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Abstract

In this paper, gain scheduled H2 controller for ac-
tive magnetic bearing (AMB) system is designed. A
rotor has gyroscopic effect, imbalance and resonance.
The gyroscopic effect and imbalance depend on angu-
lar velocity. The robust stability for angular velocity is
guaranteed by using polytopic representation. Descrip-
tor representation and linear fractional transformation
(LFT) are adopted to obtain an equivalent polytopic
representation of AMB system which has multi-affine.
Frequency weight is introduced to suppress vibration by
resonance. The problem is formulated as solving a finite
set of linear matrix inequalities (LMIs). The effective-
ness of the proposed method is illustrated by simulation.

1 Introduction

Active magnetic bearing (AMB) system levitates rotor
with contact-free by electromagnetic force. It is possible
for AMB to rotate at high rotation velocity. However,
when the rotor rotates, the gyroscopic effect is gener-
ated. The rotor is vibrated by precession caused by it.
Since it depends on the angular velocity of the rotor,
as the angular velocity of the rotor increases, the vibra-
tion becomes large. Gain scheduled (GS) controller[1]
and GS controller via parameter depending Lyapunov
function[2] for gyroscopic effect have been reported.
If there exists imbalance of the rotor, the rotor vi-

brates. The imbalances are two types, which are static
imbalance and couple imbalance. The static imbalance
occurs because the center of gravity shifts from the cen-
ter of the rotor. The couple imbalance occurs because
inertial axis shifts from rotation axis. The imbalances
also depend on the angular velocity and are represented
as periodic disturbances[3]. Therefore, the control for
AMB is required to consider the vibration caused by
not only the gyroscopic effect but also these imbalances.
Some literatures for AMB with imbalance have been re-
ported. The H∞ disturbance and an initial state un-
certainty attenuation (DIA) controller for imbalance re-
garded as frequency disturbance has been reported[4].
The GS sliding mode controller for the static imbalance
has been designed[5]. 2-DOF controller based on MIMO
decoupling technique, adaptive feedforward algorithm
and Notch filter has been designed[6]. The rotor has res-
onance. This vibrates the rotor when natural frequency
is the same as the rotation velocity of the rotor. Some
studies for the resonance using flexible rotor model have
been reported[7].
In this study, GS H2 controller via parameter depen-

dent Lyapunov function for AMB is designed. The rotor
has the gyroscopic effect, the static and the couple im-
balance and the resonance. The object of this study is
to suppress vibrations caused by them. The frequency
weight is introduced to suppress the vibration caused
by the resonance. The dynamics of AMB dependents
on angular velocity of the rotor. The robust stability
for this parameter is guaranteed theoretically by using
polytopic representation. Descriptor representation and

linear fractional transformation (LFT) are adopted to
obtain an equivalent polytopic representation of AMB
system which has the only first-order terms of the vary-
ing parameter. The problem is formulated as solving
a finite set of linear matrix inequalities (LMIs). The
effectiveness of the proposed method is illustrated by
simulation comparing with LQ controller.

2 Modeling

2.1 Motion equations

An experimental device used in this study is a 4-axis
controlled type AMB with symmetrical structure. Four
pairs of electromagnets are located in the horizontal and
the vertical of both ends of the rotor. Gap sensors are
also located in the horizontal and the vertical of both
ends of the rotor. They can measure distance between
the electromagnet and the rotor. Coordinates X, Y and
Z are introduced to obtain equations of motion as shown
Fig. 1. Let p[rad/s], fj [N] and gj [m] be rotational ve-
locity of the rotor, levitation force of the electromagnets
and displacement from the equilibrium point of the ro-
tor, respectively. Here, subscript j ∈ {lv, rv, lh, rh}.

Fig. 1 Coordinates X, Y and Z

These subscripts l, r, v, hmean the left-hand side, right-
hand side, vertical direction and horizontal direction, re-
spectively. The imbalances of this study are the static
imbalance and the couple imbalance. Here, ε and τ are
distance between the center of gravity and the center
of the rotor and angle between the inertial axis and the
rotation axis. Physical parameters of AMB are shown
in Table. 1. The following assumptions are assumed to

Table 1 Physical parameters
Parameter Symbol Unit
Mass of rotor m [kg]
Acceleration of gravity g [m/s2]
Distance between center of gravity lml [m]
and the left-had side of rotor
Distance between center of gravity lmr [m]
and the left-had side of rotor
Distance between rotor and sensor in g0 [m]
the equilibrium state
Moment of X axis Jx [Nm]
Moment of Y axis Jy [Nm]
Suction force coefficient k
Constant current of vertical direction Ilv , Irv [A]
Constant current of horizontal direction Ihv , Irh [A]



derive the equations of motion.
• The rotor is a rigid body.

• All electromagnets have the same electrical charac-
teristic.

• The center of the gravity shifts in a radical direction
from the center of the rotor.

Equations of the translational motion of the directions
Y and Z and equations of the rotational motion of the
axes Y and X are given by Eq.(1)-(4).

mÿ = flh + frh +mεp2 cos(pt+ κ) (1)

mz̈ = −mg + flv + frv +mεp2 sin(pt+ κ) (2)

Jy θ̈ = Jxpψ̇ + lmlflv − lmrfrv

+(Jy − Jx)τp
2 sin(pt+ λ) (3)

Jyψ̈ = −Jxpθ̇ − lmlflh + lmrfrh

+(Jy − Jx)τp
2 cos(pt+ λ) (4)

Here, y and z are displacement of the directions Y and
Z. θ and ψ are rotation angle around the axes Y and
Z. κ and λ are the initial values of the phase. The dis-
placement y and z and the rotation angle θ and ψ are
represented as Eq.(5)-(6) by using gj .

y = glh +
(grh − glh)lml

lml + lmr
, z = glv +

(grv − glv)lmr

lml + lmr
(5)

θ ≈ glv − grv
lml + lmr

, ψ ≈ grh − glh
lml + lmr

(6)

The levitation force of the electromagnetic is given by
Eq.(7)

fj = k
(I0 + Ij + ij)

2

(gj − g0)2
− k

(I0 − Ij − ij)
2

(gj + g0)2
(7)

Here, I0, Ij and ij are bias current, steady-state current
and control input, respectively. Since the position of the
rotor does not change significantly, Eq.(7) is linearized
at the equilibrium point as follows.

fj = k
4I0Ij
g20

+Kxjgj +Kijij (8)

Kxj = k
4(I20 + I2j )

g30
,Kij = k

4I0
g20

(9)

Eq.(10)-(13) are obtained by Eq.(1)-(9).

g̈lv = aKxlvglv + cKxrvgrv − pdlml ˙glh + pdlml ˙grh
+aKilvilv + cKirvirv + p2α1 + p2lmlβ1 (10)

¨grv = cKxlvglv + bKxrvgrv − pdlmr ˙glh + pdlmr ˙grh
+cKilvilv + bKirvirv + α1p

2 − p2lmrβ1 (11)

g̈lh = aKxlhglh + cKxrhgrh + pdlml ˙glv − pdlml ˙grv
+aKilhilh + cKirhirh + p2α2 − p2lmlβ2 (12)

¨grh = cKxlhglh + bKxrhgrh − pdlmr ˙glv + pdlmr ˙grv
+cKilhilh + bKirhirh + p2α2 + p2lmrβ2 (13)

a =
1

m
+
l2ml

Jy
, b =

1

m
+
l2mr

Jy
, c =

1

m
− lmllmr

Jy

d =
Jx

Jy(lml + lmr)

α1 = ε sin(pt+ κ), β1 = (1− Jx
Jy

)τ sin(pt+ λ)

α2 = ε cos(pt+ κ), β2 = (1− Jx
Jy

)τ cos(pt+ λ)

2.2 State space representation

From Eq.(10)-(13), state space representation is ob-
tained by as follows.{

ẋ(t) = Ax(t) +B1w(t) +B2u(t)
y(t) = C2x(t)

(14)

x(t) = [glv grv glh grh ˙glv ˙glv ˙glv ˙glv]
T

u(t) = [ilvirv ilh irh]
T

w(t) =

 ε sin(pt+ κ)
τ sin(pt+ λ)
ε cos(pt+ κ)
τ cos(pt+ λ)

 , A =

[
O I
A1 pA2

]

B1 =

[
O

p2B11

]
, B2 =

[
O
B21

]
, C = I8×8

Here, matrices A1，A2，B11 and B21 are constant ma-
trices obtained by Eq.(10)-(13).

3 Frequency weight

The frequency weight that has the peak of a gain at
the natural frequency is introduced for the state vari-
able to suppress the vibration that is caused by the
resonance. A frequency weight function for the state
variable Wf (S) is given as follow.

Wf (s) = I8×8W (s),W (s) =WC(Is−WA)
−1WB (15)

The frequency weight function Wf (S) is represented as
the state space representation (16).

ẋw(t) = Awxw(t) +Bwx(t)

z̄(t) = Cwxw(t) (16)

Here, xw(t) is the state of the frequency weight func-
tion Wf (s). Let xf (t) be a new state variable xf (t) =
[x(t)T xw(t)

T ]T . Then generalized plant for a extended
system including the frequency weight is as follows.{

ẋf (t) = Af (p)xf (t) +Bf1(p
2)w(t) +Bf2u(t)

zf (t) = Cf1xf (t) +Df12u(t)
(17)

Af =

[
A O
Bw Aw

]
, Bf1 =

[
B1

O

]
, Bf2 =

[
B2

O

]
Cf1 =

[
Wx O
O Cw

O O

]
, Df12 =

[
O
O
Wu

]

Here, zf , Wx ≻ 0 and Wu ≻ 0 are a evaluated output,
weight matrices for the state variable and the input.

4 Transformation into multi-affine

Since the state space representation of the plant model
has the first-order and second-order terms of varying
parameter, it is difficult to use polytopic representation
directly. The system is transformed to an equivalent
system that is multi-affine for p by using descriptor rep-
resentation and linear fractional transformation (LFT).

4.1 Descriptor representation

Matrix Bf1 of Eq.(17) has the second-order terms of
the angular velocity of the rotor. All varying parame-
ter are put into one matrix by expanding dimension of



matrices to apply LFT. The varying parameter p is put
into matrix Afd by defining xd(t) = [x(t) w(t)]T .

Efdẋfd(t) = Afd(p
2)xfd(t) +Bfd1w(t) +Bfd2u(t)(18)

Efd =

[
I O
O O

]
, Afd(p) =

[
Af (p) Bf1(p

2)
O −I

]
Bfd1 =

[
O
I

]
, Bfd2 =

[
Bf2

O

]
4.2 Linear fractional transformation

LFT is adapted to eliminate the products of p. Ma-
trix Afd can be represented as Eq.(19). Here Afdn is a
constant matrix in Afd, and Bδ∆Cδ is a matrix which
contains the first and second-order terms of p in Afd by
choosing appropriate Afdn, Bδ, Cδ and ∆ as follows.

Afd(p) = Afdn +Bδ∆(p)Cδ(p) (19)

Afdn =

[
A0 O O
Bw Aw O
O O −I

]
, Bδ =

[
Bδ0

O
O

]

Cδ(p) = [ A1 O pB11 ] , Bδ0 =

[
I
O

]
∆(p) = diag(p p p p)

Note that Cδ have first-order terms of p. Afdn and Bδ is
constant matrix. Let x̃fd be the new descriptor variable
x̃d = [xTd zTδ ]

T . Descriptor equation is obtained as
follows.

Ẽfd
˙̃xfd(t) = Ãfd(p)x̃fd(t) + B̃fd1w(t) + B̃fd2u(t)(20)

Ẽfd =

[
Efd O
O O

]
, Ãfd(p) =

[
Afdn Bδ∆(p)
Cδ(p) −I

]
B̃fd1 =

[
Bfd1

O

]
, B̃fd2 =

[
Bfd2

O

]
, zδ = Cδxfd(t)

5 Control design

In this section, the GS controller via parameter depen-
dent Lyapunov function is synthesized. The scheduling
parameter is angular velocity of the rotor p. The stabil-
ity of the closed system should be guaranteed theoret-
ically for variation of the angular velocity of the rotor.
The robust stability for the time varying parameter p
is guaranteed by using polytopic representation. The
range of the time varying parameter p is defined by up-
per and lower bound. The objective of this study is to
guarantee the robustness in the following range.

p ∈ [p, p] = [p1, p2] (21)

From Eq.(21), matrix Ãfd is represented by polytopic
representation Eq.(22)

Ãfd = αÃfd(p1) + (1− α)Ãfd(p2), α ∈ [0, 1] (22)

Eq.(22) shows that Ãfd(p) = Ãfd(p1) when p is mini-

mum and Ãfd(p) = Ãfd(p1) when p is maximum. For
Eq.(20), H2 norm from the disturbance w(t) to the eval-
uated output z(t) is given as Eq.(23)

||G||22=
∫ ∞

0

z(t)T z(t)dt (23)

In order to minimize the H2 norm, minimum γ that
satisfy the following conditions are derived. Here, state

feedback controller u = K̃fd(p)x̃fd and feedback gain

K̃fd(p) = Ỹfd(p)X̃fd(p)
−1.

He[Ãfd(p)X̃fd(p) + B̃fd2Ỹfd(p)]− Ẽfd
˙̃Xfd(p) + B̃fd1B̃

T
fd1 ≺ 0 (24)

Ẽfd
˙̃Xfd(p) = (Ẽfd

˙̃Xfd(p))
T ≻ 0 (25)

Cf1Xf (p)C
T
f1 ≺ Z (26)

trace(Z) < γ2 (27)

In view of structure of the matrix Ẽfd, candidates of

Lyapunov matrix X̃fd(p), variable matrix Ỹfd(p) and

Ẽd
˙̃Xfd(p) are restricted as follow.

X̃fd(p) =

[
Xf (p) O O
X21(p) X22(p) X23(p)
X31(p) X32(p) X33(p)

]
(28)

Ỹfd(p) = [ Yf (p) O O ] (29)

Ẽfd
˙̃Xfd(p) =

[
Xf (ṗ)−Xf0 O O

O O O
O O O

]
(30)

In Eq.(24), there exists product of scheduling param-

eter Ãfd(p)X̃fd(p). X̃fd(p) is restricted as Eq.(31).
Then Eq.(24) becomes multi-affine for varying parame-

ter. Xf (p), Ỹfd(p) and Yf (p) are also assigned as follows.

X̃fd(p) = X̃fd0 + pX̃fd1, X̃fd1 =

[
Xf1 O O
O O O
O O O

]
(31)

Xf (p) = Xf0 + pXf1 (32)

Ỹfd(p) = Ỹfd0 + pỸfd1, Yf (p) = Y0 + pY1 (33)

LMI conditions that minimizeH2 norm and stabilize the
system are as follows.

Lemma 1 : If there exist X̃fd(p) and Ỹfd(p)
satisfying this LMIs, the system is stabilized.
minimize :γ2

subject to

Xf (pi) ≻ 0 (34)[
M(pi)− Ẽfd

˙̃Xfd(pi) B̃fdw

B̃T
fdw −I

]
≺ 0 (35)[

Z (Cf1Xf (pi) +Df12Yf (pi))
(Cf1Xf (pi) +Df12Yf (pi))

T Xf (pi)

]
≻ 0

(36)

trace(Z) < γ2 (37)

M(pi) := He[Ãfd(pi)X̃fd(pi) + B̃fd2Ỹfd(pi)], (i = 1, 2)

Gain scheduled controller Kf (p) = Yf (p)Xf (p)
−1 with

framework of the state space representation is obtained.

6 Simulation

In this section, the validity of the proposed method is
illustrated by comparing with LQ controller in simula-
tion. In this study, the range of the angular velocity is
assumed from 0[rad/s] to 2618[rad/s](25,000[rpm]). The
rotor rotates as Fig. 2. The distance between the cen-
ter and the center of gravity of rotor ε = 1.0× 10−6[m]
and the angle of rotation axis to inertia axis τ = 1.75×
10−5[rad]. The initial value of state of the rotor is x(0) =
[−1.5×10−6 1.5×10−6 −1.0×10−6 1.0×10−6 0 0 0 0].
LQ controller is designed at 25,000[rpm]. The frequency
weight function W (s) is as follow.

W (s) =
100.05

s2 + 2.64× 10−2s+ 1.75× 106
(38)



Fig. 2 Angular velocity

Fig. 3 and 4 show the force and the torque that are
caused by the static and the couple imbalance. The
simulation results of the displacements from the equi-
librium point on the vertical and horizontal direction
of the left hand side are shown in Fig. 5 and 6. The
convergence of the rotor controlled by H2 controller is
later than LQ controller. However, H2 controller sup-
presses the vibration that is caused the static and the
couple imbalance than LQ controller.Since the rotor is
more suppressed at about 5 seconds, the effect of the fre-
quency weight is shown. The simulation results of the
input current on the vertical direction of the left hand
side and the right hand side are shown in Fig. 7 and
8. The simulation result of torques that are caused by
the gyroscopic effect are shown in Fig. 9 and 10. The
torques that are caused by the gyroscopic effect are also
suppressed by H2 controller than LQ controller.

Fig. 3 Force cased by static
imbalance

Fig. 4 Torque caused by
couple imbalance

Fig. 5 Displacement gl1 Fig. 6 Displacement gl3

7 Conclusion

In this paper, the gain scheduled H2 controller for the
active magnetic bearing (AMB) is designed. The rotor
has the gyroscopic effect, the imbalances and the res-
onance. This controller is synthesized with parameter
dependent Lyapunov function. The robust stability for
the angular velocity is guaranteed theoretically by using
polytopic representation. Descriptor representation and
linear fractional transformation (LFT) are adopted to

Fig. 7 Control input il1 Fig. 8 Control input il3

Fig. 9 Torque caused by gy-
roscopic effect of Y

Fig. 10 Torque caused by
gyroscopic effect of Z

obtain an equivalent polytopic representation of AMB
system which has multi-affine. The frequency weight is
introduced to suppress the vibration caused by the reso-
nance. The problem is formulated as solving a finite set
of linear matrix inequalities (LMIs). The effectiveness
of the proposed method is illustrated by simulation by
comparing with LQ controller. The proposed method
suppresses the vibration of the rotor than LQ controller
and suppresses more at the natural frequency by the
frequency weight.
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