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Abstract

A robust slippage test problem of k location parameters in the presence of gross errors is formulated
from the point of view of Huber’s robust test theory. Under an asymptotic model of the robust slippage
test problem an asymptotic level « slippage rank test based on k linear rank statistics is constructed
by applying majorization methods and its asymptotic minimum power is evaluated by applying weak
majorization methods. It is also shown that the slippage rank test is asymptotically unbiased.
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1 Introduction.

An important class of multiple decision problems is that of slippage problems. Because slippage
problems have some symmetric structure of a null hypothesis and k alternative hypotheses such as
permutation equivariance, they have been treated in a manner similar to hypothesis testing. Slippage
problems were first introduced by Mosteller (1948) as a problem of testing homogeneity of k populations
against k slippage alternatives that exactly one of the k populations is different. Paulson (1952), who
treated the slippage problem of normal mean, was the first to formulate the problem satisfactorily. Since
then, many contributions have been made to such slippage test problems. Among them, there are Traux
(1953), Kudo (1956), Doornbos and Prins (1958), Karlin and Traux (1960), Hall and Kudo (1968a), Hall,
Kudo and Yeh (1968b), Kimura and Kudo (1974), Kakiuchi and Kimura (1975), Kakiuchi, Kimura and
Yanagawa (1977), Kimura (1984a) and so forth.

The robust slippage test problem was proposed by Kimura (1984b) from the point of view of robust
test theory of Huber (1965), Huber and Strassen (1973) and Rieder (1977). He formulated it as a problem
of testing a neighborhood of distributions against k& neighborhoods of distributions and derived a robust
slippage version of the Neyman-Pearson’s lemma. Kimura (1988b) considered a robust asymptotic test
problem which was formulated by applying Rieder’s (1978) asymptotic model with gross error neighbor-
hoods shrinking at the rate of order n'k. By using majorization and weak majorization inequalities,
he constructed asymptotic level a slippage tests and gave lower bounds for their asymptotic minimum
powers.
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On the other hand, Kimura and Kakiuchi (1989) and Kakiuchi and Kimura (1995) developed some
majorization methods on hyperplanes and studied their applications to various robust tests for approxi-
mate equality in the parametric setup. Kakiuchi and Kimura (2001) proposed a test problem of k-sample
approximate equality in the nonparametric setup, which can be regarded as a generalization of Rieder’s
(1981) problem for the two-sample case. By using the majorization methods, under an asymptotic model
with shrinking gross error neighborhoods they derived lower and upper bounds for the limiting probabil-
ity that a random vector of k-sample rank statistics takes in a Schur convex set. As their applications,
they constructed asymptotic level « rank tests for the k-sample approximate equality and obtained lower
bounds for their asymptotic minimum powers, which were used for discussions of asymptotic relative
efficiency.

The purpose of this paper is (1) to give a formulation of robust asymptotic slippage test problems of
k location parameters in the presence of gross errors, (2) to construct asymptotic level a slippage rank
tests and (3) to derive lower bounds for their asymptotic minimum powers. To do this, we make use of
Kakiuchi and Kimura’s (2001) results and weak majorization inequalities.

In Section 2 we formulate a robust slippage test problem of k location parameters in the presence of
gross errors. In Section 3 we introduce a class of slippage rank tests based on certain score generating
functions which are permutation equivariant. In Section 4 we give an asymptotic model with shrinking
gross error neighborhoods for the robust slippage test problem of k location parameters. In Section 5 we
collect auxiliary results which are used to establish main results of this paper. In Section 6, by applying
Kakiuchi and Kimura’s (2001) majorization methods we construct asymptotic level a slippage rank tests
and derive lower bounds for their asymptotic minimum powers. It is also shown that the constructed
slippage rank tests are asymptotically unbiased. Finally, we recommend a score generating function.

2 The k-sample robust slippage problem of location.

Let X be the extended real line, B the o-field of Borel subsets of X and Mthe set of all probability
measures on B. Let M . denote the subset of Mthat corresponds to all continuous dstribution functions
which assign probability zero to —oo and +oc. A probablity measure G is identified with its distribution
function and expectation operator, that is, G(z) = G([—o0,x]) for z € [—o0,+o0], G({z}) = G(z) —
G(x —0) for z € [-00, +00], and G(B) = G(Ig) = [, dG for B € B.

Let { Fy;6 € ©} C M. be a parametric family, whose parameter space O is a subset of [—oco, +00] and
contains zero in its interior. We assume the following conditions:

(A1) Fp is absolutely continuous with respect to Fy for every 6 € ©.
(A2) There exists a function A € Lo(dFy) such that
fe]/z -1
6
where fy denotes the density of Fy with respect to Fy.

1
—>§A in Ly(dF,) as 6 —0,

For given €, § € [0,1) with €+ 6§ < 1 the gross error neighborhood P(6; ¢, §) of the center Fy is defined
as

P#;e,6) ={G eM,; G(B) > (1 —¢€)Fp(B) — 6 for all B € B}. (2.1)

This neighborhood is a generalization of e-contamination and total variation neighborhoods which was
introduced by Rieder (1977).

Let X;1,...,Xin (1 =1,...,k) be the i-th sample of size n which are independent random variables
distributed with G;1, ... , Gin € M, respectively. We asumme that G;1, ... , Gi, belong to P(6;;¢€,6). The
gross error neighborhood of all possible joint distributions of the N(= kn) random variables X;1, X12,... ,
X4, 1s defined as

PN(0;6,6) ={ @y @7y Gij | Gij € P(05€4,8,), i=1,..., k;j=1,...,n}, (2.2)



where 8 = (61,...,0;) and @F_, ©7=1 Gij stands for the stochastic product of G11, ..., Ggn.
For any 0 € @ and A > 0 let

80 = (o, ... .00
0:(A) (9k 6,00 + A, 0 6o), i=1,... .k (2:3)
i = AR | ) ) ) 9 1= 2°°" )
0 0,00 0 0
i-1 k—i
and let Wy = @F_, @}, Gij denote the distribution of Xy = (X115-+ » Xkn). In what follows, for

simplicity we denote P(V) (8g; ¢, 8) and P(V)(9;(A);€,8) by PE)N) and Pg-N) (4), i =1,...,k, respectively.
We assume that P(fo; €,6) N P(6p + A€, 6) = ¢, that is, PgN), and PEN) (4),i=1,... .,k are disjoint.
Let us consider the following slippage test problem.

Hpo: Wy € PV

(2.4)
Hpi(A): Wy e PYV(A), i=1,... k,
where 6y is unknown and A > 0 denotes an amount of the slip to the right.
The problem (2.4) is also written as
Huo: Gji € P(fose,6), j=1,...,kl=1,...,n,
.  Gu eP(Bo+ Ase,d), 1=1,...,n,
Hni(4) + { Gji € P(bose.6), j=1,... . k(j#i)l=1,....n, (2.5)

i=1,... .k,

where 6y is unknown and A > 0. This is a problem of testing approximate equality of k location parameters
against k alternatives that all location parameters except exactly one parameter are approximate equal.
We call the problem (2.4) or (2.5) a robust slippage test problem of k location parameters.

A slippage test for (2.4) based on xy is denoted by ¢,(zn) = (¢no(ZN), Pr1(EN),--- s Pnk(ZN))
with E?:o ¢nj(@n) = 1, where (2 ) denotes the conditional probability that ¢, takes Hy;(A) given
Xy = xyn. For any ¢, let

an(pn) = inf{ Bu yo(n0); Wivo € PYY}, (2.6)
Bri(n) = inf{Bw y,(¢ni); Wai € PY(A)Y, i=1,...,k, (2.7)

where Eyy means the expectation under W. The maximum size and minimum power of ¢,, are defined
by

1 — ap(pn), (2.8)
k
Br(pn) =Y Builpn)- (2.9)
i=1

3 Slippage rank tests.

Let R;; be the rank of X;; among all NV random variables X1, X12,... , Xz,. We consider the following
k-sample linear rank statistics
1 o .

Tni(Xy) = - > an(Rij(Xy)), i=1,... .k (3.1)

=1



The scores ay(r) are assumed to be generated by a scores generating function @ : (0,1) — (—oo, +00) in
either one of the two ways,

T
V = e ) = 1, e ,A"v,
an(r) = (1\’ + 1) ' (3.2)

an(r)=E (a(UA(Nf))) , r=1,...,N,

where UJ(VT) denotes the r-th order statistic in a random sample of size N from the uniform distribution
on (0,1). Throughout this paper the scores generating function a is assumed to satisfy the following
conditions:

(A3) a is nondecreasing and nonconstant, absolutely continuous inside (0,1) and
v 1
/ £'5(1 = )" da(t) < o.
0
(A4) a is Lipschitz bounded of order 1 on [tg, 1 — o], concave on (0,ty) and convex on (1 —tg, 1) for some

ty € (0, 1/2].

Now, for the problem (2.4) we are interested in the following rank tests ¢, = (¢no, Pniy--- > Prk)
based on T = (Tn1,... ,Tnk) with T, in (3.1):

1, if max Tyj(zn) < Ay,

99n0($N) — ] 1<5<k
0, if 1r£1]a<xk Tnj(zn) > An,
1 if Tai(zy) = . (3.3)
omi(@n) = mey)y L TvilEN) = max Tvj(@x) > A
0, otherwise,
1=1,...,k,

where m(xy) is the number of times max;<j<i Thj(€n) is attained, and A, is a critical value.

Lemma 3.1 The test @, in (3.3) satisfies the following.

(i) inf {Bw . (pni(Xn)): Wai € PV ()} = inf {Bw o, (pnj(Xn)); Wi € P (2)},
(i) sup { Bw . (pno(Xn)); Wi € P (A)} = sup {Bw y, (pn0(Xx)): Wiy € PV (A},
(ii) sup {Ew v, (pni(Xx)); Wi € PYY(A)} = sup {Ew v, (20j(Xn)); Wi € PV (A)),
(iv) sup{Bw y:(2nj(Xn)); Wi € PV (A)} = sup {Ew , (pnj(Xn)): Wai € PV ()},

i’ j.j G #j. 7 #§)=1,... k.

Proof. Since all the proofs are similar, we give only the proof of (i). Let II (x € I : i — = (i)) be the

symmetric group of all permutations on {1,...,k}. For any m € II let g, be a transformation on X"
defined by g (211, 2124+ .+ s Tgn) = (Tx-1(1)1> Lr=1(1)25 + -+ s Lx-1(k)n)> Where 771 is the inverse of 7. Then
we have

IVi(wN) = TNw(i)(gw(wN))v 1= ]-7 e 7k7 Vr € H?

and hence

ni(EN) = Cun(iy(9=(®N)), 1=1,... k V7 el



Therefore, for any Wy; € P.(gN) (4)

Ew A’i(99ni ('XN)) = Ew y, (‘Pmr(z’) (gfr(XN))) = EW Nigit (‘Pmr(i) (-XN))a (3.4)

where WNZ-g;1 denotes the distribution of g,T(XN) when the ditribution of Xy is Wiy;. It is easy to see
that
PM () =PU(A), i=1.... .k Vrell (3.5)

where PEN)(A)g;1 = {Wnig;' | Wyi € PEN)(A)}. Taking m such that «(i) = j, the assertion (i) readily
follows from (3.4) and (3.5).

4 The asymptotic model.

Let 7 € (0, +0c0) be a constant satisfying

2
(P /A+ dFy, (4.1)
T

where A is given in (A2) and z1 = max(z,0). Let
W, = {(WA) | Wy € P(N)(BO; €n,6,) for Vn € N },
W;(A) = {(WN) | Wy € PY)(0,(A); e, 6,)  for ¥n € N}, i=1,... .k

where 8y and 6;(A,,) are given in (2.3) with A,, = n_l/?A, €n = n e and bp = n"28. In this asymptotic
setup we rewrite P(V) (8¢ €,,,8,) and PV (0;(Ay); €p, 61) as P((]N) and PEN)(A,Z), respectively.
We consider the following test problem which is an asymptotic version of (2.4).

HO : (WN) c W()

HZ(A) : (WV) € WZ(A)a i = 1, cen ,k’, (42)

where A > 27 is unknown. We call this problem (4.2) a robust asymptotic slippage test problem of &
location parameters.

The asymptotic maximum size and the asymptotic minimum power of a sequence () of tests are
defined as

1 — liminf ay(¢n), (4.3)
lim inf S, (¢n)- (4.4)

A sequence (¢y,) of tests is called an asymptotic level « test for the problem (4.2) if

liminfa,(p,) >1—-a, 0<a<l (4.5)

We define an asymptotic unbiased test as follows:
An asymptotic level « test (o) is called asymptotically unbiased if

liminf 8,(¢n) > a. (4.6)

Remark 4.1.

(i) The condition (4.1) is equivalent to that if |§; —62| = 7, then P(nil/zﬂl; €n, 6n)NP(n 71/292; €nyOn) =0
holds for large n, which is an asymptotic disjointness condition (see Rieder, 1977, 1978).

(ii) The condition A > 27 guarantees that Wo, W1 (A),... ,W(A) are distinguishable one another.



5 Auxiliary results.

We hereafter assume 6, = 0 without loss of generality, since the distributions of the k—sample rank
statistics Tn;, ¢ = 1,... , k, given by (3.1) do not depend on 6. We wish to construct an asymptotic level
«a slippage rank test for problem (4.2) and to derive its asymptotic minimum power. To do this we need
the following three lemmas and two propositions concering majorization and weak majorization.

Lemma 5.1 (Kakiuchi and Kimura, 2001, Theorem 2.1) For any (Wy) € W, U (UL, W;(4)),

the random vector

1
n 2(Tny — pnts - s Tk — pve) /A

has the limiting normal distribution N(0,X), where

+oo
INi =/ a(Hy(z))dH,;(z), i=1,... ,k,

A2 :/0 (a(t) _ a)Zdt,
1 .
T = (0ij) ;05 = 1;%’ (ZA_].)’
_Ea (Z;ﬁ])’
Hoalo) =" 32 Gigo), (o) =k 30 Hoala) and a= [ ale) i

The following lemma is easily obtained from Lemma 5.1.

Lemma 5.2 For any (Wy) € Wy U (UX_,W;(A)), the random vector

(5.1)

1
n 2 ((Tyy = Tvk) = (v1 = pve)s - s (Tvk—1 — Tvw) = (Bvk—1 — pwe)) /A (5.2)
has the limiting (k — 1)-dimensional normal distribution N(0, %), where
S — (5N — 2, (i:j)a
X =(Gij); 035 = { 1, (i # 7).
Definitions.
(i) A vector # € R* is said to be majorized by a vector y € R¥, written in symbol z < vy, if
k k J J
Zlfi:Z?/i and Zm[dszy[z]a j=]—a-"ak_]—a
i=1 =1 i=1 =1
where z[y) > -+ > xp) and ypyp > -+ > yp) denote the components of x = (z1,...,2r) and
Yy = (y1,-..,Yx) in decreasing order. A vector = € RF is said to be weakly majorized by a vector

y € RF, written in symbol & << y, if

J J
=1

=1

(ii) A real valued function ¥ is said to be Schur-concave (Schur-convex), if z < y = ¢¥(z) > (<) ¥(y).
A subset D of R* is said to be Schur-convex, if y € D and y > & = = € D. A subset D of R* is

said to be decreasing if its indicator function Iy, is decreasing.



Proposition 5.1 (Kimura and Kakiuchi, 1989, Theorem) Let Zy,... ,Z; (k > 3) be exchangeable

random variables with Zle Z; = ¢ such that (Z1,...,Zr_1) has a joint Schur-concave density. Here c
is a constant. Let D be a Schur-convex set. Then, P(Z + p € D) is a Schur-concave function of p,

where Z = (Z1,...,Zk) and = (p1,... , fx).

Proposition 5.2 (Tong, 1980, Theorem 6.3.8) Let X = (X3,...,X}) be a k-dimensional random
vector with a Schur-concave density function. Let D be a Schur-convex and decreasing set. If 8 << 1,

then
P(X+6e€D)>P(X+neD,).

Proposition 5.3 (Kakiuchi and Kimura, 2001, Lemma 6.1) It holds that for any integer m(1 <

m < k)

(i) lim n'/2sup Z (uni —a) | Wy € PPN(8,,;56,,6,)

n—od
1€A(m)

= > (ei—é)/

i€ A(m) 0

CA(FT (1) alt) de + M(e +26)(a(1) - a(0)),

(i) lim n'/2inf & > (uni—a) | Wy € PN (0,560, 6,)

n—oo
iEA(m)

= 5 =0 [ A w)ate) i = "E ek 28) a(1) - a(0),

i€ A(m)

where A(m) is any element of the family of all subsets consisting of m elements of the set {1,2,.

We let vy = (vn1,... ,UnEk—1) be the vector with

UNi = UNi — [Nk, 1=1,..., k=1
Lemma 5.3 For any integer m(1 < m < k — 1) it holds that

(i) lim n' sup {Z vni) | Wi € PECN)(An)}

n— 00

=1
1 f— —
< —ma [ AE @)a(tyar + ™E km Y (e +28)(a(1)  a(0)),
0
(i) Tim o' - ()
ii) lim n 7 inf {Z v | W € Py (An)}
i=1
! 2k —m — 1
> a [ A @ai - "R (4 as)a(r) - a(0)).
0
where vN[] > -+ 2 Vn[p—1] denote the components of vy in decreasing order.

Proof. We first note that
sup {Z v | W € PECN) (An)}

i=1

< sup{ (v — ) | W € P&;“(An)} —m inf {(uvi —a) | Wy € P{V (A0},
=1

1=

.k}

(5.3)

(5.4)



where pypp > --+ 2 pnpr—1) denote the components of (un1,--,punk—1) in decreasing order. By
substituting §; = 0, i = 1,... ,k—1, 6, = A and § = A/k into (i) and (ii) of Proposition 5.3, we also
obtain

=22 [ A a2 4 28)0) - o) (5.5)
Tim n' inf { vk —a) | Wy € P(N)(An)}
== 1 / A(F, a(t)dt — @( +26)(a(1) — a(0)). (5.6)

These facts (5.4), (5.5) and (5.6) imply that the assertion (i) holds.
Similarly, we can see

" {Z vng | Wi € F’SN)(A")}

i=1
> inf {Z(“N[i] —a)| Wy € P&N)(An)} — m sup {(,uNk —a)| Wy € P(N)(A )} (5.7)
i=1
By substituting §; = A, §; =0, i =2,... ,k and § = A/k into (i) and (ii) of Proposition 5.3, we obtain
lim n'” inf {Z (uvig — a) | Wy € PVY(4, )}

n—oo
i=1

- %/{) A(ES (#)a(t)dt — M(e +26)(a(1) - a(0)), (5.8)
Tim_ n'2 sup {(/mk —a)| Wy € P(N)(An)}
- __/ AFL (@)a(tyt + F = . Y (e + 26)(a(1) = a(0)). (5.9)

Thus the assertion (ii) follows from (5.7), (5.8) and (5.9).

Let
Qo =1 lim n1/2(/LN1—ZL,... ,,U,Nk—fl)l(WN)EWg},

n—oo

() = { im0 (s = .. vk = 3) | (W) € Wa(4))

n—oo

T1(A) ={ lim n'2vy |(W )er(A)}

n—oo

I'v(4) = { lim n /Zl/rv | (Wn) € Wk(A)}

n—oo

and let p™ = (p, ... uM) and v(A) = (v1(Q),...,vk_1(A)) be the vectors defined as

pit = %(k —2i+ 1)(e +26)(a(1) — a(0)), i=1,...,k, (5.10)

—A/ a(t)dt + Z(kk_ i) (e+26)(a(1) —a(0)), i=1,....,k—1. (5.11)

Now we consider the following condition.
1

(A5) T/O A(EH(t))alt) dt > g(e—i- 26)(a(1) — a(0)).



Lemma 5.4 [t holds that

(i) pM = p for every p € Q,
(ii) if (AB) is satisfied, p™ < p for every p € Qi (A).

Proof. By substituting §; =0, i=1,... ,k, # =0and §; =0, i=1,... ,k—=1, = A, § = A/k into
(i) and (ii) of Proposition 5.3, we easily obtain (i) and (ii) from the assumption (A5), respectively.

Lemma 5.5 It holds that

(i) v(A) == v for every v € T (A),

(i) of (AD) is satisfied, v(A) << v for every v € T1(A).

Proof. We first note that for every m(1 < m <k — 1)

- 2k —m — 1)

> g() = =m [ A o)+ " ek 20)(0) - a(0)

=1

From (i) of Lemma 5.3, (i) is easily obtained. From (ii) of Lemma 5.3 and (A5), for every v € I'1(A)

> g =Y wad) 2 (m+ DA [ A O)a0a - =D ek 25)0(1) - a(0)

> 2 {_\/0 AET (#)a(®)dt — (k — 1)(e + 26)(a(1) - a(O))}.

From the assumtion (A5) and A > 27 the right-hand side of the above inequality is nonnegative, which
completes the proof of (ii).

6 Asymptotic slippage rank tests

We construct an asymptotic level a test. Let

Do()) = {(zl, o) | mas @ < A} (6.1)

and for any a € (0,1) let A, be a constant determined by

M
© Ao \) g
P2+ eny (%)) =1 ©

where Z denotes a random vector distributed with N(0,X) given in Lemma 5.1. The following theorem
gives an asymptotic level a slippage rank test.

Theorem 6.1 Let (¢n) be a sequence of tests (3.3) with A\, = a + n"'2\,. Then

liminf a,(p,) > 1—a. (6.3)

n—oo



Proof. From the definition of ay(¢,), for any 7 > 0 and any n € N there exists W5, € P((]N) such that

Ew 3, (#n0(Xn)) < an(pn) + 1. (6.4)
From the definition of ¢,
Ew z, (¢no(Xn))
= * . <
Wi (fgfgxk Tn; < )\n>

" 1 1 _ 1 _
= Wi (s, {n'® (T = v f4 -+ 02 s = 0)/4} <020 - 2)/4)

Hence, by Lemma 5.1

Tim_ Bw , (pno(Xx)) = P (Z+ /A4 € Do(Aa/A)), (65)
where p* = lim,, ., n'k (tn1—@,... , Nk — @) is the limiting vector under W5,. Since Dy(A) is Schur-

convex, it follows from Proposition 5.1 that the right-hand side of (6.5) is Schur-concave in p*. From (i)
of Lemma 5.4 We have

P (Z+p*/A€ Dy(Aa/A) > P (Z + p™/A € Dy(Aa/A)). (6.6)
Therefore, from (6.2), (6.4), (6.5) and (6.6) it follows that
liminf o, (p,) + 7> P (Z +uM/Ae DO()\Q/A)) =1-o.

This implies that (6.3) holds.

Remark 6.1.

(i) The asymptotic critical value A, dose not depend on Fy which is an asymptotic distribution freeness
of (pn).

(ii) Althought the asymptotic maximum size of (py) in Theorem 6.1 is not exactly equal to «, the
approximation cannot be improved any more by the majorization method.

The following theorem gives a lower bound of the asymptotic minimum power of (¢,,) in Theorem
6.1.

Theorem 6.2 Let (¢,,) be a sequence of tests (3.3) with A\, = @+ n"'2X,. Then

liminf B, (pn) > kP (U + % € D, <Aj>) : (6.7)

where U = (Uy, ... ,Ur_1) denotes a random vector distributed with N(0,3) in Lemma 5.2 and

k=1
Dy (M) = {(wl,... ,Tp—1)| max x; <0, Zacl < —k)\}. (6.8)

1<i<k—-1 .
=1

Proof. By (i) of Lemma 3.1 we have 3,,(¢,) = kfnr(¢,). Hence we only need to evaluate the limiting
value of B,k (¢rn). From the definition of B,k (pn), for any n and any n € N there exists W}, € P (A,)
such that

Bw 3, (onk(Xn)) < Bnk(on) + 1. (6.9)



Noting that
N .
ZTNz— N Z <ﬁ) — @, as n— oo,
it follows from the definition of ¢, that
Ew ¢, (¢nk(Xn))

> Wy (TNk = max Ty, Tny > )\n>
1<i<k

. 1 1
= W (151?33(—1 {" 2 ((Tni = Twe) = wwi) + 0 /2”‘““'} =0,

N

k-1
Z{nl/2 ((TNi—TNk)—z/Ni)+nl/21/Ni} /2{ An + N_IZ a(i/(N+1) })
i=1

Hence, by Lemma 5.2

hm BEw 3, (<pnk(XN))

k—1
— T ; o, 7. ; o, _
= (g, {1 Jm P/} <05 05 i onia) < -
=P(U+v*/A € Di(\./4)), (6.10)
where v* = limn_,oon]/ (UN1y--+ s UNKk—1) is the limiting vector under W3- It is easy to check that

Dy, (X) is Schur-convex and decreasmg Then, from (i) of Lemma 5.5 and Proposition 5.2 we obtain
P (U+v(A)JA € Di(Aa/A)) < P (U+v/A€ Dr(Aa/A)) for every v € Tj(A). (6.11)
Therefore, from (6.9), (6.10) and (6.11) it follows that
liminf Gk (¢n) +7 2 P (U 4+ v(A)/A € Di(Aa/A)).
This implies that
lirlrr_l)gflﬁnk(gan) > P (U+v(A)/A € Dr(Aa/A)),

which completes the proof.

The following theorem states that (¢,) is asymptotically unbiased.

Theorem 6.3 Let (p,,) be a sequence of tests (3.3) with A, = a+n 2),. Assume that (A5) is satisfied.
Then

liminf 3,(pn) > a. (6.12)

Proof. By (i) of Lemma 3.1, (6.12) is equivalent to

liminf Bog(pn) > % (6.13)
It is sufficient for (6.13) that for any (W) € Wy (A) we have
. a
HILH;O Ew Nk (@nk (-XN)) 2 E (614)



Obviously, the following two facts are sufficient for (6.14):

Tim By g, (pno (X)) < 1-a (6.15)

First we show (6.15). As in the proof of Theorem 6.1, for any (W) € W (A) we have

Tim v (#no(X) = PZ + /A € Do(Aa/4)). (617)
where p* = lim,,_ o n'k (pn1—@y. .., pNEk — @) is the limiting vector under (Wiy). Therefore, from (6.2)

and (6.17) we obtain
lim By, (¢no(Xn)) < P(Z + p /A € Do(Aa/4)) =1~ a.
Next, we show (6.16). From (6.10) and (6.11) it follows that for any (Wxi) € Wi(A)

lim Ew v, (gt (Xn)) 2 P(U +0(4)/A € Di(Aa/A)). (6.18)

On the other hand, as in the proof of Lemma 3.1, taking a permutation = on {1,...,k} such that 7(¢) = &k
and m(k) = 1, we have for any (Wy) € Wi (A)

where Wy = Wxrgo! € P1(A). We note that

lim B v, (¢ue(Xx)) = P(U + 1 /A € Dy(Aa/4). (6.20)

where v* = limn_,oonl/z(l/Nl,... ,UNg) is the limiting vector under (Wy1). Thus, by (6.19), (6.20),
Proposition 5.2 and (ii) of Lemma 5.5

Tim B, (¢0i(Xn)) < P (U +vi(A)/4 € Di(Aa/A)). (6.21)

Therefore, (6.16) is obtained from (6.18) and (6.21). This completes the proof of the theorem.

We wish to get an asymptotic slippage rank test (¢,) whose asymtotic minimum power (6.7) is as
large as posible. Taking (A.5) into account, we can recommend (¢, ) based on a score generating function
a* given by

a*(t) =do V A(F; (1)) A da,

where the truncation points dy and d; are real numbers determined by

/1 (do — A(Fy 2 (1)) T dt = @ = /1 (A(F5 (1) = da) " at,

and z V y A z = max(z, min(y, z)). We should notice that when k = 2, a* is the same as that of Rieder
(1981) for the two sample case.

Remark 6.2.

(i) The lower bound of the asymptotic minimum power (6.7) of (¢, ) with A, is increasing in A, because
v(A) is decreasing in A with respect to the order of weak majorization.

(i) Our tentative simulation shows that the inequality (6.7) based on the majorization methods seems
to be satisfactory for practical use on the whole. When €, 6§ or k increase, the accuracy of the
inequality tends to go down slightly.



(iii) The asumption (A5) is not restrictive. It is satisfied when Fj is normal. For k = 2 it coincides with
Rieder’s(1981) asymptotic unbiasedness condition in the two-sample case.

(iv) do and dy are uniquely determined, if k(e + 26)/27 < fol A(F;Y(t)))* dt. When Fy is normal,
do = —d; is determined by ¢(d;) — di(1 — ®(dy)).
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