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Abstract

In this paper, linear control of ABS (antilock braking
system or antiskid braking system) without using ap-
proximation around equilibrium point is proposed. In
conventional study of ABS using linear control, approx-
imation around equilibrium point is used. It makes cal-
culation easier. On the other hand, slip rate and friction
coefficient will become constant. This may occur control
error. Controller is designed to minimize the quadratic
cost function, which is model of LQ controller. The
robust stability for car velocity and friction coefficient
between wheel and road surface are guaranteed by using
polytopic representation. By using descriptor represen-
tation and linear fractional transformation(LFT), the
system which is affine with respect to car velocity and
friction coefficient can be obtained. Then, the problem
is formulated as solving a finite set of Linear Matrix In-
equalities (LMIs). Finally, the robust stability and the
robust performance are guaranteed. The effectiveness of
the proposed method is illustrated by simulations.

1 Introduction

An objective of ABS is to prevent car from occur-
ring slip by wheel lock in brake operation at low friction
road surface or when sudden baking. ABS was first de-
veloped for braking system of aircrafts(antiskid braking
system). If aircraft make landing without ABS, wheels
will wear out badly because of friction between road and
the wheels. The wheels have to get changed often be-
cause it wears off quickly, and it cost a lot. If worse, the
wheels will burst and an atrocious accident may happen.
Because of these reasons, ABS was developed to give an
optimal braking operation. This is that, until aircraft
stops, the brake is operated not to stop the wheels per-
fectly. ABS(antilock braking system) loaded to cars are
developed using aircraft’s ABS. An objective of car’s
ABS is to prevent car from occurring slip by wheel lock
in brake operation at low friction road surface or when
sudden baking. It is well known that when the slip rate
is nearly around 0.2, friction coefficient between wheel
and road surface are high enough[1]. By keeping the slip
rate to 0.2, braking distance and skidding can be pre-
vented. Since the slip rate depends on car velocity and
wheel velocity, ABS dynamic model depends on veloc-
ity and friction coefficient between wheel and the road
surface.
Many study have been done about ABS such as nonlin-

ear PID control[2], PID-type fuzzy control[3], and slid-
ing mode control[4]. However, nonlinear control is not
easy to be adapted. On the other hand, by adapting
linear control and represent plant as state equation, it
is able to design feedback system easily. Also, it is easy
to evaluate designed controller. Study of ABS using lin-
ear control such as gain scheduling control[5] and LQ
control[6] are done. In conventional study of ABS using
linear control, approximation around equilibrium point
is used. It makes calculation easier. On the other hand,
slip rate and friction coefficient will become constant.

This may occur control error.
In this paper, linear control of ABS without using ap-

proximation around equilibrium point is proposed. The
robust stability for car velocity and friction coefficient
between wheel and road surface are guaranteed by using
polytopic representation. Then, the robust controller is
obtained by solving a finite set of Linear Matrix Inequal-
ities (LMIs). Finally, the effectiveness of the proposed
method is illustrated by simulations.

2 Control Target and Modeling

2.1 Control Target

The model of the simplified ABS experimental device
used in this study is shown in Fig.1.

Figure 1 Simplified Diagram of the ABS Experimental
Device

Table 1 The Physical Parameters
parameter　 symbol unit

Angular velocity of the upper wheel ω1 [rad/s]
Angular velocity of the lower wheel ω2 [rad/s]

Radius of the upper wheel r1 [m]
Radius of the lower wheel r2 [m]

Moment of inertia of upper wheel J1 [kgm2]
Moment of inertia of lower wheel J2 [kgm2]

Normal force Fn [Nm]
Brake torque τ1 [Nm]
Slip rate λ

Friction coefficient between wheels µ(λ)

It is the quarter car model. The upper wheel simulates
the car wheel, and the lower wheel simulates the road
surface. Slip rate λ is taken as an output, and the brake
torque τ1 is taken as an input. By controlling the brake
torque, control law is designed to keep slip rate at the
optimal rate 0.2. To design the control law, differential
equation expressing the dynamics of slip rate is required.
In this section, the process to derive the linearized dif-
ferential equation is shown.



2.2 Dynamical Equation

The dynamical equations of the rotational motion of
the upper and lower wheels are shown by Eq(1) and
Eq(2).

J1ω̇1 = Fnr1µ(λ)− τ1 (1)

J2ω̇2 = −Fnr2µ(λ) (2)

The slip rate is defined by Eq(3) as the function of car
velocity and wheel velocity.

λ =
r2ω2 − r1ω1

r2ω2
=

V − Vw

V
(3)

The following equation is obtained from Eq(3).

λ̇ = − 1

V
V̇w +

Vw

V 2
V̇ (4)

From Eq(1), Eq(2), Eq(3), and Eq(4), Eq(5) is derived.

λ̇ = − 1

V
(d1 + d2λ)µ(λ)−

1

V
d3τ1 (5)

d1 =
Fnr1
J1

+
Fnr2
J2

, d2 = −Fnr2
J2

, d3 = − 1

J1

In this study, friction coefficient µ(λ) is given as poly-
nomial approximation Eq(6)

µ(λ) = α
{p0 + p1(λ− a) + p2(λ− a)2}
1 + q1(λ− a) + q2(λ− a)2

= α
c1 + c2λ+ p2λ

2

c3 + c4λ+ q2λ2
(6)

The following equation is given by substituting Eq(6)
to Eq(5).State variable x(t) and input u(t) are given as
x(t) = λ,u(t) = τ1

λ̇ = Ax(t) +Bu(t) (7)

A = −α
d1c2 + d2c1 + (d1p2 + d2c2)λ+ d2p2λ

2

V (c3 + c4λ+ q2λ2)

B = − 1

V
d3

2.3 Feedforward

In this study, target-value tracking control using feed-
forward is considered. Let’s consider the following sys-
tem. {

ẋ(t) = Ax(t) +Bu(t)

yref (t) = Cx(t)
(8)

Controller Eq(9) which adding feedforward from target-
value realize tracking control regarding target-value
yref (t) = yc

ref .

u(t) = Kx(t) +Hyref (t) (9)

Let yref (t) = yc
ref ,x(t) = x∗,u(t) = u∗, and consider

steady-state value condition ẋ∗ = 0 in system(8){
0 = Ax∗ +Bu∗

yc
ref = Cx∗ (10)

system(10) can be rewritten as follow.[
A B
C 0

] [
x∗

u∗

]
=

[
0
1

]
yc

ref (11)

Here, yc
ref = x∗, C = 1,u∗ = −A

Bx∗.x∗,u∗ which satisfy
system(11)is given as follow.[

x∗

u∗

]
=

[
A B
C 0

]−1 [
0
1

]
yc

ref

=

[
1
u∗

]
yc

ref (12)

Let define fluctuation from steady-state value x∗,u∗ as
x̃(t) = x(t)− x∗,ũ(t) = u(t)− u∗

ũ(t) = Kx̃(t)

u(t) = Kx̃(t) + u∗ (13)

From Eq.(13), let new state variable and input be x̃(t) =
λ− λ∗,ũ(t) = τ1 − τ∗1 .

2.4 State Space Representation

In order to track the output of the system to the
optimal value without error, one integrator is added
to the state variable. Let state variable be x̃e(t) =
[
∫
(λ − λ∗)dt λ − λ∗]T . Then, the state equation is

obtained as follows.

E ˙̃xe(t) = Aex̃e(t) +Beũ(t) (14)

E =

[
1 0
0 V (c3 + c4λ+ q2λ

2)

]
Ae =

[
0 1
0 −α{d1c2 + d2c1 + (d1p2 + d2c2)λ+ d2p2λ

2}

]
Be =

[
0

−d3(c3 + c4λ+ q2λ
2)

]
2.5 Descriptor representation

To use polytopic representation, descriptor represen-
tation is applied to Eq(14). Let descriptor variable be

x̃d(t) = [x̃e(t)
T λ̇ u(t)] and derive the following de-

scriptor equation.

˙̃xd(t) = Adx̃d(t) +Bdũ(t) (15)

Ed =

 1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


Ad =

 0 1 0 0
0 0 1 0
0 Ad32 Ad33 Ad34

0 0 0 −1


Bd = [ 0 0 0 1 ]

T

Ad32 = −α{d1c2 + d2c1 + (d1p2 + d2c2)λ+ d2p2λ
2}

Ad33 = −V (c3 + c4λ+ q2λ
2)

Ad34 = −d3(c3 + c4λ+ q2λ
2)

2.6 Linear Fractional Transformation(LFT)

Only matrix Ad has uncertain parameters. However,
high order terms of slip rate λ exist. So, LFT is applied
to transform high order terms of slip rate λ to first order



term. Matrix Ad can be represented by Eq(16). Here,
An is the matrix which contains first order terms of λ,
and Bδ(I − ∆Dδ)

−1∆Cδ is the matrix which contains
high order term of λ.

Ad = An +Bδ(I −∆Dδ)
−1∆Cδ (16)

An =

 0 1 0 0
0 0 1 0
0 An32 An33 An34

0 0 0 −1


Bδ = [ 0 0 1 0 ]

T

Cδ = [ 0 −αd2p2λ −V q2λ −d3q2λ ]

Dδ = 0,∆ = λ

An32 = −α{d1c2 + d2c1 + (d1p2 + d2c2)λ}
An33 = −V (c3 + c4λ)

An34 = −d3(c3 + c4λ)

Eq(15) can be expressed as Eq(17) by using An, Bδ, Cδ,
Dδ, and ∆.

Ed
˙̃xd = Anx̃d +Bδwδ +Bdũ

Zδ = Cδx̃d +Dδwδ (17)

wδ = ∆zδ

Let x̃l(t) = [x̃d(t)
T Zδ(t)]

T be new descriptor variable,
and the new descriptor equation be Eq.(18).

El
˙̃xl(t) = Alx̃l(t) +Blũ(t) (18)

El =

[
Ed 0
0 0

]
, Bl =

[
Bd

0

]
Al =

[
An Bδ∆
Cδ Dδ∆− I

]
3 Controller Design

3.1 LQ controller

About linear state equation

ẋ(t) = Ax(t) +Bu(t), (19)

state feedback controller be

u(t) = Kx(t), (20)

close loop system is as follows.

ẋ(t) = (A+BK)x(t) (21)

Following cost function for upper equation is considered

J =

∫ ∞

0

(x(t)TQx(t) + u(t)TRu(t))dt (22)

Here, Q,R are weight matrices as follows.

Q = QT ⪰ 0 , R = RT ≻ 0 (23)

3.2 Polytopic Representation

Slip rate λ and car velocity V are nonlinear variables.
In this study, robust stability is considered. Fluctuation
range of slip rate λ and car velocity V are given as follow.
Also, α is given as polytopic representation.

Θ = {[θ1, θ2, θ3] : θi ∈ {θi, θi}}(i = 1, 2, 3)

θ1 = λ, θ2 = V, θ3 = α

Θ1 = (θ1, θ2, θ3), Θ2 = (θ1, θ2, θ3), · · ·,Θ8 = (θ1, θ2, θ3)

3.3 LMI Condition

From 3.1 and 3.2, if there exist Xl and Yl satisfying
the following LMI conditions, the system is stabilized
by gain Kl = YlXl

−1 [6].

minimize : γ

subject to : Xl ≻ 0 (24) −He{Al(Θi)Xl +BlYl} Xl(Q
1
2 )T Y T

l RT

Q
1
2Xl I 0
RYl 0 R


≻ 0 (i = 1, 2, ..., 8) (25)[

W I
I X

]
≻ 0 (26)

trace(W ) < γ (27)

Xl =

[
X 0 0
X21 X22 X23

X31 X32 X33

]
, Yl = [ Y 0 0 ]

4 Simulation

In this section, comparison between proposed model
and conventional model is illustrated by simulation. In
the simulation, robust LQ controller is used. Here, con-
ventional model is given first, then weight matrices for
both models, and finally simulations are illustrated.
State space equation of conventional model is given as
below. Here, T = 1

V .

˙̃xe(t) = Acx̃e(t)Bcũ(t) (28)

Ac =

[
0 1
0 −T{(d1 + d2λ

∗) d
dλµ(λ

∗) + d2µ(λ
∗)}

]
Bc =

[
0

−Td3

]
Parameter box is given as follows.

Θ = {[θ1, θ2] : θi ∈ {θi, θi}}(i = 1, 2) (29)

θ1 = T, θ2 = α

Θ1 = (θ1, θ2), Θ2 = (θ1, θ2), Θ3 = (θ1, θ2), Θ4 = (θ1, θ2)

LMI conditions are given as follows.If there exist Xl and
Yl satisfying the LMI conditions below, the system is
stabilized by gain K = YcX

−1
c [6].

minimize : γ

subject to : X ≻ 0 (30) −He{Ac(Θi)Xc +BcYC} Xc(Q
1
2
c )T Y T

c RT

Q
1
2
c Xc I 0
RYc 0 R

 ≻ 0

(i = 1, 2, 3, 4) (31)[
Z I
I X

]
≻ 0 (32)

trace(W ) < γc (33)

Weight matrices and the upper bound of the cost func-
tion of proposed model are as follows.

Q = diag([ 100 10 0 0 0 ]), R = 0.01

γ = 33.15654



Weight matrices and the upper bound of the cost func-
tion of conventional model are as follows.

Qc = diag([ 100 10 ]), R = 0.01

γc = 31.92369

In this simulation, braking starts from 50[km/h] on dry
road and frozen road.
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Figure 2 Car Velocity On Dry Road
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Figure 3 Car Velocity On Dry Road
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Figure 4 Car Velocity On Dry Road

5 Conclusion

In this study, linear control of ABS without using
approximation around equilibrium point is proposed.
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Figure 5 Car Velocity On Dry Road

Since the car velocity and friction coefficient affects
the dynamics, a method is designed to consider vari-
ation of these parameters. To linearize the model, de-
scriptor representation and linear fractional transforma-
tion (LFT), polytopic representation is applied for ABS.
Friction coefficient is given as function of slip rate λ
by polynomial approximation. The process to obtain
dynamical model, controller, and LMI conditions are
shown in this paper. From simulation, slip rate is con-
trolled around the optimal value 0.2 on frozen road. By
comparing conventional model and proposed model, the
result is almost the same. However, on dry road, braking
distance of conventional model was a little shorter than
proposed model. It is presumed that by using descriptor
representation and LFT to proposed model, conserva-
tiveness get higher and readiness decreased.
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