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Abstract

The maximum asymptotic bias of an S-estimate for regression in the linear model is eval-
uated over the neighborhoods defined by certain special capacities, and its lower and up-
per bounds are derived. As special cases, the neighborhoods include those in terms of -
contamination, total variation distance and Rieder’s (e, 6)-contamination. It is shown that
when the model distribution is normal and the (&, §)-contamination neighborhood is adopted,
the lower and upper bounds of an S-estimate (including the LMS-estimate) based on a jump
function coincide with the maximum asymptotic bias. The tables of the maximum asymptotic
bias of the LMS-estimate are given. These results are an extension of the corresponding ones
due to Martin, Yohai and Zamar (1989), who used e-contamination neighborhoods.

1. Introduction.

In the linear regression model the least squares (LS-) estimate of regression has been com-
monly used and in fact when the errors are distributed with a normal distribution, it minimizes
the mean squared error in the class of all unbiased estimates. However, it is also well known
that the LS-estimate is very sensitive to slight departures from normality or to the presence
of a small proportion of outliers in the sample. Therefore, in the situations that the model
is only approximately satisfied or some outliers may occur, it is desirable to use so-called
robust estimates, which are not so sensitive to such departures or outliers and do not lose
good properties so much. Various robust regression estimates have been proposed to date. As
typical robust regression estimates, there are M-estimates (Huber,1973), generalized M- (GM-
)estimates (Hampel et al., 1986), the least median of squares (LMS-) estimate (Rousseeuw,
1984), the least trimmed squares (LTS-) estimate (Rousseeuw, 1985), S-estimates (Rousseeuw
and Yohai, 1984), MM-estimates (Yohai,1987), T-estimates (Yohai and Zamar,1988) general-
ized S-(GS-) estimates (Hossjer, Croux and Rousseeuw, 1994), the least a-quantile (LaQ-)
estimates, the least trimmed median (LTM-) estimate (Croux, Rousseeuw and Bael,1996) and
SO on.

Among them, S-estimates were introduced as high breakdown estimates which share the
flexibility and nice asymptotic properties M-estimates have. S-estimates belong to the class
of M-estimates with general scale and they include the LMS-estimate as an important special
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case. Various properties of S-estimates for regression were studied by Martin, Yohai and
Zamar (1989), Davies (1990,1993), Hossjer (1992), He and Simpson (1993), Henning (1995),
Berrendero and Zamar (2001) and others.

The most informative global quantitative measure to assese robustness of an estimate is
the maximum asymptotic bias of the estimate caused by deviation from the assumed model
distribution. It shows the whole preformance of the estimate from the model (i.e. no departure
from the model) to the breakdown point, and it gives the gross error sensitivity as a local
robustness measure, the breakdown point as a global robustness measure and a lot more.
Martin, Yohai and Zamar (1989) derived the maximum asymptotic bias of an S-estimate
over the e-contamination neighborhood and showed that the minimax-bias M-estimate, which
minimizes the maximum asymptotic bias in the class of all M-estimates with general scale, is
given by an S-estimate based on a jump function. Although they adopted e-contamination as
deviation from the model, it is also valuable to evaluate the maximum asymptotic bias of an
S-estimate over neighborhoods other than those in terms of e-contamination.

The purpose of this paper is to derive lower and upper bounds on the maximum asymptotic
bias of an S-estimate over the neighborhoods defined by certain special capacities. The neigh-
borhoods were proposed and characterized by Ando and Kimura (2001). As special cases they
include the neighborhoods in terms of e-contamination, total variation and Rieder’s (1977)
(¢,0)-contamination. It is shown that when the model distribution is normal and the (¢, )-
contamination neighborhood is adopted, the derived lower and upper bounds for an S-estimate
(including the LMS-estimate) based on a jump function coincide with the maximum asymp-
totic bias. In the case of - contamination neighborhoods, the lower and upper bounds reduce
to the maximum asymptotic bias due to Martin, Yohai and Zamar (1989). Therefore our results
give an extension of theirs.

The paper is organized as follows. Section 2 gives the definitions of the linear regression
model, S-estimates and the neighborhoods generated by special capacities. It also presents a
characterization theorem of the neighborhoods due to Ando and Kimura (2001), which is used
throughout this paper. Section 3 derives the lower and upper bounds for an S-estimate, follow-
ing two lemmas. It also proves that the lower and upper bounds for the maximum asymptotic
bias of an S-estimate (including the LMS-estimate) based on a jump function are obtained as
the limits of those for S-estimates based on strictly monotone functions. Section 4 considers
the case that the model distribution is normal with mean vector 0 and covariance matrix I,
the identity matrix, and shows that when the (¢, §)-contamination neighborhood is adopted,
the lower and upper bounds for an S-estimate based on a jump function are identical to the
maximum asymptotic bias. It also gives some tables of the maximum asymptotic bias. All the
proofs of the lemmas and theorems in this paper are collected in the final Section 5.

2. Preliminaries.

We consider the linear model

where @ = (21,...,2,) is a random vector in R?, @y = (01, ...,0,)" is the vector in RP of the
true regression parameters and the error v is a random variable independent of . Let F{y be
the nominal distribution functions of u. Then the nominal distribution function Hy of (y, )



(2.2) Ho(y,z) = /_OO/_OO Foly — 0},8)dGo(s).

We assume that G is elliptical about the origin with a scatter matrix A. Let M be the set
of all probability distributions H on (Rt BPt1) where BP*! is the Borel o-field on RP*!.
Let T be an RP-valued functional defined on M. Given a sample (y;,@1), ..., (Y, &, ) of size
n from H, we define the corresponding estimate of 6, as T'(H,), where H, is the empirical
distribution of the sample. We assume that T is regression equivariant, i.e. if § = y + «’b and
& = C'z for some full rank p x p matrix C, then T(H) = C7'[T(H) + b], where H is the
distribution of (7, &). In this case, the model parameter is transformed to 8y = C~'[6, + b].
The asymptotic bias of T' at H is defined by

(2.3) bA(T.H) = [(T(H)—00) AT(H) - 6))]},

where A = A(G)) is an affine equivariant covariance functional of «, i.e., if ® ~ Gy and
& = B for some nonsingular p x p matrix B, then A(G,) = BA(G()B'. Since we only work
with regression and affine equivariant estimates and b 4 (T', H ) is invariant under regression and
affine equivariant transformations, we can assume without loss of generality that A = I(the
identity matrix),i.e., Gy is spherical, and 8y = 0. Therefore the nominal model (2.2) becomes

(24 Hog,o) = [ [ Fow)dGals])

and the asymptotic bias (2.3) reduces to

(2.5) O(T,H) = [TH)I,
where || - || denotes the Euclidean norm. We assume that T is asymptotically unbiased at H
ie., T(Ho) = 0.

Let p be a real valued function defined on the real line R. We assume the following
conditions of p, Fy and G (see Martin, Yohai and Zamar,1989).

Al. (i) pis symmetric and strictly increasing on (0, oc) with p(0) = 0.
(ii) p is bounded with lim, ... p(u) = 1.

(iii) p has only a finite number of discontinuities.

A2. F} is absolutely continuous with density f, which is symmetric, continuous and strictly
decreasing for u > 0.

A3. Gy is spherical and Pg,(@'z = 0) = 0 Y0 € RP with 8 # 0.

Let 0 < b < 1. Then, given a distribution F' the M-scale functional is defined by

(2.6) S(F) = inf{s >0: Ep [p (g)] < b}.

Given a sample uy,...,u, from F, the corresponding M-estimate of scale is S(F,) where F),
is the empirical distribution of ui,...,u,. For any 8 € RP let F? be the distribution of the
residual

r(@) = y— 6.



To emphasize the independent roles of 8 and H, we let S(8, H) = S(F?).
A functional T'(H) is said to be an S-estimate functional of regression if there exists a
sequence {6,} C RP such that

(2.7) lim 6, = T(H)
and
(2.8) lim S(6,,H) = 01en1£p S(6,H).

We note that S-estimates of regression are regression equivariant, and under very mild condi-
tions they are consistent and asymptotically normal.

In order to express deviation from the nominal distribution H,, we use the following neigh-
borhood introduced by Ando and Kimura (2001).

(29) 7)Ho(cv ’7) = {H € M : H(B> S CHU(B) + 7, VB € Bp-l-l}’

where 0 <y <1 and 1 —+ < ¢ < oo. This neighborhood (2.9) is regarded as a generalization
of the (e, 6)- contamination neighborhood Py, (1 — ¢, ¢ + §) introduced by Rieder (1977), and
as special cases it includes the e-contamination neighborhood Py, (1 — ¢, ¢) and the total
variation neighborhood Py, (1, §). The neighborhood Py, (c,7) is characterized as follows:

Proposition 2.1 (Ando and Kimura, 2001) For 0 <y <1 and 1 — v < ¢ < oo it holds
that

Puy(c, V) ={H=c(Hy—W)+~vK : W€ Wy,,K € M},

where Wy,  is the set of all measures W such that W (B) < Hy(B) holds for "B € B**! and
W(RFY) =X=(c+v—1)/c

The maximum asymptotic bias of an estimate T over Py, (¢, 7) is defined as

Bp(e, v) =sup{[|T(H)[| = H € Puy(e, 7)}-

Martin, Yohai and Zamar (1989, Theorems 3.1 and 4.2) derived Bp(1 — ¢, ¢) of an S-
estimate T' over Py, (1 — ¢, ¢), and showed that the minimax-bias estimate, which minimizes
Bp(1—¢, €) in the class of all M-estimates with general scale, is given by an S-estimate based
on a jump function p and some b.

3. The lower and upper bounds on the maximum asymptotic bias.

Let { = {W,p : 5> 0,0 € R} be the set of Wy € Wy, » such that the (substochastic)

distribution of # under Hy — W4 depends on 8 only through ||@||, and let F, be the set
of all such ¢ = {W,4}. For any & = {W, 4} € F\ we define a function g¢ of s and ||@|| by

(31) (5, 161) = B, ., [p (y‘ "“’“)] |

S

We consider the following condition of g:



A4. ge(s,]|0]]) is continuous, strictly decreasing in s and strictly increasing in ||@]|.

In order to establish an upper bound for Bp(c,v) we need £ = {W,p} and & = (Wi}
defined as follows:

S

W.so(B) = Hy (Bm{

y_glm‘ > ag,g| (“+Z_1)}) , "B e Brt',
(3.2)

W2,(B) = H (Bm{

=0 w‘ <aum (2)}), "Besr,

where a9 (1) (0 < 1 < 1) denotes the upper 100n% point of the distribution of |y — 6'x|/s
under H, such that
Y
d

S

Zas,IIGII(W)) = 1.

It is clear that £ € Fy and £* € Fy follow from the definition (3.2) and A3. The following
lemma shows that gg and ge- satisty A4.

Lemma 3.1 Assume that Al, A2 and A3 are satisfied. Then ¢ and ge» are continuous,
strictly decreasing in s and strictly increasing in ||0)]|.

We also obtain the following lemma.

Lemma 3.2 Assume that A1, A2 and A3 are satisfied. Then for any s > 0 and any 8 € RP
the following results hold.

. . y—60'z
O bl B [p< s )l = c gg(s, |61,
y—0'x

(i) sup Ey [p(

HEPH(e,v)

)] = ¢ ge (5,161 + -

Let Foy be the set of all £ € F) satisfying A4. We note that Lemma 3.1 shows é € Fo»r and
£* € For. For any & € Fy) let ggll( -, ||@|l) be the inverse of g, with respect to s and gg%(s, )
the inverse of g¢ with respect to ||@||. The following theorem corresponding to Theorem 3.1 of
Martin, Yohai and Zamar (1989) gives the lower and upper bounds on Brp(¢, ) of an S-estimate

T over Py, (c,7).

Theorem 3.1 Assume that A1,A2 and A3 are satisfied. Then

Br(e,7) < Bp(e,7) < Bple,7),  if 7 <min(b,1 ),

Brp(c, v) = o0, if v >min(b,1—0),



where

— 1 1 (b=~ b
BT(C, ’7) = gé’Ql (95*1’1 <C’0> 7C> )

b—~
Bp(e,v) = sup gey (gl <UO> :
(e, 7) P £2 {61 c

Remark 3.1 When ¢ =1—¢ and 7 = ¢ (i.e., the e-contamination case), Theorem 3.1 reduces
to Theorem 3.1 of Martin, Yohai and Zamar (1989). We note that p is assumed to be strictly
increasing on (0, 0c) instead of being nondecreasing.

We wish to show that Theorem 3.1 also holds for S-estimates (including the LMS-estimate)
based on some type of step functions. To this end we need the following condition of p.

A5. pis symmetric and right continuous on [0, 00).
The following lemma enables us to achieve the purpose.

Lemma 3.3 Let {p,} be a sequence of functions satisfying A1 and A5, and suppose that {p,}
uniformly converges to a function p on (—oo,00). Let T, and T be the S-estimates based on
pn and p, respectively. Then for any H € Py, (c,) there exists a subsequence {T, (H)} of
{T.(H)} such that lim T, (H) = T(H).

For any & = {Wp} € Fox we let gue(s, 18], guea( - 16]]) and g ga(s, - ) be ge(s, [16]]),
ge1( -, [16]) and gz3(s, - ) based on py, respectively. Lemma 3.3 states that the following
corollary holds.

Corollary 3.1 Assume that all the conditions of Lemma 3.3 are satisfied. Then

ET( ¢,7) < BT( 7) < ET(C,v), if v <min(b,1 —b),
Ba(c,7y) = o0, if 4 > min(b,1 — ),

where

_ N b—~ b

b—~ b
Bs(e,v) = su lim ¢! —1 T ol.2}].
7T( ? l) EE]:I;)A |‘kﬁoo gnk,f,Q <gnk7£,1 ( c Y 7c



4. The normal distribution model.

We consider the case that the nominal distribution Hy of (y,«) is the multivariate normal
distribution N(O, Ip+1) where I,4; denotes the (p + 1) x (p + 1) identity matrix. In this

case, under Hy ¥——= 9 L is normally distributed with N (O 1+ﬂ20”2>. We denote by ¢ the density
function of the standard normal distribution N(0,1).

Let Fi) be the set of { = {W, 4} € Fo, such that the density function f§||0|| of @ under
Hy — W, 4 is written in the form of

S S
(4.1) FE () = ——— ¢ (— ) S —x<u<s,
Jirler \yrrel?

where ¢ is a function which does not depend on s and ||@||, and it satisfies 0 < ¢, < ¢ and

11—~
—

(4.2) /_ °:O Se(u)du =

It is easy to see that & = {W,y} and £* = {W,} are elements of Fy) with

(4'3) ¢£(u) - { 0 if |u| > Z(H-;,C_E),C )
and

0 if 0§|u|<2(12;07)’
(4.4) Se) = 3 s it > I

respectively, where z(,y denotes the upper 1001% point of N(0,1).
For any £ = {W,} € F1, and any 7 > 0 we define

(4.5) her) = [ p(u)%gbg (% ) du.

—0o0

Then we can see

(4.6) (s, 18]) = he(1/1 + ||€]/s),

and hence

(4.7) gl o) = 1+1812/ne (1),
gea(s,t) = /(she'(t))? — 1.

Thus we obtain the following corollary from Theorem 3.1.




Corollary 4.1 Assume that the nominal distribution Hy of (y,x) is N(0,I,41) and that Al
15 satisfied. Then

oo
2 [ N—
(]
I
—_

Q\/

(é
W mlee

)] —1 < Bip(e,7) <

>
Rl
*
—~
o
N—

Next we consider S-estimates based on the following jump function:
. o it jul < e,
(49) ww = {7 E S
We note that p, does not satisfy the condition (i) of Al. Since the S-estimate based on p,

does not depend on the choice of «, we hereafter take a = oy = ¢~ ( ) and denote p = p,, for
simplicity. For a given sample w = (uy,- -+, u,), the M-estimate of scale based on p is given

by
1
sn(w) = Julotu,
where |u|),- - -, |u|@m) are the order statistics for |ui|,---,|u,|, and [a] denotes the largest

integer smaller than or equal to a. The S-estimate based on p and b is denoted by T'.

Note that T, (= T5) corresponding to b = 0.5 is Rousseeuw’s (1984) least median of
squares (LMS-) estimate. Martin,Yohai and Zamar (1989) shows that in the case of e-contamination
neighborhoods the estimate T', with a properly chosen b minimizes Bp(1 — ¢, ¢) in the class
of M-estimates with general scale.

We are now interested in evaluating B (c,7). Although p does not satisfy the condition (i)
of A1, there exists a sequence {p, } of functions satisfying A1 and A5 such that {p, } converges
to p uniformly on (—oo,o0). For example we can take p, as follows:

<(_||_u]|-)> ; ].f |U| < 0607
n (%))
41 n = 1.2
( 0) P (U) . 2()4365“0 (1 n 1 ) _1,2 . | | >
— —F ] €e 2 1 u Q.
(n+1)(1 + 202) 202 ! =0

For any £ = {W, 4} € Fi) let h,, ¢ and h;¢ denote he with p replaced by p, and p in (4.5),
respectively. Then for any £ we have

lim h,, ¢(7) = h;e(7), Y7 >0,

(4.11)
lim A 5( )= hgé(t), 0<"t< 2,

n—oo

As easily seen, we also have

0, if 0<7<

— Z, cy—1

412 h. — <%>
(4.12) 15.4(7) o[l — =t (L)), it 7> ,
c T Z(C+;C_1)




and

(4.13) hiee(N) = ' G

Therefore we can obtain the following corollary from Corollaries 3.1 and 4.1.
Corollary 4.2 Assume that the nominal distribution Hy of (y, ) is N(0,1,.1). Then

ﬁTb(Cv A/) S BTb(C, A/) S ET})(C, A/)v if g < HliIl(b,l - b)a

(4.14)
B (c,7) = o, if 4 > min(b,1 — ),
where
et (8) 1 _ () ]

In this Corollary 4.2 we see

hot(t ot (1-52)
£ \¢ _ 2c
(4.15) h;_éi CRE =)

On the other hand, as for the lower bound, let us consider ¢ = {TV'T/;,(;} such that W,y = AH,
for s > 0 and Y@ € R?. Then we have Hy — W,y = (1 — \)Hy, and & € Fy, follows from
Lemma 3.1 of Martin, Yohai and Zamar (1989).

Since

it follows that

nre(L) e (1-5h)
(4.16) SN 20

e (") 2 (1= ga)
Therefore

By, (¢,7) 2

_ b
o7 (1= i)
We note that the right hand side is equal to BCQT' (1=7,7). When A =0, we have B (¢,7) =
N b
By (¢,v) = By, (¢,7) = By, (1—7,7).

The following theorem states that in Rieder’s neighborhood case (i.e., ¢ < 1), we can obtain
BTb(c, 7v) exactly.



Theorem 4.1 Assume that the nominal distribution Hy of (y,x) is N(0,1,41) and let ¢ < 1.

Then
o-1(1-452) 1° . :
— | — 1, if v <min(b,1—0)
2 N ®-1(1_tFrFeT ) i . :
(4.17) Bip (¢,7) = (1-=25=)
0, if > min(b,1 —b).
Remark 4.1

1. When 1 -+ < ¢ < 1, the neighborhood Py, (¢, ) is the one introduced by Rieder (1977)
(let c=1—cand v =¢+9).

2. When ¢ =1 — ¢ and v = ¢, Theorem 4.1 becomes
— b—e 2
(P ' (1 B 2(1_5)) _ 1
()|
2(1—¢)

which is the same as (3.24) in Martin, Yohai and Zamar (1989).

B%wb(l —¢€,€) =

We are concerned with the LMS-estimate Ty5 with b = 0.5. Table 1 shows the values of
BTo.s(c’ 7v) for selected ¢ < 1 and . Note that the values on the diagonal line of the table
correspond to the case of e-contamination neighborhoods. Table 2 gives the upper bounds
PTo.s(c’ 7) for selected ¢ > 1 and ~. Table 3 presents the values of Bp (1 —¢,e+ ) for
selected ¢ and 6 (0 < e < 0.5, 0 < 6 < 0.5), which shows the maximum asymptotic bias of
T over Rieder’s (e, 6)-contamination neighborhoods.

Table 1: By (¢, v) for b=0.5 (¢ <1, 0<y<05)

¢\~ 1]0.00|0.01|0.02]|0.03{0.04|0.05]|0.10|0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45
0.55 | — — — — — — — — — — — — — 14.77
0.60 | — — — — — — — — — — — — 6.49 | 16.52
0.65 | — — — — — — — — — — — | 3.96 | 7.28 | 18.29
0.70 | — — — — — — — — — — | 2.73 | 445 | 8.07 | 20.08
0.7%5 | — — — — — — — — — 12011310 | 495 | 888 | 21.90
0.80 | — — — — — — — — | 1.51 | 2.30 | 3.46 | 5.46 | 9.70 | 23.73
0.85 | — — — — — — — | 1.14 | 1.76 | 2.59 | 3.83 | 5.97 | 10.52 | 25.58
0.90 | — — — — — — 1082|136 | 2.01 | 2.88 | 4.20 | 6.49 | 11.36 | 27.45
0.95 0.52 | 1.05 | 1.58 | 2.25 | 3.17 | 4.58 | 7.01 | 12.20 | 29.34
0.96 | — — — — | 046 | 0.58 | 1.09 | 1.63 | 2.30 | 3.23 | 4.65 | 7.12 | 12.37 | 29.71
0.97 0.39 | 0.52 | 0.63 | 1.13 | 1.67 | 2.35 | 3.29 | 4.73 | 7.22 | 12.54 | 30.09
0.98 | — — | 031 | 0.45 | 0.57 | 0.68 | 1.17 | 1.71 | 2.40 | 3.35 | 4.80 | 7.33 | 12.71 | 30.47
099 | — 1022039051062 0.72 | 1.21 | 1.75 | 2.44 | 3.41 | 4.88 | 7.44 | 12.88 | 30.85
1.00 | 0.00 | 0.31 | 0.45 | 0.56 | 0.67 | 0.77 | 1.25 | 1.80 | 2.49 | 3.46 | 4.95 | 7.54 | 13.05 | 31.24
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Table 2: FTb(c, v)for b=0.5 (¢>1, 0<v<0.5)

¢\~ | 0.00 | 0.01 0.02 0.03 0.04 | 0.05 0.10 | 0.15 0.20 | 0.25 0.30 0.35 0.40 0.45
1.0 0.00 | 0.31 0.45 0.57 | 0.67 | 0.77 1.26 1.80 250 | 347 | 4.96 7.55 13.05 31.24
1.1 0.73 0.82 0.90 0.99 1.08 1.17 1.64 2.22 2.98 4.06 5.72 8.61 14.77 35.08
1.2 1.09 1.17 1.26 1.34 1.43 1.51 2.01 2.64 3.47 4.66 6.50 9.70 16.52 38.97
1.3 1.41 1.49 1.58 1.66 1.75 1.85 2.38 3.05 3.96 5.26 7.28 10.80 18.29 4291
1.4 1.72 1.80 1.89 1.98 2.07 2.17 2.74 3.47 4.46 5.88 8.08 11.92 20.09 46.89
1.5 2.01 2.10 2.19 2.29 2.39 2.50 3.10 3.89 4.96 6.50 8.88 13.05 21.90 50.91
1.6 2.30 2.40 2.50 2.60 2.71 2.82 3.47 4.31 5.47 7.12 9.70 14.20 23.73 54.97
1.8 2.88 2.99 3.10 3.22 3.34 3.47 4.21 5.18 6.50 8.40 | 11.36 16.52 27.46 63.18
2.0 3.47 | 3.59 3.71 3.84 3.98 4.13 4.96 6.05 7.55 | 9.70 | 13.05 18.89 | 31.24 71.52
2.5 4.96 5.11 5.27 5.44 5.62 5.81 6.89 8.31 | 10.25 | 13.05 | 17.40 24.97 40.94 92.79
3.0 6.50 | 6.69 6.89 7.10 7.32 7.55 8.88 | 10.64 | 13.05 | 16.52 | 21.90 | 31.24 50.91 | 114.59
4.0 9.70 9.97 | 10.25 | 10.54 | 10.85 | 11.17 | 13.05 | 15.52 | 18.89 | 23.73 | 31.24 44.23 71.52 | 159.42
5.0 | 13.05 | 13.40 | 13.76 | 14.15 | 14.55 | 14.97 | 17.40 | 20.60 | 24.97 | 31.24 | 40.94 57.69 92.79 | 205.51

10.0 | 31.24 | 32.02 | 32.83 | 33.69 | 34.58 | 35.51 | 40.94 | 48.04 | 57.69 | 71.52 | 92.79 | 129.37 | 205.51 | 447.93
Table 3: By, (1—¢, e+6) for b=05 (0<e <05, 0<y<0.5)

e\é | 0.00 0.01 0.02 0.03 0.04 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

0.00 | 0.00 | 0.31 0.45 0.57 0.67 0.77 1.26 1.80 2.50 3.47 | 4.96 7.55 | 13.05 31.24

0.01 0.22 0.39 0.52 0.63 0.73 0.83 1.32 1.88 2.61 3.65 5.28 8.19 | 14.77 40.44

0.02 0.32 0.46 0.58 | 0.68 0.78 0.88 1.38 1.97 | 2.74 3.85 5.64 8.95 | 16.96 56.33
0.03 | 039 | 0.52 0.63 | 0.74 0.84 0.94 1.45 2.06 2.87 | 4.07| 6.04 9.84 | 19.83 89.56
0.04 0.46 0.58 0.69 0.79 0.89 0.99 1.51 2.15 3.02 4.31 6.50 | 10.90 | 23.73 | 196.21
0.05 0.53 | 0.64 0.75 0.85 0.95 1.05 1.59 2.25 | 3.18 4.58 7.02 | 12.20 | 29.34 —
0.10 0.83 0.93 1.04 1.15 1.26 1.37 2.01 2.88 4.21 6.50 | 11.36 | 27.46 — —
0.15 1.14 1.26 1.37 1.50 1.63 1.77 2.59 3.84 5.98 | 10.53 | 25.59 — — —
0.20 1.51 1.65 1.80 1.96 2.12 2.30 3.47 5.47 9.70 | 23.73 — — — —
0.25 2.01 2.19 2.39 2.61 2.84 3.10 4.96 8.88 | 21.90 — — — — —
0.30 2.74 3.01 3.31 3.64 4.02 4.46 8.08 | 20.09
0.35 3.96 | 4.42 4.96 5.59 6.35 7.28 | 18.29 — — — — — — —
0.40 | 6.50 7.55 8.88 | 10.64 13.05 | 16.52
0.45 | 14.77 | 19.63 | 28.08 | 45.89 | 103.63

5. Proofs.

Proof of Lemma 3.1 Let F ) and F§,||0|| denote the distributions of |#| under H, and

Hy — Wy, respectively, where { = {W; 4} € Fy. Then for £ = {I/Vs_/o} and £* = {W7,} we can

see that

(5.1)

Ff-,IIHII () = min

(Fs,neu(U),

11

1— 7)
c Y




*

‘ c+v—1
Ff.,nen(“) = max (Fs,nen(U)—%

C

,0), u>0.

From Lemma 3.1 of Martin, Yohai and Zamar (1989) it follows that Fj g (u) is continuous in
u, s and ||@]|, strictly increasing in s and strictly decreasing in ||@||. Hence, (5.1) implies that

F§||0|| and FfTIBII also possess these properties of F 9. Therefore, noting that

(5.2) ge(s.llel) = EFs [pw)l, e~ Ff ),

lell

ge-(s,]16]) = [p(w)], w~ iy,

H9I|

we obtain the lemma from Al. O

Proof of Lemma 3.2
(i) For = {W.p} let
(5.3) HS, = c(Hy—W.p)+72,

where A is the distribution with probability 1 at the origin. It is obvious that H§70 € Pu,(c, )

holds. As easily seen, the distribution of |#| under Hf_/e is stochastically smaller than that
under any H € Py, (c, 7). Hence, the assertion (i) follows from A1l and the fact

y—60'xz ‘ y—0'x
EHfo [P ( S )l = CEHO—VAVs,g [P ( s + 7 p(O) = Cgé(sa ”0”)

(ii) For & = {WS,} let

(5.4) HY g=c(Ho— W) +7AL, n=12,...,
where A* is the distribution with probablhty 1 at (yn,®,) such that z, = 1,0, y, = 2)\,,[|0||?
and \, — oo. Then it is clear that Hnso € Pu,(c, 7). Since |y, — 0'x,| = \,||0]| — oc, the

distribution of |%| under HS s 18 stochastically larger than that under any H € Pp,(c,7)
for sufficiently large n. Hence the assertion (ii) follows from Al and the fact

— 0, — 9, - 9, n
lim E, e lp (y a:)] = cEg, w~ lp <y :c)] +~ lim p <H>
n—00 n,s,0 S 5,6 S n—oo S

= cge-(s,]10l) +7. B

Proof of Theorem 3.1 We first show Bp(c,v) < Brp(e, 7). Let d = Bp(e, 7). To
complete the proof it is sufficient to show that for any H = (Ho —W)+~K € Py,(c, v) and
any ||6|| > d we have

s(0,H) > (0,H)
because by the definition of T this implies T'(H) < d. Let

S = gg*l’l < c ,O) .

12




Since
cge(s*,161) > c ge(s*,d) = b,
there exists s; > s* such that
cge(si,|6l) > o,

Hence, by (i) of Lemma 3.2

—0'x
o ()

This implies s; < (6, H) and hence

> g1, [6]]) > .

(5.5) s* < s(6,H).

On the other hand, it follows from (ii) of Lemma 3.2 that
ule ()
S

(5.6) s* > s(0,H),

< cge(s7,0)+ v =0,

This implies

From (5.5) and (5.6) it follows that
s(0,H)> s(0,H).

Secondly, we show B (c, v) > Brp(c, 7). To this end it is sufficient to show that B,_gr(c, v) <

Brp(e, 7) holds for any £ € Foy. Let d¢ = Bfr(c, v), let dy be any positive real number smaller
than de (0 < dy < d¢) and let ||07|| = d;. Further, let

H, = HS, ,=c(Ho—Wiyp)+74,,

where A, is the distribution with probability 1 at (y,,®,) with @, = \,0", A\, — oo and
y, = 0" x,. To complete the proof it is sufficient to show

(57) swp |T(H)| > d.

Assume that (5.7) is not true. Then there exists a subsequence {6;,} of {6,} such that
T(H;,)=26,,lim, -0, =06 and ||8| < ||6"|| = di.- In what follows, we denote i, by n for
simplicity.

By Lemma 3.1, we have

-0 x
[ (0)

Let 5 = g{j (b_7 ()). Since

c

Yn — 9:1:1711
> cge(s,0)+p (s) :

lim [y, — 0,,@,| = nang-o (1677 = 678,,) = o,

n—oo

13



we see that for any s < s

-0
Jim En, lp <ys"a}> > cge(5,0)+7 =0

This implies that
T}Elgos(On,Hn) > 5, Vs <3,

Thus

(5.8) lim s(6,,H,) > 3.

n—oo -

On the other hand, we see

ng(g,dl) < ng(g,dg) = b,

and hence there exists s; < § such that cgg(s;,d;) < b. Hence

e ()

o
cartor ) +2p (2275
= cge(s1,dy) <b.
This implies
(5.9) s(0*,H,) < s.
From (5.8) and (5.9) it follows that
s(0", H,) <s1 <5< nh_:golo 5(6,, Hy).

Since this contradicts the fact that T'(H,) = 6, minimizes s( - , H,) for each n, we obtain (5.7)
and hence

Bfg[’(cv AI) < BT(C, AI)

To show the last part of the theorem, we let b < 0.5. Then min(b,1 — b) = b and

b—~
1 1 _— =1 1 =
lr}%)l Gevq < p 0) lim e 1(1,0) = oo,

b—~ b b
o1 1 ) O o oY _
l}rlT]I)l 9e <g£*,1 < . ,0) ’c) = 8151&3 9es <s, c) = 00.

Similarly, we can show
b—~ b
limgra (g1 [ —,0),= | = oc.
;?EQE,Q (gg,] < c ) ) ’C> o0

This completes the proof of the theorem. O

Hence

14



Proof of Lemma 3.3 Let H € Py, (c,7). For agiven 8 € RP let F' = F? be the distribution
of the residual (@) = y — @'z under H. Let S,(F) and S(F) be the M-scale functionals

corresponding to p, and p. Then we have 0 < S,,(F'), S(F) < oc. According to the definitions
(2.7) and (2.8) of T,(F) and T'(F), for the proof of the lemma it is sufficient to show that

there exists a subsequence {S,, (F)} of {S,(F)} such that klim S, (F) = S(F). We note that

Eplpn(u/s)] and Ep [p(u/s)] are strictly decreasing and decreasing (nonincreasing) in s > 0,
respectively, and that
u
(5)
s

Also, by A5 we note that Ep [p,(u/s)] and Ep[p(u/s)] are left continuous in s. It is easy to
see from the definitions of S, (F) and S(F) that for 0 < Ve < S, (F)and "n,

R e R

and that for 0 < Ye < S(F)
u
> FEp(pl =
o (sim)

s
P\S(F) =<
Let 0 < Ye < S(F). Since
u
Erlpl—"
|7 (S(F) =
it follows from (5.10) that there exists an integer ng such that
u
5.13 Eplp, | ———
o1 ’ lp (S(F) - e)

Hence, noting

(5.10) lim Ep

n—oo

= FErp [f) (%)] , Ys >0 uniformly.

(5.12)  Ep

> b,

>b,  "n>n.

u

14 Eppy | ——— b, v
(5.14) Fp <Sn(F)+g>< , n,

we have
S(F)—e < Su(F)+e, "n>n.

This implies that

(5.15) S(F) < liminf S, (F).

n—odo

On the other hand, to show the reverse inequality in (5.15). We note that it follows from
the definitions of S,(F) and S(F) that for any sufficiently small ¢ > 0,

Joy, B ["" <S<F>—e>] - [ﬁ <5(F>—)

> b.




Since

bl

for any sufficiently small € > 0 there exists an integer ng such that

(sl o b ) e

Hence we have

Su(F)—e < S(F)+¢e, Ye>0,"n>n.
This implies that
(5.16) limsup S, (F) < S(F).

n—oo

Thus, form (5.15) and (5.16) we obtain
lim S,(F) = S(F).

n—oo

This completes the proof of the lemma. O

Proof of Theorem 4.1 Let &, = {I/I/’s’fo} be the element of 77, such that the density fﬁlﬂll
of # under Hy — Wk, is given by (4.1) with

Sy

o(u), if 0<|u|l< 2,
(5.17) O () = { Ou) =gy i a <ul <z,
o(u), if |u| > 29,

where k is a constant satisfying 0 < k < 111111{%,2(22 - zl)é(zz)}, 21 = 2 and zy =

Z(é_c+’y—1). It is easy to see that

2(1-@(%)), it 0<7<L
(5.18) he(r) = §21=8(z=)+ 2 (k=1), if L<r<l
2(1-= — 0 (1)), if r>L.
Since ¢ < 1, we have
1 b—~ 1 b
he, | — d  he | — -
& <22> > c a & (21) < c’
and hence
b—ry 1 b—ry
5.19 h;! P —— '
( ) £k< c ) (1)71(1_;,2_77) 3 ( c >,
b 1 b
puil = = Tl —
(5.20) he <C> 51 (1= ) h (C)

Therefore we obtain ETb(c,“,') = PTb(C, 7v) from Corollary 4.1 and the fact & € Fyx. This
completes the proof of the theorem. O
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