ドローンによる視覚情報を用いた目標物体追従 - ANS1PIC 制御基板による制御システムの構築-

M2016SC018 渡邊 亮二 指導教員:中島 明,坂本 登

1 はじめに

2012 年 12 月 2 日笹子トンネル天井落下事故をきっかけ に 5 年に 1 回の頻度でインフラ点検業務を行い,インフ ラの点検業者は国への調査書の提出が義務付けられるよう になった. [1][2] しかし,インフラの数は膨大で点検業者 の数は限られている.またインフラの種類によっては足場 が組みにくく点検を容易に行えない事もある.その点検作 業を効率化するための手段としてドローンが注目されてい る.ドローンによる点検にはカメラを用いて撮影した映像 を操縦者または観測者に送るための通信処理,またドロー ンの姿勢を保つために IMU センサなどによる情報処理が 必要とされる.

したがって本研究では、岩手大学が開発した ANS1PIC 制御基板を用いて,高速かつ高精度な通信・情報処理を 備えたドローン制御システムを構築する事を目指す.[3] ANS1PIC 制御基板は三つのマイコンが付いており、セン サなどの情報処理用,制御処理用,制御信号をアクチュ エータコマンドに送る出力用など役割別にそれぞれのマ イコンが取り付けられているため、計測・制御において高 機能な処理を高速に行う事が可能である.本研究ではさら に、構築したドローン制御システムに対して、カメラを用 いた制御を実装する事を目指して、視覚情報を用いた制御 系の構築も行う.本稿の構成としては,第2節において ANS1PIC 制御基板の説明及び同基板による制御システム による構築方法について述べる.そして第3節では、ド ローンの運動方程式及びカメラモデルを示す.第4節では ドローンの姿勢制御及び視覚情報によるビジュアルフィー ドバック制御則を示し, 第5節ではシミュレーションに よりその効果の検証を行う.最後に第6節にて結言を述 べる.

ANS1PIC 制御基板による制御システム構築

2.1 ANS1PIC 制御基板の構成と各基板の機能

図1に ANS1PIC 制御基板の各マイコンによる信号の流 れ,また表1に各マイコンの役割を示す. ドローンに搭載

名称	役割
$F\&C \ \exists \ \mathcal{T}$	制御系の処理及び信号処理
$SV \exists 7$	RC 操作の入力処理や
	アクチュエータコマンドの出力
SE コア	センサなどの計測情報の処理

表1 各マイコンの役割

図1 各マイコンの信号の流れ

されているブラシレスモータには ESC(Electronic Speed Controller) というモータの回転速度を調整する部品が取 り付けられている. ESC というのは,受信したパルス幅 (以下 PWM と省略)を元に正しい電圧でモータの回転速 度を調整している部品である.使用するドローンはクアッ ドコプターのため,ドローンを制御するためには4つの PWM を送信する必要がある.そこで SV コアのプログラ ムを変更し, PWM を4つ同時に送信できるようにするこ とで,モータを任意の回転数で回転できるように機能拡張 を行った.

2.2 プロポ信号の受信,及び ESC のキャリブレーション

ANS1PIC 制御基板に受信機を接続し,送信機 (以下プロポ)の信号の値の確認を行った.プロポからは PWM が送信されており,送信される PWM の最大値,最小値はそれぞれ 1095[μs],1900[μs]の値である事が確認できた.また,そのときの接続図を 図 2 に示す.

プロポ信号の受信確認後, ESC のキャリブレーショ ンを行う必要がある.使用している ESC は 1000[µs] ~ 2000[µs] の範囲の PWM を受け取り,電圧を調整する仕 様である.しかし,プロポから送信される PWM の範囲 は 1095[µs] ~ 1900[µs] であることから, ESC の受け取 る PWM の範囲を調整する必要があり,この作業をキャリ ブレーションと言う.キャリブレーション方法としては, ESC の信号線と基板の PWM 信号が出力されるピンを接 続し, ESC に設定すべき最小の PWM 信号を送信する. 数秒^{*1}待ったのち,設定すべき最大の PWM 信号を送信す

^{*&}lt;sup>1</sup> 使用する ESC により時間は異なり, 今回使用した ESC では 2~3 秒である.

ることでキャリブレーションが完了する.

図2 接続図

2.3 IMU との接続

ドローンが飛行するには、ドローンをホバリングさせる ために姿勢を常に水平に保つ必要がある.そのためには使 用する ANS1PIC 制御基板に IMU を接続し、IMU から角 度、角速度を得る必要がある.そこで ANS1PIC 制御基板 と IMU との接続を確立し、IMU から角度、角速度が正し く得れているか確認を行った.そのときの接続図を図 3 に 載せる.このときに IMU の通信の設定と ANS1PIC 制御 基板の設定を合わせる必要がある.具体的には、ボーレー トやデータビット長、パリティビットの有無を IMU 側で 設定をする必要があり、正しく設定しない限り、角度や角 速度の値を正しく得る事ができない.また、使用している IMU(3DM-GX4-45) は5 V 駆動であるが、ANS1PIC 制 御基板は 3.3V 駆動なので電圧レベルを変換するために 5V から 3.3V へのレベル変換基盤を接続して、通信レベルを 3.3V に変換する必要がある.

基準となる基準 (ワールド) 座標系とドローンに固定された機体 (body) 座標系, またカメラに固定されたカメラ 座標系を定義する. (図4参照) 表2にドローン, カメラに 関する物理パラメータを示す.また,文字の左上添え字は 基準となる座標系,右下添え字は表現される座標系を示し ており, cはカメラ座標系, bは機体座標系, w は基準座標 系を示す.ここで $^{B}f_{z}$, $^{B}\tau_{x}$, $^{B}\tau_{y}$, $^{B}\tau_{z}$ を以下のように定義

図4 座標系の説明

表2 ドローン及びカメラに関する物理パラメータ

機体軸まわりの回転角 [rad]

ローター間の距離 [m]

機体の慣性モーメント (順に x,y,z 軸周り)

名称

機体の質量 [kg]

図3 接続図

 f_i ローター i 番の推力

記号

M

2l

 ϕ, θ, ψ

Ix, Iy, Iz

Q_i	ローター <i>i</i> 番の抗力
Ω_i	ローター <i>i</i> 番の回転数 [rpm]
u, v	観測物体の画像上の座標 [pixel]
u_0, v_0	画像座標における中心の値 [pixel]
f_l	焦点距離 [m]
s_{lpha}	[m] から [pixel] へのスケール因子

3 モデリング

第3節からはシミュレーションのために必要なモデリン グ及び,制御器設計について記述する. する.

2

3.2 ドローンの運動方程式

並進運動は以下の式のようになる.

$$M^w \ddot{P}_b = {}^w R_B e_z {}^B f_T - e_z Mg \tag{2}$$

ただし、 ${}^{w}P_{b}$ は基準座標系から見たドローンの位置,また ${}^{w}R_{b}$ は機体座標系から基準座標系への変換,つまり ZYX オイラー角の変換行列を表している.また $e_{z} = (0,0,1)^{T}$ である.回転運動はオイラーの方程式より,式 3 のように なる.

$$I^{b}\dot{\omega} + {}^{b}\omega \times (I^{b}\omega) = {}^{B}\tau_{T} \tag{3}$$

ただし,機体座標系での回転速度ベクトル^bω と ZYX オ イラー角の時間微分の関係は以下に表される.

$${}^{b}\omega = T_{\omega}\dot{\Theta} \tag{4}$$

ただし, T_{ω} , Θ は以下の通りである.

$$T_{\omega} = \begin{bmatrix} -\sin\theta & 0 & 1\\ \cos\theta\sin\phi & \cos\phi & 0\\ \cos\theta\cos\phi & -\sin\phi & 0 \end{bmatrix}, \Theta = \begin{bmatrix} \psi\\ \theta\\ \phi \end{bmatrix}$$

3.3 カメラの数式モデル

図 5 にカメラ, 観測物体, 仮想的な画像平面の関係を示す [?] u₀ および v₀ は画像中央の位置であり, u, v は画像上で

図5 カメラモデル (side)

の観測物体の位置であり *u*,*v* を特徴点と呼ぶ. *f* は焦点距 離を表している. 図 5 より三角形の相似の関係から, 観測 物体のカメラ座標系での位置と特徴点は以下のような関係 で表される.

$$\begin{cases}
 u = s_{\alpha} f \frac{c_{xT}}{c_{zT}} + u_0 \\
 v = s_{\alpha} f \frac{c_{yT}}{c_{zT}} + v_0
\end{cases}$$
(5)

3.4 カメラの動きと観測物体の動きの関係

カメラ座標系が並進速度 $c\dot{P} = (c\dot{x}, c\dot{y}, c\dot{z})^T$ かつ回転速 度 $c\omega = (c\omega_x, c\omega_y, c\omega_z)^T$ で回転するとき,カメラ座標系 から見た,観測物体の速度 $cP_T = (c\dot{x}_T, c\dot{y}_T, c\dot{z}_T)^T$ は次式 で表される.ただし, $S(cP_T)$ は歪対象行列を表している.

$${}^c\dot{P}_T = S({}^cP_T){}^c\omega - {}^c\dot{r} \tag{6}$$

式 (5) を時間 *t* で 1 階微分したものと式 (6) より,カメラ 座標系の並進,回転速度と観測物体の特徴点の速度は以下 のように表される.

$$\dot{\xi} = J_u^{\ c} V \tag{7}$$

ただし, $\dot{\xi} = (\dot{u}, \dot{v})^T, {}^cV = ({}^c\dot{x}, {}^c\dot{y}, {}^c\dot{z}, {}^c\omega_x, {}^c\omega_y, {}^c\omega_z)^T$

$$J_{u} = \begin{bmatrix} -\frac{f}{c_{ZT}} & 0 & \frac{\tilde{u}}{c_{ZT}} & \frac{\tilde{u}\tilde{v}}{f} & -(f + \frac{\tilde{u}^{2}}{f}) & \tilde{v} \\ 0 & -\frac{f}{c_{ZT}} & \frac{\tilde{v}}{c_{ZT}} & f + \frac{\tilde{v}^{2}}{f} & -\frac{\tilde{u}\tilde{v}}{f} & -\tilde{u} \end{bmatrix}$$
(8)

であり, $u-u_0 = \tilde{u}, v-v_0 = \tilde{v}$ である.

次に式 (7) を用いて,目標物体追従のための制御器を設計 する.

4 制御系設計

4.1 目標物体追従のための制御器設計

式 (7) より,特徴点の速度と基準座標系から見たドローンの速度との関係を導き出し,力と速度の双対性より目標物体追従のコントローラを導出する.式 (7) の ^{c}V と基準座標系から見たカメラ座標系の並進,回転速度 $^{w}V_{c} \in \mathbb{R}^{6\times 1}$ との関係は次式で表せる.

$$^{c}V = R^{-1w}V_c \tag{9}$$

ただし, $R, {}^wR_c$ は次式であり, wR_b は ZYX オイラー角 の変換行列を表している.

$$R = \begin{bmatrix} {}^{w}R_c & \mathbb{O}_{3\times3} \\ \mathbb{O}_{3\times3} & {}^{w}R_c \end{bmatrix}, \qquad (10)$$

$${}^{w}R_{c} = {}^{w}R_{b}{}^{b}R_{c} = {}^{w}R_{b} \begin{bmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$
(11)

カメラはドローンの重心位置に付いていると仮定している ので, ${}^{w}V_{c} = {}^{w}V_{b}$ が成り立つ.ここで*T*は並進速度,回 転速度を合わせたベクトルである.よって,式(7)は以下 のように変形できる.

$$\dot{X} = J_u{}^c V = J_u R^{-1w} V_c = J_u R^{-1w} V_b \tag{12}$$

ここで,速度と力の双対性より,式 (12) から以下の式が成 り立つ.ただし, f_{ξ} は画像上の物体に加わる仮想的な力, ${}^{w}F_{T}$ はドローンに加わる力であり, ${}^{w}F_{T} = ({}^{w}f_{T}, {}^{w}\tau_{T})^{T}$ である.

$$RJ_u^T f_{\xi} = {}^w F_T \tag{13}$$

またドローンの推力 f_T は各プロペラの推力を用いて次のように表される.

$${}^{w}F_{T} = RB_{T}F \tag{14}$$

ただし、それぞれの行列は以下のようになる.

$$B_{T} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ l & -l & -l & l \\ -l & -l & l & l \\ 1 & -1 & 1 & -1 \end{bmatrix}$$
(15)
$$F = \begin{bmatrix} f_{1} \\ f_{2} \\ f_{3} \\ f_{4} \end{bmatrix}$$
(16)

よって,式(13)式(14)より,プロペラの各推力 F は以下 のように求まる.

$$F = B_T^+ J_u^T f_{\xi} \tag{17}$$

$$=B_T^+ J_u^1 f_{\xi} \tag{18}$$

ただし, B_T^+ は B_T の擬似逆行列であり, f_{ξ} は以下のように定める. K_p, K_d はゲインである.

$$f_{\xi} = \begin{bmatrix} K_p(u_0 - u) - K_d \dot{u} \\ K_p(v_0 - v) - K_d \dot{v} \end{bmatrix}$$
(19)

4.2 姿勢制御の制御器設計

ドローンの姿勢制御には各プロペラの推力に以下の値を 与える.ただし, $K_{px}, K_{py}, K_{dx}, K_{dy}$ はゲインである.

$$\begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{bmatrix} = LK \begin{bmatrix} \phi \\ \theta \\ \dot{\phi} \\ \dot{\phi} \\ \dot{\theta} \end{bmatrix}$$
(20)

ただし, L,K は以下の通りである.

5 シミュレーション

ドローンの初期姿勢を $(\phi_0, \theta_0, \psi_0) = (0, 0, 0)$,特徴点 の座標を $(u_0, v_0) = (0, 0)$ とし,式 (??)の姿勢制御器, 式 (18)の目標物体追従の制御器を足し合わせたものを制 御器とする.また各推力には重力と釣り合う力を常に加 えている事とする $(f_1 + f_2 + f_3 + f_4 = Mg)$.この条件 の下,ドローンの姿勢を保ちながら,特徴点の座標を画 像の中心値である (u, v) = (160, 100) に追従させたい. このときにゲインを $(K_{px}, K_{py}, K_{dx}, K_{dy}, K_f, K_u, K_v) =$ (10, 10, 2.5, 2.5, 0.01, 0.01, 0.01) と設計したときの,シミュ レーション結果を図 6,図 7 に示す.シミュレーション結 果より姿勢を保ちながら,特徴点は目標値に追従している ことが分かる.

6 おわりに

本研究では、シミュレーション上で、ドローンの姿勢を 保ちながら特徴点を目標値に追従させる制御器を設計し た.今回設計した制御器を実際のドローンに実装する予定 であったが、ANS1PIC 制御基板による制御システムの構 築はプロポの指令値を反映させた姿勢の PD 制御システム の構築までしか行えていない.今後は ANS1PIC 制御基板 にカメラを接続し、目標物体の画像上の座標を取得するシ ステムの構築をする必要がある.

参考文献

- [1] 国土交通省:『老朽化の現状,老朽化対策の課題』.
- [2] 国土交通省:『道路橋定期点検要領』.2014,6
- [3] 長谷川 知恭, 佐藤 淳『飛行制御研究用無人機 GAV-5 の開発』.計測自動制御学会東北支部第 294 回研究集 会,2015,5