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1 Introduction

This paper presents a robust LQ control system with
a Model Reference Adaptive Control (MRAC) law for a
jib crane. Our approaches show that the robust control
performance is improved in the presence of nonlinear
uncertainties by adding the MRAC law into the usual
robust control system. The proposed system is synthe-
sized as follows. Firstly, the process to design a robust
LQ controller in the framework of the redundant de-
scriptor representation is considered. The robust LQ
controller is designed for uncertainties, which can be
linearly treated in controller synthesis. Secondly, the
adaptive law with σ-modification is designed into the
robust LQ control loop. The adaptive law is considered
for nonlinear uncertainties. The feature of this study
is to deal with nonlinear uncertainties, which can not
be linearly treated in robust LQ controller synthesis,
by adding the adaptive law. The exponential stability
for the homogeneous system is analyzed though solving
quadratic stability condition. Finally, the effectiveness
of the proposed system is verified by comparing with the
robust LQ controller without the MRAC law in simu-
lations with using the jib crane. The notation A > 0
stands for positive definite matrix. The notation He{A}
stands for AT +A.

2 Problem Formulation

2.1 Robust LQ Controller Synthesis

Consider a continuous time single-input single-output
system described by:{

E(δ)ẋ(t) = A(δ)x(t) +B(δ)u(t)

y(t) = C(δ)x(t),
(1)

E(δ) = E0 +
k∑

i=1

δiEi, A(δ) = A0 +
k∑

i=1

δiAi,

B(δ) = B0 +
k∑

i=1

δiBi, C(δ) = C0 +
k∑

i=1

δiCi,

where E0, Ei, A0, Ai ∈ ℜn×n, B0, Bi ∈ ℜn×m, C0, Ci ∈
ℜp×m. Eq. (1) has affine perturbation in each coefficient
matrix, where δi ∈ ℜ is perturbation elements which sat-
isfy |δi| ≤ 1. Generally, Eq. (1) is transformed to the
state space representation by premultiplying E−1. How-
ever, it is difficult to deal with perturbation elements in
the state space representation when elements δ exist as
not affine by premultiplying E−1. As one of the meth-
ods to solve the problem, the redundancy of descriptor
representation is adopted to more easily deal with ele-
ments δ. Let xd = [xT ẋT u]T be descriptor variables.
Then Eq. (1) is described as:{

Êdẋd(t) = Âd(δ)xd(t) + B̂du(t)

y(t) = Ĉxd(t),
(2)

Êd = diag{I, 0, 0}, Ĉ = [C(δ) 0 0] ,

Âd =

[
0 I 0

A(δ) −E(δ) B(δ)
0 0 −I

]
, B̂d =

[
0
0
I

]
.

By using the descriptor variables, it can be seen that
perturbation elements δ are integrated into one coef-
ficient matrix. One integrator is added inside the con-
trolled loop to track the output of the plant to the refer-
ence without error. For Eq. (2), let y, r, ep := y−r, and
z be observable output, reference, error and integrated
value of ep, respectively. Letting state be x̃d = [xT

d z]T,
the augmented system with integrator is obtained as Eq.
(3).

Ẽd
˙̃xd(t) = Ãdx̃d(t) + B̃du(t) (3)

Ẽd =

[
Êd 0
0 0

]
, Ãd =

[
Âd 0

−Ĉ 0

]
, B̃d =

[
0

B̂d

]
To derive a stabilizing state feedback controller u =
−Kx̃d, the following cost function is considered.

J =

∫ ∞

0

(x̃d(t)
TQx̃d(t) + u(t)TRu(t))dt (4)

Here Q ∈ ℜ ≥ 0 and R ∈ ℜ > 0 are given weighting ma-
trices. To minimize the cost function (4), the following
LMI conditions are considered [1] [2].

Theorem 1 If there exist X11 > 0, Xd and Yd such that
Eq. (5)- (7) hold, the close loop system is stabilized by
the state feedback u(t) = YdX

−1
d x̃d(t) = Y X−1

11 x(t) :=
−Kx(t).
minimize γ subject to;He[ÃdXd − B̃dYd] Xd(Q

1
2 )T Yd(R

1
2 )T

Q
1
2Xd −I 0

R
1
2Yd 0 −I

 < 0, (5)

Xd =

[
X11 0
X21 X22

]
, Yd = [Y 0] (6)[

Z I
I X11

]
> 0, trace[Z] < γ. (7)

Furthermore, through maximizing the trace of X11, J is
minimized.

Note the structure of Lyapunov matrix Xd and that of
variable matrix Yd. Structure of the Lyapunov matrix
Xd is naturally restricted by the structure of matrix Ẽd

because Lyapunov function V (x̃d) = x̃T
d Ẽ

T
d X

−1
d x̃d =

x̃T
dX

−T
d Ẽdx̃d is considered. Synthesized controller is di-

vided as:
K = [ Kx1 · · · Kxn︸ ︷︷ ︸

Kx

KI ], (8)

where KI ∈ ℜ is integral gain and Kx ∈ ℜm×n is state
feedback gain.



2.2 Adaptive Controller with σ-modification Syn-
thesis

Controller synthesis of the adaptive controller with σ-
modification is explained [3]. Consider a single-input
single-output system described by:{

ẋs(t) = Asxs(t) +Bs(u(t) +WTϕ(xs(t)))

ys(t) = Csxs(t),
(9)

where xs is the state vector, u is the input, ys is the out-
put, W is an uncertain parameter vector, ϕ is a known
set of smooth basis function, and matrices As, Bs, Cs

are known. Let

u = unom − uad. (10)

The robust LQ controller:

unom = −Kxxs +KI

∫
(r − ys)dt, (11)

is assumed to be designed in the closed loop system with
W = 0. The reference model for desired system behavior
is described as:{

ẋm(t) = Amxm(t) +Bm

∫
(r − ym)dt

ym(t) = Cmxm(t),
(12)

where Am = As − BsKx is Hurwitz and Bm = BsKI .
uad is an adaptive signal to approximately cancel the
uncertainty WTϕ(xs) that is given by:

uad = Ŵ (t)Tϕ(xs(t)). (13)

Here estimated Ŵ (t) for the uncertain parameter vector
W in Eq. (9) is updated by:

˙̂
W (t) = −γsϕ(xs(t))e(t)

TPBs − σŴ (t), (14)

where γs > 0 is the adaptive gain, σ is σ-modification
gain. Then P > 0 is obtained by solving the following
Lyapunov inequality:

AT
mP + PAm < 0. (15)

Let the tracking error be e(t) = xm(t) − xs(t). The
tracking error dynamics are described by:

ė(t) = Ame(t) +BsW̃ (t)Tϕ(xs(t)), (16)

where W̃ (t) = Ŵ (t)−W is the weight estimation error.
Eq. (14) is equivalent to:

˙̃
W (t) = −γsϕ(xs(t))e(t)

TPBs − σW̃ (t)− σW (t). (17)

Let ζ(t) = [e(t)T W̃ (t)T]T. Then the error dynamics
composed of the tracking error and the weight estima-
tion error is described as follows.

ζ̇(t) =

[
Am Bsϕ(xs(t))

T

−γsϕ(xs(t))B
T
s P −σI

]
︸ ︷︷ ︸

Ā(xs)

ζ(t) +

[
0
−I

]
︸ ︷︷ ︸

B̄

σW

(18)

For Eq. (18), quadratic stability analysis is discussed.
Let Ā(xs) in Eq. (18) be decomposed as follows:

Ā(xs) =

[
Am 0
0 −σI

]
︸ ︷︷ ︸

Ar0

+

[
0 Bsϕ(xs(t))

T

−γsϕ(xs(t))B
T
s P 0

]
︸ ︷︷ ︸

Ar(xs)

.

(19)
In this study, we note that the basis funciton ϕ(xs) =
[ϕ1(xs), · · · , ϕj(xs)]

T is known, and hence we can cal-
culate the domain, i.e., ϕj(xs) ∈ [min(ϕj(xs)),maxϕj(xs)] =

[ϕ
j
, ϕj ]. Then matrix Ar(xs) is described as follows.

Ar(xs) =

n∑
j=1

ϕj(xs)Arj (20)

From Eq. (20), Eq. (19) is rewritten as follows.

Ā(xs) = Ar0 +

n∑
j=1

ϕj(xs)Arj = Ā(ρ(t)) (21)

Eq. (21) is affine with respect to ρ(t) = ϕ(xs(t)). Then
the following relationship is obtained.

ζ̇ = Ā(xs)ζ = Ā(ρ(t))ζ (22)

The exponential stability for the homogeneous system
in Eq. (22) is checked as a feasibility problem of the
following LMI [3].

Theorem 2 The system in Eq. (22) is quadratically
stable for perturbation ρ if there exists X = XT > 0
such that Eq. (23) holds.

Ā(ρ)TX +XĀ(ρ) < 0. (23)

Note that the quadratic stability is analyzed by solving
LMI conditions for all perturbations ρ.

3 Application to Jib Crane

The simplified model of the jib crane used in this study
is shown in Figure 1. The input Ij [A] is a current of the

Figure 1 Simplified diagram of jib crane

jib motor and the output is the horizontal position of the
load. Let the horizontal position of the load and the ver-
tical position of the load be xp(t) = ξ(t) − l(t)sin(γ(t))
and yp(t) = −l(t)cos(γ(t)), where ξ(t) is the position of
the trolley, l(t) is the rope length and γ(t) is the swing
angle of the load, respectively. Note that the hoisting



system of the rope length is controlled by an another in-
dependent controller which is not discussed in this pa-
per. The controller for the horizontal position of the
load must be robust for the rope length l(t) which is
measured. The nonlinear friction Fn shown in Figure
2 is considered in this study. Let the viscous friction,

Figure 2 Friction model

the coulomb friction and the maximum static friction be
fv, fc and fs, respectively. The friction Fn is as follows:

Fn(ξ, ξ̇) =

{
fv ξ̇(t) + sgn(ξ̇(t))fc(ξ) ξ̇(t) ̸= 0

sgn(Ij(t))fs ξ̇(t) = 0,
(24)

where sgn(·) is the signum function. Note the structure
of the coulomb friction coefficient fc(ξ). In our plant,
we have already known that the contact surface and
condition are varied by some experiments. The viscous
friction coefficient fv and the maximum static friction
coefficient fs are a constant, however, these value are
unknown in controller synthesis. Let generalized coor-
dinate be q = [ξ γ]T. The mathematical model of the
jib crane is obtained as follows [4].

E(l)q̈ + F (l̇)q̇ +G(l̈)q = HIj − Fn (25)

E =

[
mj −mpl
−mp mpl

]
, F =

[
0 −2mp l̇

0 2mp l̇

]
, G =

[
0 −mp l̈
0 mpg

]
,

H = [kt 0]
T

For Eq. (25), let state vector be x = [q q̇]T and input
be u = Ij . Then jib system is described as Eq. (1) with
the following Ed, Ad, Bd and C.

Ed =

1 0 0 0
0 1 0 0
0 0 mj −mpl
0 0 −mp mpl

, Ad =


0 0 1 0
0 0 0 1

0 mp l̈ 0 2mp l̇

0 −mpg 0 −2mp l̇

 ,

Bd = [0 0 kt 0]
T
, C = [1 −l 0 0] (26)

One integrator is added inside the controlled loop. Let
y, r, ep := y − r, and z be observable output, reference,
error and integrated value of ep, respectively. Letting

state as xp = [xT z]T, matrices Êd, Âd and B̂d of the
augmented system with integrator are obtained as fol-
lows.

Êd =


1 0 0 0 0
0 1 0 0 0
0 0 mj −mpl 0
0 0 −mp mpl 0
0 0 0 0 1

 , Âd =

[
Ad 04×1

−C 0

]
,

B̂d = [0 Bd] (27)

Note that there exists the product of uncertain param-
eter into matrix Ê−1

d Âd. Hence, let x̃d = [xT z q̈T]T as
descriptor variables. Then the jib system is described
as Eq. (3) with the following Ẽd, B̃d and Ãd.

Ẽd = diag{1, 1, 1, 1, 1, 0, 0}, B̃d = [0 0 B̂d]
T,

Ãd =



0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
−1 l 0 0 0 0 0

0 mp l̈ 0 2mp l̇ 0 −mj mpl

0 −mpg 0 −2mp l̇ 0 mp −mpl


(28)

By introducing the descriptor variable, it can be seen
that only matrix Ãd linearly depends on uncertain pa-
rameters l, l̇ and l̈. Here, the parameter box (29) is de-
fined by lower bounds and upper bounds of parameter
l, l̇ and l̈.

Θ = {θ = [θ1, θ2, θ3]
T : θi ∈ {θi, θi}}, θ1 = l, θ2 = l̇, θ3 = l̈

(29)

The lower bounds and upper bound of l, l̇ and l̈ are as-
sumed as θ1 = l ∈ [0.1, 0.7], θ2 = l̇ ∈ [−0.2609, 0.2609], θ3 =

l̈ ∈ [−2.0218, 2.0218] from some experiments. Then the

matrix Ãd is described as follows:

Ãd = Ãd0 +

3∑
i=1

θiÃdi. (30)

To derive the stabilizing state feedback controller, the
cost function (4) is considered. For the redundant de-
scriptor system (28), the state feedback controller is ob-
tained by solving LMI conditions shown in Theorem 1
at each vertex of matrix Ãd. Let weighting matrices Q
and R be as (31). The robust LQ controller is obtained
as (32).

Q = diag[2000 500 100 100 100 0 0], R = 1 (31)

K = [ 0.1127 0.2957 0.1228 0.1327︸ ︷︷ ︸
Kx

| −0.0236︸ ︷︷ ︸
KI

] (32)

Then the obtained controller gain K is divided into the
state feedback gain Kx ∈ ℜ1×4 and the integral gain
KI ∈ ℜ.
From here, adaptive controller is designed. Let con-

trolled plant as follows:

As = E−1
d Ad =

0 0 1 0
0 0 0 1
0 −mpg

M 0 0
0 −mjg

Ml 0 0

, Bs = E−1
d Bd =

 0
0

1
M kt
1
Mlkt

,
(33)

where M = 1/(mj − mp). The reference model with
Am = As + BsKx, Bm = BsKI stabilized by the ob-
tained state feedback controller K is employed. Note
that uncertainties of l̇ and l̈ are not considered in the
reference model since there become many vertices in
Theorem 2. Adaptive law with σ-modification (14) is
employed. The matrix P is obtained by through solv-
ing Eq. (15) for uncertainty of l which exists in ma-
trix Am. ϕ(xs(t)) ∈ ℜ4×1 is the known set of smooth
basis function. In this study, the nonlinear uncertainty
WTϕ(xs(t))) is supposed as the nonlinear friction Fn(ξ, ξ̇)



shown in Eq. (24). The nonlinear friction Fn(ξ, ξ̇) in-
volves not the swing angle of the load γ(t) and its ve-
locity γ̇(t) but the position of the trolley ξ(t) and its

velocity ξ̇(t) by some experiments. The coulomb fric-
tion is considered as the function of the trolley position.
The viscous friction coefficient is the unknown constant
in controller synthesis. Thus, we considered that it is
appropriate to choose the basis function for fv ξ̇(t) and

sgn(ξ̇(t))fc(ξ). Hence, region of basis function is de-
cided on considering the position of the trolley ξ and its
velocity ξ̇. Let the basis function be

ϕ(x̂s) = [ϕ1(ξ), 0, ϕ3(ξ̇), 0]
T ∈ [min(ϕ(x̂s)),maxϕ(x̂s)].

(34)

where ϕ1(ξ) = ξ and ϕ3(ξ̇) = ξ̇. The lower bound

and the upper bound of ξ and ξ̇ are assumed as ξ ∈
[−1.1, 1.1] and ξ̇ ∈ [−0.3, 0.3] by some experiments. Eq.
(18) is considered as LPV system with respect to ϕ(x̂s).

For the lower and upper bound of ϕ1(ξ) and ϕ3(ξ̇), the
matrix Ā(x̂s) is described as follows:

Ā(x̂s) = Ar0 +
2∑

i=1

2∑
j=1

ϕ1iϕ3jArij = Ā(ρ(t)). (35)

Let the adaptive gain γs and the σ-modification gain σ
be as 5.5 × 10−5 and 5 × 10−5, respectively. For (35),
quadratic stability is analyzed by solving LMI condition
shown in Theorem 2 at each vertex of ϕ(x̂s) and uncer-
tainty of l which exists in matrix Am.

4 Simulation

In this section, the effectiveness of the designed con-
troller is verified by simulations. Furthermore, the use-
fulness of the proposed method is discussed by compar-
ing with the robust LQ controller without the MRAC
law. The coulomb friction coefficient fc, the viscous
friction coefficient fv and the maximum static friction
fs are set as follows.

fc =


2.2 0 ≤ ξ < 0.2

4.2 0.2 ≤ ξ ≤ 0.6

3.2 0.6 ≤ ξ,

fv = 6.2, (36)

fs = 2.3

Note that these coefficients are unknown in controller
synthesis. In this study, the rope length is controlled
independently by the another controller. The time re-
sponse of the horizontal position of the load for step
response is shown in Figure 3. The swing angle for
the load is shown in Figure 4. The solid line and the
dotted line mean the proposed method and the robust
LQ controller without the MRAC law, respectively. As
can be seen in Figure 3, the load controlled by the pro-
posed method converges smoothly. However, the robust
LQ controller without the MRAC law yields the per-
formance degradation by influence of the friction. As
shown in Figure 4, the proposed method can suppress
the oscillation of the load, while the load controlled by
robust LQ controller without the MRAC law yields the
performance degradation by the oscillation. This results
mean influence of the friction is reduced by adding the
MRAC law. In other words, the proposed system is ef-
fective for the friction which is not considered in the
robust LQ controller synthesis.
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Figure 3 Horizontal position of load
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Figure 4 Swing angle γ of load

5 Conclusions

In this paper, the robust LQ control system adding
the MRAC law with σ-modification is proposed for the
jib crane. The stability for the composed system of the
tracking error and the weight estimation error is ana-
lyzed based on LMI. The main results of this study are
to deal with uncertainties, which can be linearly treated
by the robust LQ controller, and to consider other non-
linear uncertainties with friction by adding the MRAC
law. The effectiveness of the proposed method is verified
by comparing with the robust LQ controller without the
MRAC law in simulations. From simulations, the pro-
posed method is better than the robust LQ controller
without the MRAC law for the nonlinear friction. It can
be said that the proposed method improves the control
performance for nonlinear uncertainties with friction.
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