A)$.

If $(\Gamma \to \Delta; \tau) \not\models^* \Box A$, then $(\Gamma \to \Delta; \tau) \models^* \Box B$. So, there exists $\alpha \leq (\Gamma \to \Delta; \tau)$ such that $\alpha \models^* \Box B$. $\alpha \not\models^* \Box A$, and hence $(\Gamma \to \Delta; \tau) \models^* \Box B \prec \Box A$.

For the case that D is A8 (i.e., $D = (\Box A \prec \Box B) \supset (\Box A \preceq \Box B)$). From the definition, $(\Gamma \to \Delta; \tau) \models^* \Box A \prec \Box B$ implies $(\Gamma \to \Delta; \tau) \models^* \Box A \preceq \Box B$.

For the case that D is A9 (i.e., $D = ((\Box A \preceq \Box B) \land (\Box B \prec \Box A)) \supset \bot)$. Suppose that (7) $(\Gamma \rightarrow \Delta; \tau) \models \Box A \preceq \Box B$ and

(8) $(\Gamma \to \Delta; \tau) \models \Box B \prec \Box A.$

By (8), either one of the following three holds:

(8a) $\Box B \prec \Box A \in \Gamma$,

- (8b) there exists $\alpha \leq (\Gamma \to \Delta; \tau)$ such that $\alpha \models^* \Box B$ and $\alpha \not\models^* \Box A$,
- (8c) $\Box A \notin \mathsf{Sub}(\Gamma \to \Delta)$ and there exist C and $(\Gamma_1 \to \Delta_1; \tau_1) \leq (\Gamma \to \Delta; \tau)$ such that $\Box B \prec \Box C \in \Gamma_1,$ $\Box A, \Box B, \Box C$ are true at $(\Gamma_1 \to \Delta_1; \tau_1),$

for any $\alpha < (\Gamma_1 \to \Delta_1; \tau_1), \alpha \not\models^* \Box A, \alpha \not\models^* \Box B, \alpha \not\models^* \Box C.$

If (8a) holds, then $\Box A \preceq \Box B \in \Delta$ since $\Gamma \to \Delta$ is saturated. Using Lemma 4.2, $(\Gamma \to \Delta; \tau) \not\models^* \Box A \preceq \Box B$. This is in contradiction with (7).

By (7) and Lemma 4.7, for any $\alpha \leq (\Gamma \to \Delta; \tau)$, $\alpha \models^* \Box B$ implies $\alpha \not\models^* \Box A$. This is in contradiction with (8b). So, (8b) does not hold.

Assume that (8c) holds. By (7), either one of the following four holds: (7a) $(\Gamma \to \Delta; \tau) \models^* \Box A$ and $(\Gamma \to \Delta; \tau) \not\models^* \Box B \prec \Box A$, (7b) $\Box A \prec \Box B \in \Gamma$, (7c) there exists $\alpha \leq (\Gamma \to \Delta; \tau)$ such that $\alpha \models^* \Box A$ and $\alpha \not\models^* \Box B$, (7d) $\Box B \notin \mathsf{Sub}(\Gamma \to \Delta)$ and there exist C and $(\Gamma_1 \to \Delta_1; \tau_1) \leq (\Gamma \to \Delta; \tau)$ such that $\Box A \prec \Box C \in \Gamma_1$, $\Box A, \Box B, \Box C$ are true at $(\Gamma_1 \to \Delta_1; \tau_1)$, for any $\alpha < (\Gamma_1 \to \Delta_1; \tau_1), \alpha \not\models^* \Box A, \alpha \not\models^* \Box B, \alpha \not\models^* \Box C$.

(7a) is in contradiction with (8). (7b) is in contradiction with $\Box A \notin \mathsf{Sub}(\Gamma \to \Delta)$ from (8c). By (8) and

Lemma 4.7, for any $\alpha \leq (\Gamma \to \Delta; \tau)$, $\alpha \models^* \Box A$ implies $\alpha \not\models^* \Box B$, which is in contradiction with (7c). If (7d) holds, then $\Box A \prec \Box C \in \Gamma_1$, using Lemma 3.9(2), $\Box A \prec \Box C \in \Gamma \subseteq \mathsf{Sub}(\Gamma \to \Delta)$, which is in contradiction with $\Box A \notin \mathsf{Sub}(\Gamma \to \Delta)$ from (8c).

From Corollary 4.3 and Lemma 4.8, we obtain Theorem 3.15.

References

- [Avr84] A. Avron, On modal systems having arithmetical interpretations, The Journal of Symbolic Logic, 49, 1984, pp. 935–942.
- [GS79] D. Guaspari and R. M. Solovay, Rosser sentences, Annals of Mathematical Logic, 16, 1979, pp. 81–99.
- [Jon87] D. H. J. de Jongh, A simplification of a completeness proof of Guaspari and Solovay, Studia Logica, 46, 1987, pp. 187–192.
- [SO03] K. Sasaki and S. Ohama, A sequent system of the logic \mathbf{R}^- for Rosser sentences, Bulletin of the Sention of Logic, to appear.
- [Smo85] C. Smoryński, Self-reference and modal logic, Springer-Verlag, 1985.
- [Val83] S. Valentini, The modal logic of provability: cut-elimination, Journal of Philosophical logic, 12, 1983, pp. 471–476.
- [Voo90] F. Voorbraak, A simplification of the completeness proofs for Guaspari and Solovay's R, Notre Dame Journal of Formal Logic, 31, 1990, pp. 44–63.