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Abstract

Recently, an approach to derive solutions of Hamilton-
Jacobi equation with high accuracy, called stable man-
ifold theory, is proposed. So far some researches about
nonlinear optimal control via stable manifold are sub-
jected. However, research of robustness for nonlinear
optimal control is not reported. This report proposes a
new framework to enhance robustness to the nonlinear
optimal control system designed by the stable manifold
method using the inverse problem of optimal regulator
and linear matrix inequality. To verify the effectiveness,
the swing-up and stabilization problem for the Acrobot
is considered. The Acrobot is underactuated mechanical
system, which is composed of two links. The system is
typical problem in nonlinear control theory. Simulation
results are presented in order to evaluate the control
performance.

1 Introduction

The underactuated mechanical systems is the system
which has actuators less than drive parts. It is effec-
tive for lowering the cost, weight reduction and sav-
ing energy to achieve the control objective by a few
actuators. However, it is very difficult for underactu-
ated mechanical systems with nonlinear characteristics
to control. Such as auto mobile, aircraft, helicopter,
watercraft and spacecraft are known as underactuated
mechanical systems. The Acrobot, which is discussed
in this thesis, is one of the representative example and
considered as typical problem for evaluation of control
performance in nonlinear control theory. Swing up and
stabilized control of the Acrobot is attained by hybrid
control of partial feedback linearization and linear con-
trol theory[l]. There are other approaches to conduct
swing up control such as reinforcement learning, which
is the method by which manipulator obtain the behavior
by itself [2], energy feedback [3], backstepping method
[4]. Furthermore, attitude control of the Acrobot by
sum of square method is discussed [5]. In this paper,
we propose an approach about swing up control with
framework of nonlinear optimal control theory via stable
manifold theory [6]. Stable manifold theory is method to
obtain the solution of Hamilton-Jacobi equation in high
accuracy. Nonlinear optimal control theory using sta-
ble manifold theory is applied to aircraft stall recovery
[7], pilot induced oscillation restraint [8] and magnetic
levitation system [9]. Also, the approach is applied to
swing up control of the Acrobot [10].

Actuality systems have uncertainties such as parame-
ter fluctuating by aging, disturbance, system noise and
depending on the environment. There are some report
about nonlinear optimal control theory even though the
theory, which guarantee robustness against uncertain-
ties, is not reported. To guarantee robustness against
uncertainties is very important problem in terms of
safety. Therefore, robust control theory recently has
been researched. A method via linear matrix inequali-
ties(LMI) is one of robust control theory [11].

In this report, nonlinear optimal control via stable
manifold theory, LMI, inverse problem of optimal con-
trol are applied to nonlinear controller in order to guar-
antee robustness against uncertainties of parameters.

2 Inverse Problem of Optimal Control

In this section, inverse problem is reviewed. Linear
system and evaluated function of quadratic form are
considered as Eq.(1).

Y . 2=Ax+ Bu

<o T (1)
J:/ (" Qx + v Ru)dt

0
Where z € R” represents state variables, u € R™ rep-
resents control inputs, @ = QT > 0, R > 0 shows
weight matrix. Inverse problem of optimal regulator
is the method which derive weight matrix of evaluated
function J that is minimized by feedback gain K when

control input v = —Kuz of state feedback is given for
linear system 3.
2.1 Inverse problem of optimal regulator [12]

Let control input v = — K is applied to Eq.(1). Then
weight matrix of minimized evaluated function is ob-
tained. First, we assume following contents.
Assumption 1

1. Linear system X is controllable.

2. Closed loop system & = (A — BK)x is stable.

3. A weight matrix R is identity matrix.

Following contents are given when (A, B) is possible to

stabilize.

(A) Feedback gain K is optimal and stable.

(B) (C,A) is observable also P = 0 and C' that satisfy
PA+ ATP — PBR'BTP +CTC =0 and K =
BT P exist

Following matrix is introduced.

r_ [PA+ATP-KTK PB-K"
= BTP - K 0

(2)
_ {CT
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Eq.(2) is obtained by transformed Riccati equation and
K = BTP. Therefore, symmetrical solution of Riccati

equation P that satisfy PA + ATP — PBR™'BTP +
CTC =0 and K = BT P satisfy following condition.

I'(P) =0 (3)

Weight matrix @ is derived from the above result as
follows.
1) To derive symmetric solution P which satisfy Eq.(3).

2) Calculating following matrix with solution P in pro-
cedure 1) to derive Q.

Q=K'K-PA-A"P (4)



3) To confirm (C, A) is observable when @ is parti-
tioned as Q@ = CTC. (However procedure 3) is
unnecessary when feedback gain K satisfy A(A) —
AMA — BK) # 0. A(+) represents eigenvalues of ma-
trix.

3 Nonlinear Optimal Control Theory

In this section, a nonlinear partial differential equation
called Hamilton-Jacobi equation which is used nonlinear
optimal control problem is derived. Let nonlinear sys-
tem X, is considered.

Dd = f(x) + g(x)u (5)

Where © € R™ represents state variables, u € R™ rep-
resents control inputs. f(x) = 0 is formed at equivalent
point (z = 0). Then evaluated function Eq.(1) is con-
sidered for Eq.(5). Following Hamiltonian is obtained
by using dynamic programming.

an

Hx, V() ,u) = a—vx +27Qz + v Ru
= P09 (1) + 9(a) + 27 Qu + R

Then V() is function which is V(z) > 0, V(0) = 0.
A optimal input »* which minimize evaluated function
is derived by partial differentiating Hamiltonian by w
because Hamiltonian is downward convex function for
u.

Ox

Hamilton-Jacobi equation is obtained by substituting a
optimal input u* for Eq.(6).

4 The Acrobot System

The Acrobot consists of first link in free motion, sec-
ond link in active motion by actuator. In this section,
mathematical model of the Acrobot is described.

4.1 Mathmatical Model

A model of the Acrobot is shown as Fig.1. An ac-
tuator is mounted between first link and second link.
Let q;,m;,J;,L;,Lcq, (i = 1,2) represent angle, weight,

1
u*t = —gRilg(x)
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Figure 1 Model of the Acrobot
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moment of inertia, length, distance between center of
gravity and axis of rotation of first link and second
link respectively. g represents gravitational acceleration.
Kinematic energy K (g, ¢) and potential energy U(g) are
as follows.

) 1, .
K(q,q) = §qTM(qQ)q

(8)
U(q) = bicos(q1) + bacos(q1 + ¢2) , (q = [‘h} ) 8

q2

Then M(qz) given as Eq.(9).

_|a1 4+ a2 4 2a3cos(q2)  as + azcos(qz)
M(g2) = as + azcos(q2) as

a1 = m1L%1 + mgLi + J1, as = mgL%Q + Js
az =maL1Lca, by = (mi1Lo1 +mali)g

(9)

by = maLcog

Kinematic equation is derived as Eq.(10) due to kine-
matic equation of Euler-Lagrange d(0L/0¢) = (0L/0q)
when Lagrangean L(q,q) = K(q,q) — U(q).

(10)

M(@)i+ Niadi+ o) = ||
N(g,§) = [—asdQSiH((h)

o —a3(q1 + ¢2)sin(qz)
aszqisin(gs) 0

—bisin(q1) — besin(g1 +
C(q) = [ _(gggin(qj + EJZ) CD)}

Motor torque 7 for second link is described as Eq.(11) by
taking counter electromotive force and viscous friction
into consideration.

(11)

Parameters of the Acrobot refer to document [10]. Each
parameters shown as Table 1.

T =nKpcu — p2¢2

Table 1 System parameters of the Acrobot

m [kg] 0.851 malkg] 0.420
L;[m] 0.162 Lo[m] 0.210
T[] 20.017 Lo ] 0.076
Tilkg m%] | 702 x 102 || Jolkg m?] | 4.24 x 107
n[/] 48/14 Kpc[N-m/V] 0.0196
p2[N -m-s] 0.015 g[m/s?] 9.81

4.2 State Equation

In this section, state equation is derived from Eq.(10).
Nonlinear state equation is obtained as Eq.(12) due to
state variable z = [q1, q2, g3, qu]T = [#1, 72, 73, 74]T.

&= f(z)+ g(x)u 12

- I3

f(w) = I y
| —M(g2)~* (N(g.4)q + C(q) anzj
- 0

0

g(z) = 1 0

_M(QQ)_ |:’I'LKDC:|

Furthermore, linear state equation derived by linearizing
Eq.(12) origin as Eq.(13).

& = Ax + Bu (13)
T 0 10
Ao | 0 0 0o 1
= 119.8539 —16.4912 0  2.0820
111251 731614 0 —5.9071
T
0
B=1_713%
| 20.2528




5 Controller Design

In this research, nonlinear controller which has robust-
ness for uncertainty of parameters is designed. The ap-
proach of proposed method is shown as follows.

(i) To design robust LQ controller by using Eq.(13).

(ii) Deriving weight matrix by solving inverse problem.

(iii) To solve nonlinear optimal control problem with
weight matrix in procedure (ii).

5.1 Robust LQ Control

Regulator problem is considered, which is minimized
following evaluated function. Weight matrix is deter-
mined by trial and error.

J= / (2T Qx + u” Ru)dt (14)
0
0.005 0 0 0
0 0.001 0 0

Q=1 o 0 005 0
0 0 0 0.01

,R=1

In this research, robust controller is designed on the as-
sumption that uncertainty of friction coefficient po. po
is defined as follows.

Vs € [p2 T2] . (:=[0.0147 0.0153)) (15)
Then matrix A is given as Eq.(16).
VA(u2) € [A1 Asg] , (= [A(p2) A(m)])  (16)

Where Eq.(16) is arbitrary matrix, so infinite LMI con-
ditions is required but it is generally known that they
can be replaced into finite LMI conditions as Eq.(17)
[13]. A state feedback gain is defined as K, = FX~! by
minimizing v in the range where X = X7 = 0 and F
which satisfies LMI condition Eq.(17)

minimize : 7y

subject to :
He[4;X + BF] XQf FTR
QrX Iisa O4x1| >0
L RF O1xa R
(i=1,2)
I4ZX4 14)24 =0, trace[Z] <y (17)

A feedback gain which is given by solving Eq.(17) is
described as Eq.(18).

K, = [460.8546 180.1654 94.4013 34.3566] (18)
5.2 Inverse Problem

In this section, weight matrix is derived with Eq.(18).
First, following matrix inequality is introduced.

PA+ AP, — K'K” P,B-K,
ipr) = [ BT'P. - K, 0
T
— [(H (C, 0]<0 (19)

C)- is a matrix which satisfies Q),. = C’TT C,.. Symmetric
solution P, is derived by solving Eq.(19)

2.1711 0.8167 0.4456 0.1593
0.8167 0.3076 0.1676 0.0600
0.4456 0.1676 0.0914 0.0327
0.1593 0.0600 0.0327 0.0117

P. =10* x (20)

Furthermore, a weight matrix is derived as follows by
Eq.(21) with result of Eq.(20).

Q,=—-P.A— ATP, + P,BBTP, (21)

16.8159 7.3526 0.3830 0.0428

| 73526 3.2171 0.1676 0.0186
Qr = 0.3830 0.1676 0.3974 0.0568
0.0428 0.0186 0.0568 0.0086

5.3 Nonlinear Robust Optimal Control

Nonlinear optimal control problem is solved by using
weight matrix @, which is given section 5.2. Hamilto-
nian H(x,0V/0x,u) is obtained as Eq.(22).

1, 20 ) <D (10 4 gapu)

+27Q,x +u"Ru , (R=1)

(22)

Then optimal control input is given as Eq.(23), which
minimizes evaluated function.

1 poviz)’

w=—39@) 5,

(23)

Where p is defined as (9V/dx)T for function V.
Hamilton-Jacobi equation is given as Eq.(24).

=f(x)"p— 1pTg(fv)gcJ(x)Tp +27Q,x

H (2, p) ;
=0

(24)

Hamilton’s canonical equation is given as Eq.(25) for
Eq.(24).
. OH'(x,p) . OH'(x,p)
= s ol 25
i oy P . (25)

A solution p of Hamilton’s canonical equation equivalent
to partial difference 0V/0x of a solution of Hamilton-
Jacobi equation, which is known in [6]. Therefore, opti-
mal control input as Eq.(7) is replaced as follows.

* 1 * *
ut=—=g(x")p

; (26)

Where z*,p* is represented solutions of Hamilton’s
canonical equation. As the result of above swing up
trajectory is shown as Fig.2. A red line represents nom-
inal swing up trajectory. It is possible that the Acrobot
system is destabilization when the system is controlled
by a red line trajectory only. Therefore blue line trajec-
tories are calculated for robustness which is concerned
in error of trajectory. Accuracy of calculation is ver-
ified by Hamiltonian value. Only if trajectory is so-
lution of Hamilton-Jacobi equation, Hamiltonian value
becomes sufficiently small. Hamiltonian value of Fig.2
is 6.1 x 1075 at the most.

6 Simulation Result

The optimal input u* is approximated by a polynomial
to simulate of swing up control of the Acrobot. An
initial condition is determined as x(0) = [r, 0, 0, 0]
for simulation. The initial condition represents situation
which is first link and second link that is hang down
together. Time response of state variable and input are
shown in Fig.3, 4 respectively. Achievement of swing up
control can be confirmed from the simulation result.
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Figure 2 Trajectory of swing up motion.
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Figure 3 Time response of state variable.

7 Conclusion

In this research, we proposed a new approach of non-
linear control which is guaranteed robustness for uncer-
tainty of parameters. It is based on characteristic that
Hamilton-Jacobi equation is equivalent to Riccati equa-
tion in region of linear only. Furthermore, a proposed
method is applied for swing up control of the Acrobot.
Performance of the controller is verified on simulation.
We make an experiment for verification of control per-
formance as a future objective.
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