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1 Introduction

The noncooperative game has been studied for a long
time. An equilibrium point of the noncooperative game
proposed by J.F. Nash [7] is called a Nash equilibrium,
in which no one can improve his/her utility by chang-
ing his/her strategy unilaterally. The game is called
the Nash equilibrium problem (NEP) or the Nash game.
On the other hand, when several of the players, called
the leaders, has the initiative, or it can decide before
the other players, called the followers, make decision,
the game is called the multi-leader-follower (multi-L/F)
game. Applications of multi-L/F games are for exam-
ple, deregulated electricity markets or telecommunica-
tion markets. For the details, see [6].
A special case of the game is the Stackelberg game,

or the single-leader-follower game, which has been stud-
ied for many years. The bilevel game may be refor-
mulated as a mathematical program with equilibrium
constraints (MPEC), which is a single-level optimiza-
tion problem and has also been studied extensively in
recent years. The multi-leader-follower game may also
be reformulated as an equilibrium problem with equilib-
rium constraints (EPEC), in which each leader’s prob-
lem is an MPEC. However, finding an equilibrium point
of an EPEC is much more difficult than solving a sin-
gle MPEC, because each leader’s MPEC contains those
variables which are common to other players’ MPECs.
Moreover, the constraints of each leader’s MPEC de-
pend on the other rival leaders’ strategies.
For solving multi-L/F games or EPECs, Hu and

Fukushima [5] proposed a variational inequality (VI)
formulation approach to multi-L/F game. However, the
model does not contain the inequality constraints in the
followers’ optimization problems. Then, Tsuyuguchi [9]
extended the VI formulation to deal with followers’ in-
equality constraints, and then showed convergence of
the approach to a Clarke stationary equilibrium, which
is one of the solution concepts of an EPEC.
In this paper, we propose a Gauss-Seidel type algo-

rithm with a penalty technique for solving an EPEC as-
sociated with the multi-leader-follower game, and then
suggest a refinement procedure to obtain more accurate
solutions. Furthermore, we discuss convergence of the
algorithm to a strong stationary equilibrium, which is
a stronger solution concept than the Clarke stationary
equilibrium, and report some numerical results to illus-
trate the behavior of the algorithm.

2 Multi-L/F game and its reformulation

In this section, we first recall some fundamental concepts
about multi-L/F games. For details, refer to the survey
paper by Hu and Fukushima [6].
Consider a multi-L/F game consisting of N lead-

ers and one follower. The leaders are labeled ν(=
1, ..., N). Let xν ∈ ℜnν denote the strategy vector, and
θν : ℜn+m → ℜ denote the cost function of leader ν
and be C2. Let y ∈ ℜm and γ : ℜn+m → ℜ denote
the strategy vector and the C3 cost function of the fol-
lower, respectively. Here, n := n1 + · · ·+ nN . For given
x−ν := (x1, ..., xν−1, xν+1, ..., xN ) ∈ ℜn−nν , leader ν

solves the following optimization problem:

min
xν∈ℜnν

θν(xν , x−ν , y)

s.t. gν(xν) ≤ 0, hν(xν) = 0,
(1)

where gν : ℜnν → ℜrν and hν : ℜnν → ℜsν are C2 func-
tions.
For a given tuple of the leaders’ strategies x :=

(x1, ..., xN ) ∈ ℜn, the follower solves the following opti-
mization problem:

min
y∈ℜm

γ(x, y)

s.t. u(x, y) ≤ 0,
(2)

where u : ℜn+m → ℜp is a C3 function. We assume that
problem (2) is convex with respect to y. We define a
basic solution concept of the multi-L/F game.

Definition 1 A tuple of strategies (x∗, y∗) is called a
L/F Nash equilibrium if those strategies simultaneously
achieve global optimality in the players’ optimization
problems.

However, to find a L/F Nash equilibrium is not easy in
general. We extend the solution concepts which will be
defined later.
The multi-L/F game can be regarded as a bilevel game

which consists of the leaders’ upper level problems and
the follower’s lower one. To follow the reformulation
approach for the single-L/F game, we reformulate the
multi-L/F game as an EPEC, or a single level game.
Because of the convexity of the follower’s problem

(2), it can be equivalently dealt with using the Karush-
Kuhn-Tucker (KKT) conditions under an appropriate
constraint qualification, which can be written as the
mixed complementarity system:

ψ(x, y, z, λ) = 0,
0 ≤ z ⊥ λ ≥ 0,

(3)

where

ψ(x, y, z, λ) :=

[
∇yγ(x, y) +∇yu(x, y)λ

u(x, y) + z

]
∈ ℜm+p.

Here, λ ∈ ℜp is the Lagrange multiplier and z ∈ ℜp is
a vector of slack variables for the inequality constraints
u(x, y) ≤ 0.
By incorporating (3) into each leader’s optimization

problem (1), we have the following parametrized math-
ematical program with complementarity constraints
(PMPCC) for leader ν:

PMPCCν(x−ν) : min
xν ,y,z,λ

θν(xν , x−ν , y)

s.t. gν(xν) ≤ 0, hν(xν) = 0,
ψ(xν , x−ν , y, z, λ) = 0,
0 ≤ z ⊥ λ ≥ 0.

Thus the multi-L/F game is reduced to an EPEC, which
seeks an equilibrium point that simultaneously achieves
optimality in (PMPCCν(x−ν))Nν=1. We call (y, z, λ) ∈
ℜm+2p shared variables, because all leaders have those
as decision variables.
Now, we define an extended solution concept of

the multi-L/F game called an S-stationary equilibrium
point.

Definition 2 A tuple (x∗, y∗, z∗, λ∗) ∈ ℜn+m+2p is
called a strong (S-) stationary equilibrium point of



the EPEC (or multi-L/F game), if for each leader ν,
(xν,∗, y∗, z∗, λ∗) is an S-stationary point (see [8]) of
PMPCCν(x−ν,∗).

3 Method for multi-L/F games

In this section, we propose a numerical method for
multi-L/F games by way of EPECs. First, we elabo-
rate on a Gauss-Seidel type penalty method for EPECs
and then a refinement procedure to obtain more accu-
rate solutions.

3.1 Gauss-Seidel penalty method

In leader ν’s problem PMPCCν(x−ν), the complemen-
tarity constraints can be replaced with the equality con-
straints by means of the FB-function ϕ : ℜ2 → ℜ, which
is defined by

ϕ(a, b) := a+ b−
√
a2 + b2.

Specifically, PMPCCν(x−ν) can be rewritten as

Pν(x−ν) : min
xν ,y,z,λ

θν(xν , x−ν , y)

s.t. gν(xν) ≤ 0, hν(xν) = 0,
Ψ(xν , x−ν , y, z, λ) = 0,

where

Ψ(xν , x−ν , y, z, λ) :=


ψ(xν , x−ν , y, z, λ)

ϕ(z1, λ1)
...

ϕ(zp, λp)

 .
However, Pν(x−ν) is nonsmooth because of the nondif-
ferentiability of the FB-function. To avoid this difficulty,
we use the property that the squared FB-function is dif-
ferentiable everywhere [2]. Define the penalty function
associated with problem Pν(x−ν) by

θ̄νρ(x
ν , x−ν , y, z, λ) := θν(xν , x−ν , y) +

ρ

2

[
rν∑
i=1

[gνi (x
ν)]2+

+

sν∑
i=1

|hνi (xν)|2 +

m+2p∑
j=1

|Ψj(x
ν , x−ν , y, z, λ)|2

 ,
where ρ > 0 is a penalty parameter and [gνi (x

ν)]+ :=
max{0, gνi (xν)}. The penalized problem for leader ν’s
problem Pν(x−ν) is written as

P
ν

ρ(x
−ν) : min

xν ,y,z,λ
θ̄νρ(x

ν , x−ν , y, z, λ),

which is a differentiable unconstrained optimization
problem. The proposed algorithm is formally stated as
follows.

Algorithm I: Gauss-Seidel Penalty Method

1. Set a tolerance ε > 0, and the maximum number of
major iterations Kmax. Choose an initial point

x(0) := (x1,(0), ..., xN,(0)), y(0), z(0), λ(0),

and an increasing positive sequence {ρk}. Set k :=
0.

2. Set ν := 1.

3. Solve P
ν

ρk
(x̄−ν,(k)) to obtain the solution

w̄ν,(k+1) := (x̄ν,(k+1), ȳν,(k+1), z̄ν,(k+1), λ̄ν,(k+1)),

where

x̄−ν,(k) := (x̄1,(k+1), ..., x̄ν−1,(k+1), x̄ν+1,(k), ..., x̄N,(k)).

4. If ν < N , set ν := ν+1 and go to Step 3. Otherwise,
go to Step 5.

5. If

max

{
max

1≤i≤rν
[gνi (x̄

ν,(k+1))]+, max
1≤i≤sν

|hνi (x̄ν,(k+1))|,

max
1≤i≤m+2p+q

|Ψi(w̄
ν,(k+1), x̄−ν,(k))|

}
< ε

holds for all ν, terminate.

6. If k < Kmax, set k := k + 1 and go to Step 2. If
k = Kmax, terminate.

In Step 3, we use the notation ȳν , z̄ν , λ̄ν to distinguish
among leaders, because all leaders do not necessarily
output the same solutions y, z, λ.

To argue convergence of the algorithm with ε = 0 and
Kmax = ∞, we give some results below.

Lemma 1 Let ρk → ∞, and for each ν, w̄ν,(k) →
w̄ν,(∞), x̄−ν,(k) → x̄−ν,(∞). Assume that the sequence
{θ̄νρk

(w̄ν,(k+1), x̄−ν,(k))} of the objective values of prob-

lems P
ν

ρk
(x̄−ν,(k)) is bounded above. Then, w̄ν,(∞) is a

feasible solution to Pν(x̄−ν,(∞)), i.e., w̄ν,(∞) is feasible
to PMPCCν(x̄−ν,(∞)).

Lemma 2 Assume that the conditions of Lemma 1
hold. Suppose the sequence {(x̄ν,(k), x̄−ν,(k), ȳν,(k),
z̄ν,(k), λ̄ν,(k))}Nν=1 generated by the algorithm converges

to
{
(x̄(∞), ȳν,(∞), z̄ν,(∞), λ̄ν,(∞))

}N

ν=1
, and the function

γ is strongly convex for any fixed x. Then the shared
variables ȳν,(k) converge to the same limit ȳ(∞) inde-
pendent of ν. Furthermore, if the linear independence
constraint qualification (LICQ) holds at ȳ(∞) in the fol-
lowers’ problems (2), then λ̄ν,(k) also converge to the
same limit λ̄(∞).

We showed that if the algorithm converges, then the
limit is an S-stationary point of the EPEC under appro-
priate assumptions.

Theorem 1 Let ρk → ∞. Suppose that, for each
ν = 1, ...,M , (w̄ν,(k), x̄−ν,(k)) → (x̄(∞), ȳν,(∞), z̄ν,(∞),
λ̄ν,(∞)), where w̄ν,(k+1) is a local optimal solution of

problem P
ν

ρk
(x̄−ν,(k)) for each k. Assume that the condi-

tions in Lemmas 1 and 2 hold. Moreover, suppose that,
for each ν, the MPCC-LICQ for PMPCCν(x̄−ν,(∞)) and
the upper level strict complementarity (ULSC) (see [8])
hold at the limit point (x̄ν,(∞), ȳν,(∞), z̄ν,(∞), λ̄ν,(∞)).
Then, those limit points are identical and the limit point
is an S-stationary point of PMPCCν(x̄−ν,(∞)) for each
ν. Consequently, it constitutes an S-stationary equilib-
rium point of the multi-L/F game.

3.2 Refined Gauss-Seidel method

From the numerical viewpoint, the squared penalty
method has some drawbacks. The main issue is that
the penalized problem becomes ill-conditioned as the
penalty parameter ρk increases, and so it is difficult to
find an accurate solution even for a sufficient large k.
Nevertheless, it may provide useful information about
active sets in the complementarity constraints. In fact,
if the active sets are correctly identified, we may further
refine the solution produced by Algorithm I. To this
end, we present another Gauss-Seidel based method for
obtaining a more accurate solution.

Let w̄∗ = (w̄1,∗, ..., w̄N,∗) be a solution obtained by



Algorithm I, and define the index sets:

Īν := {i | |z̄ν,∗i | < δ, |λ̄ν,∗i | ≥ δ },
J̄ ν := {i | |z̄ν,∗i | < δ, |λ̄ν,∗i | < δ },
K̄ν := {i | |z̄ν,∗i | ≥ δ, |λ̄ν,∗i | < δ },

(4)

where δ > 0 is a sufficiently small number. We assume
that those index sets are independent of ν, i.e., Ī :=
Īν , J̄ := J̄ ν , K̄ := K̄ν for all ν. We define the following
optimization problem for each leader ν:

P̃ν(x−ν) : min
xν ,y,z,λ

θν(xν , x−ν , y)

s.t. gν(xν) ≤ 0, hν(xν) = 0,
ψ(xν , x−ν , y, z, λ) = 0,
zi = 0, λi ≥ 0 (i ∈ Ī),
zi = 0, λi = 0 (i ∈ J̄ ),
zi ≥ 0, λi = 0 (i ∈ K̄).

Now the algorithm is stated as follows.

Algorithm II: Refined Gauss-Seidel Method

1. Set the maximum number of iterations Kmax, and
the step size tolerance ε′ > 0. Let the initial point
w̃(0) := (w̃1,(0), ..., w̃N,(0)) be the last point ob-
tained by Algorithm I. Set k := 0.

2. Set ν := 1.

3. Solve P̃ν(x̃−ν,(k)) to obtain the solution w̃ν,(k+1),
where

x̃−ν,(k) := (x̃1,(k+1), ..., x̃ν−1,(k+1), x̃ν+1,(k), ..., x̃N,(k)).

4. If ν < N , set ν := ν+1 and go to Step 3. Otherwise,
go to Step 5.

5. If ||w̃ν,(k+1)−w̃ν,(k)|| < ε′ holds for all ν, go to Step
6.

6. If k < Kmax, set k := k + 1 and go to Step 2. If
k = Kmax, terminate.

If a tuple of solutions (w̃1,∗, ..., w̃N,∗) is ob-
tained and, for each leader ν, the KKT conditions

of P̃ν(x̃1,(k+1), ..., x̃ν−1,(k+1), x̃ν+1,(k+1), ..., x̃N,(k+1)) are
sufficiently satisfied for all ν, then the algorithm suc-
cessfully terminates and the point is a stationary equi-
librium.

4 Application

In this section, we introduce an application of multi-L/F
games. In the middle of 1990s, deregulation of electric-
ity markets by governments stated mainly in Europe
and the United States. Since then, the study of elec-
tricity markets has become popular [1, 3]. We intro-
duce a wholesale market of electricity in terms of multi-
L/F games or EPECs. The model we discuss is a sim-
ple model of competitive bidding under some macroeco-
nomic regulation, which is an extension of [5].
In this model, we assume that there are two electricity

firms labeled ν ∈ {I, II} and one market maker, called
the independent system operator (ISO), who tries to
collect the balance of demand and supply of electric-
ity by paying the bid costs under the market clearing
mechanism. The ISO also determines the price of elec-
tricity, and then sells it to consumers. The two firms are
competing each other for market power in an electricity
network with M nodes (consumers), and determine the
bid price.
Let xν := (xν1 , ..., x

ν
M ) ∈ ℜM be the bid parame-

ter of firm ν in which the firm indirectly determines
how much it sells the electricity to each node. Let
y := (yI1, ..., y

I
M , y

II
1 , ..., y

II
M ) ∈ ℜ2M be the quantity

of electricity, where yνi means how much quantity of
electricity the ISO buys from firm ν and supplies it
to consumer i. The bid price function of firm ν is

defined by bν(xν , y) :=
∑M

i=1 x
ν
i y

ν
i . We assume that

two firms produce the electricity up to quantities aI

and aII, and then send it to all nodes at the price
pi(y

I
i , y

II
i ) := αi − βi(y

I
i + yIIi ), where αi and βi are pos-

itive constants. The revenue for the ISO by selling elec-
tricity to node i is given as the cumulative sum from
zero to yIi + yIIi . Thus, the ISO makes a profit given by

qi(y
I
i , y

II
i ) := αi(y

I
i + yIIi )−

βi

2 (y
I
i + yIIi )

2.
Firm ν needs to pay the transaction cost according

to the bid parameter xνi , which is defined by tν(xν) :=
1
2

∑M
i=1 τ

ν
i (x

ν
i )

2 with a constant τνi > 0, and tries to
maximize its revenue by bidding from the ISO minus
transaction costs. Then the optimization problem of
firm ν can be written as follows:

min
xν∈ℜM

tν(xν)− bν(xν , y)

s.t. xν ∈ Xν ,
(5)

where Xν is a nonempty strategy set.
On the other hand, the ISO also tries to maximize

its revenue by selling electricity to consumers. Further-
more, we assume that some economic interventionism by
governments works in the market to maintain the equi-
librium between the quantities of electricity at each node
i, or to reflect the ratio of quantities aI and aII, which is

denoted by ζi
2

(
yI
i

aI − yII
i

aII

)2

, where ζi > 0 is the interven-

tionism parameter. Hence, the optimization problem of
ISO can be written as follows:

min
y∈ℜ2M

∑M
i=1

[
ζi
2

(
yI
i

aI − yII
i

aII

)2

− qi(y
I
i , y

II
i )

]
+bI(xI, y) + bII(xII, y)

s.t.
∑M

i=1 y
I
i − aI ≤ 0,

∑M
i=1 y

II
i − aII ≤ 0,

y ≥ 0.

By the strong convexity of the ISO’s problem, the solu-
tion is uniquely determined for any given x by Lemma
2. Furthermore, the response is piecewise linear for the
variable x.

5 Numerical experiments

In this section, we present some numerical results to
demonstrate the validity of the proposed method. We
coded the algorithm in MATLAB 9.1.0 (2016b). We
consider a multi-L/F game consisting of three leaders
and one follower. Leader ν ∈ {I, II, III} solves the fol-
lowing optimization problem:

min
xν∈ℜ3

1
2 (x

ν)⊤Hνx
ν +

∑N
ν′=1
ν′ ̸=ν

(xν)⊤Gν,ν′xν
′
+ (xν)⊤Dνy

s.t. Aνx
ν ≤ bν .

On the other hand, the follower solves the following op-
timization problem:

min
y∈ℜ3

1
2y

⊤My + q⊤y −
∑3

ν=1(x
ν)⊤Dνy

s.t. c⊤y +
∑3

ν=1(d
ν)⊤xν + a ≥ 0,

where the matrix M is positive definite. The dimension
of xν and y are three, respectively. Due to space lim-
itations, we omit the numerical data (see [4]) and the
reformulation. We set ε = δ = 10−2 in Algorithm I and
(4), and ε′ = 10−6 in Algorithm II. Since the follower’s
problem is strongly convex, the solution y is uniquely
determined for any x by Lemma 2.
To confirm the validity of the algorithm, we show the



maximum distance between the N leaders’ shared vari-
ables yI, yII and yIII. The maximum distance was re-
duced to 0.0051 by using Algorithm I and the number
of iterations was 5. Then we proceeded to Algorithm
II, and then the maximum distance was further reduced
to 4.4136e-07 after 22 iterations. Furthermore, we con-
firmed that Algorithm II found more accurate solutions
and the S-stationarity condition was satisfied at the final
point obtained by Algorithm II. The behavior of Algo-
rithms I and II are shown in Figure 1. The red curve rep-
resents the sequence {maxν ̸=ν′ ||yν,(k) − yν

′,(k)||} gener-
ated by the algorithms, which shows linear convergence.
Next we applied a successive over-relaxation (SOR)

method, which is a variant of the Gauss-Seidel method,
to improve the convergence speed. Specifically, in Step 3
of Algorithms I and II, we changed w̄ν,(k+1) and w̃ν,(k+1)

to

w̄ν,(k+1) := w̄ν,(k) + ωk(ŵ
ν,(k+1) − w̄ν,(k)),

w̃ν,(k+1) := w̃ν,(k) + ωk(ŵ
ν,(k+1) − w̃ν,(k)),

respectively, where ŵν,(k+1) is the solution obtained
by the Gauss-Seidel method. In general, the relax-
ation parameter ωk is chosen so that ωk ∈ (0, 2), and
ωk = 1.5 (k ∈ {1, 2, ...}) is often used in practice.
The sequence generated by the algorithms converges

to the same point as before, and the total number of
iterations is reduced to 17 when ωk are chosen as ωk =
1 + (0.95ωk−1 − 1) with ω0 = 1.5, as shown by the blue
curve in Figure 1.
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Figure 1 Maximum distance between shared variables
max
ν ̸=ν′

||yν,(k) − yν
′,(k)||

Next we consider the electricity model introduced in
Section 4. The strategy set Xν in (5) is given by Xν :=
{xν ∈ ℜM | 0 ≤ xν ≤ ξν}. The numerical data are found
in the first example in [5]. The number of nodes M is
2. The variables of the players are, xν ∈ ℜ2 for firm ν,
and y ∈ ℜ4 for ISO.
When we set the interventionism parameters as ζ =

(0.05, 0.05), we obtained an S-stationary equilibrium
point with Algorithms I and II after 11 iterations, and
the final distance between (yI,∗, λI,∗) and (yII,∗, λII,∗)
was 1.0795e-05.
We observe the ratio of the electric supplies by the

two firms yIi : yIIi at each node i. In this example, the
ratio of the total electric supplies is aI : aII = 1 : 1.5.

Let yI and yII denote yI := (yI,∗1 , yI,∗2 ), yII := (yI,∗3 , yI,∗4 ).
As Table 1 shows, we found that the ratios yI1 : yII1 and

Table 1 ratio of quantities
ζ (0.05, 0.05) (0.05, 0.5) (0.5, 0.05) (0.5, 0.5)

yI1 : yII1 1 : 1.36601 1 : 1.38229 1 : 1.3823 1 : 1.39730
yI2 : yII2 1 : 1.62862 1 : 1.61336 1 : 1.6134 1 : 1.59831

yI2 : yII2 are getting closer to 1 : 1.5 as ζi, i = 1, 2,
increase. The objective function value of each firm was
almost unchanged in these three cases.; However, that
of ISO was is increased as the sum of ζi increases.

6 Conclusion

In this paper, we proposed a numerical method for
solving multi-L/F games based on the penalty method
and the nonlinear diagonalized Gauss-Seidel method.
The method consists of two phases. The first phase
of the method may be regarded as the identification
of the active sets in the complementarity constraints,
and the second phase is to find more accurate solu-
tions with the active sets identified in the first phase.
We discussed convergence of the Gauss-Seidel penalty
method to an S-stationary equilibrium point under the
feasibility, MPCC-LICQ, and ULSC assumptions. Fur-
thermore, we confirmed the validity of the algorithm
through numerical experiments. In particular, we ap-
plied the SOR method and succeeded to reduce compu-
tation time.
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