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Abstract

Anti-lock Brake System(ABS) is strongly nonlinear.
In my study, the system is linearized and state equation
is derived. However, the system has rational terms. Us-
ing descriptor representation and linear fractional trans-
formation, equivalent system that has only linear terms
is derived. The gain scheduling control based on Lya-
punov function is applied for the ABS. Friction coeffi-
cient that is one of scheduling parameters is measured
by unscented kalman filter since the friction coefficient
can not be measured on real time. The effectiveness of
the proposed method is illustrated by simulations.

1 Introduction

Anti-lock braking system (ABS) prevents cars from
slip by locking wheels in brake operation at low friction
road surface, or when suddenly braking. It is well known
that when slip rate is nearly around 0.2, friction coeffi-
cient for lateral force and longitudinal force between tire
and road are high enough[2]. By keeping the slip rate
0.2, braking distance can be shortened and skidding can
be prevented. Since the slip rate depends on car velocity
and wheel velocity, the ABS dynamics depends on them
and the friction coefficient of road. The main difficulty
in the design of ABS is caused by its strongly nonlinear
and uncertain characteristics. For such difficulty, many
contributions for ABS can be found in the literature. For
example, PID-type approaches[1] and composite con-
trol[2] are reported. Extremum seeking control based
on numerical optimization is presented in [3], [4]. The
fuzzy control which has learning ability to compensate
for adverse road condition is proposed[5]. On the other
hand, model based approaches are presented. In several
papers, sliding mode control for ABS is applied[6],[7],[8].
Gain scheduling control is proposed[9],[10]. It is well
known that GS control has a potential to deal with large
variation range and to improve the control performance.
Recently, unscented kalman filter (UKF) is proposed

to estimate uncertain parameters[11]. It is nonlinear
kalman filter. Extend kalman filter is one of the non-
linear kalman filter. However, Extend kalman filter is
required to linearize nonlinear system. Since linearized
system doesn’t require in algorithm of UKF, UKF can
be applied for nonlinear system as that.
In this paper, a design method is proposed to guar-

antee the robust stability for ABS. Since the car ve-
locity and friction coefficient affects the dynamics, the
variations of these parameters have to be considered.
The polytopic representation for the system with these
parameters is proposed. Since the system described in
framework of state space equation has rational terms
of car velocity and friction coefficient, guaranteeing the
robust stability for the system with car velocity and fric-
tion coefficient by using the polytopic representation is
difficult. By using descriptor representation and linear
fractional transformation (LFT), the system which is
affine with respect to car velocity and friction coefficient
can be obtained. Then, the GS controller based on lin-

ear control theory can be designed. The robust stability
and the robust performance are guaranteed theoretically
by solving LMIs. The GS controller whose scheduling
parameters are car velocity and friction coefficient is de-
signed. However, friction coefficient can not be mea-
sured on real time. To measure the friction coefficient,
UKF is proposed. The measured friction coefficient is
assumed as scheduling parameters. Then, GS controller
is applied for ABS and the effectiveness of the proposed
method is illustrated by simulations.

2 Modeling and Control Target

The model of the simplified ABS experimental device
used in this study is shown in Fig. 1. It is the one wheel
model that is 1/4 scale of the real car. The upper wheel
simulates the car wheel, and the lower wheel simulates
the road. The point A is the axis of rotation of the bal-
ance lever, which supports the axis of the upper wheel.
Table 1 shows the physical constants and variables used
in this study.

Fig. 1 Simplified Diagram of the ABS Experimental
Device

Table 1 The Physical Constants and Variables
ω1 Angular velocity of the upper wheel
ω2 Angular velocity of the lower wheel
τ1 Braking torque
r1 Radius of the upper wheel
r2 Radius of the lower wheel
J1 Moment of inertia of the upper wheel
J2 Moment of inertia of the lower wheel
Fn Normal force
µ Coefficient of friction between wheels
τg Torque acting on the balance lever
L Distance to the contact between wheels

from the axis of rotation of the balance lever
φ Angle between L and the normal

of contact at wheels
λ Slip rate



The dynamical equations of the rotational motion of the
upper wheel and lower wheel are shown by Eq.(1) and
Eq.(2).

J1ω̇1 = Fnr1µ− τ1 (1)

J2ω̇2 = −Fnr2µ (2)

The slip rate is defined by Eq.(3) as the function of car
velocity and wheel velocity.

λ =
r2ω2 − r1ω1

r2ω2
(3)

The sum of torques corresponding to the point A is given
as follows.

FnL(sinφ− µ cosφ) = τg + τ1 (4)

The following equation is obtained from Eq.(3).

λ̇ = − r1
r2ω2

ω̇1 +
r1ω1

r2ω2
2

ω̇2 (5)

Finally, the dynamical equation of slip rate is derived
from Eq.(1), Eq.(2), Eq.(4) and Eq.(5) as follows.

λ̇ =
1

ω2
f(λ) +

1

ω2
g(λ)τ1, ω2 ̸= 0 (6)

The behavior around equilibrium point (λ∗, τ∗1 ) is con-
sidered. Here, λ∗ is the reference slip rate, and τ∗1 is the
equilibrium braking torque to keep λ∗.

τ∗1 = −f(λ∗)

g(λ∗)
(7)

Eq.(8) is obtained by substituting the equilibrium point
in Eq.(6).

1

ω2
f(λ∗) +

1

ω2
g(λ∗)τ∗1 = 0 (8)

Using Taylor expansion around the equilibrium point,
nonlinear model Eq.(6) can be linearized[9].

λ̇ ≃ λ̇(λ∗, τ∗1 ) +
∂λ̇

∂λ
|λ=λ∗(λ− λ∗) +

∂λ̇

∂τ1
|τ=τ∗

1
(τ1 − τ∗1 )

(9)

The linearized equation is derived by substituting Eq.(7)
into Eq.(9).

λ̇ = (
c1µ

2 + c2µ

ω2(c6µ2 + c7µ+ c8)
)(λ− λ∗)

+(
c3µ

2 + c4µ+ c5
ω2(c6µ2 + c7µ+ c8)

)(τ1 − τ∗1 ) (10)

Here, c1, c2, · · ·, c8 are constants. Note that the dynam-
ics of λ̇ depends on ω2 and µ.

3 Polytopic Representation

In this section, I show the process to obtain ABS sys-
tem which is multi-affine for uncertain parameters µ and
ω2. The robust stability for these parameters is guar-
anteed by using polytopic representation. The system
described in the framework of the state space representa-
tion has rational terms of these parameters. It is difficult
to use polytopic representation for the system which has
rational terms of uncertain parameters. Therefore, the
system which is multi-affine for uncertain parameters µ
and ω2 is obtained by using the descriptor representa-
tion and LFT.

3.1 Transformation to Polynomial

State equation is obtained from Eq.(10). In order to
track the output of the system to the optimal value with-
out error, I add one integrator to the state variable. Let
state variable x(t) = [x1(t) x2(t)]

T=[
∫
(λ − λ∗)dt λ −

λ∗]T and input u(t) = τ1 − τ∗1 . Then the state equation
is obtained as follows.

ẋ(t) = Ax(t) +Bu(t) (11)

y(t) = Cx(t)

A =

[
0 1
0 a

e

]
, B =

[
0
b
e

]
, c = [ 1 0 ]

e = ω2(c6µ
2 + c7µ+ c8)

a = c1µ
2 + c2µ

b = c3µ
2 + c4µ+ c5

Here Eq.(11) has rational terms of µ and ω2. It is dif-
ficult to use polytopic representation. Eq.(11) is trans-
formed to descriptor form to transform from rational to
polynomial. Descriptor equation is obtained as follows.

Eẋ(t) = Ax(t) +Bu(t) (12)

E =

[
1 0
0 e

]
, A =

[
0 1
0 a

]
, B =

[
0
b

]
Note that Eq.(12) is polynomial for uncertain parame-
ters µ and ω2.

3.2 Putting All Uncertain Parameter and Vary-
ing Parameter into One Matrix

Eq.(12) becomes polynomial for uncertain parame-
ters µ and ω2. However, there exists these param-
eters in matrices E, A and B. If Eq.(12) is trans-
formed to an ordinary state space representation ẋ(t) =
E−1Ax(t)+E−1Bu(t), matrices E−1A and E−1B have
rational terms of µ and ω2. It is difficult to use polytopic
representation. I put all uncertain parameters into one
matrix by expanding dimension of matrices. Uncertain
parameters µ and ω2 are put into matrix Ad by defining
xd(t) = [x(t) λ̇ u]T .

Edẋd(t) = Adxd(t) +Bdu(t) (13)

Ed =

 1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , Ad =

 0 1 0 0
0 0 1 0
0 a −e b
0 0 0 −1


Bd = [ 0 0 0 1 ]

T

Note that there exist the all uncertain parameters and
µ and ω2 in only Ad.

3.3 Transformation to Malti-affine

Only the matrix Ad has uncertain parameters. How-
ever, there are higher order terms of µ in it. In this case,
it is still difficult for the matrix to use the polytopic rep-
resentation. LFT is applied to transform the high order
terms of µ to first order terms of µ.
Let x̃d be new descriptor variable x̃d(t) =

[xT
d (t) zδ(t)]

T , and the descriptor equation which is
transformed by LFT is the following equation. Then,



the system becomes multi-affine for µ and ω2.

Ẽd
˙̃xd(t) = Ãdx̃d(t) + B̃du(t)

tildeEd =
[

Ed 0
0 0

]
, Ãd =

[
An Bδ∆
Cδ −I

]
, B̃d =

[
Bd

0

]

An =

 0 1 0 0
0 0 1 0
0 c2µ −(c7µ+ c8)ω2 c4µ+ c5
0 0 0 −1

, Bδ =

 0
0
1
0


Cδ = [ 0 c1µ −c6µω2 c3µ ] ∆ = µ

An, Cδ and Bδ∆ don’t have polynomial but only multi-
affine terms of µ and ω2. The ABS model which is multi-
affine for ω2 and µ can finally be obtained.

4 GS Control Design

I design a gain scheduling controller. The parameter
box Θ is defined by vertexes which are upper bound and
lower bound of µ and ω2. Let scheduling parameters θ1,
θ2 be θ1=ω2, θ2=µ. Since I use parameter Lyapunov
dependent function, parameter box includes derivative
of its.

Θ = {[θ1 , θ2 , θ3 , θ4] : θi ∈ {θi, θ̄i}}(i = 1, 2) (14)

θ1 = ω2, θ2 = µ, θ3 = ω̇2, θ4 = µ̇

To derive a stabilizing state feedback u(t) = K̃d(θ)x(t),
I consider minimizing the following quadratic cost func-
tion.

J =

∫ ∞

0

(x̃d(t)
TQx̃d(t) + u(t)TRu(t))dt (15)

Here Q ≥ 0 is a weight matrix for state variables, and
R > 0 is a weight matrix for inputs. From Lyapunov’s
stability theorem, if there exists P(θ) satisfying the fol-
lowing matrix inequalities, the descriptor system is sta-
ble and J ≺ trace(ẼdP (θ)) is guaranteed[12].

ẼdP (θ) = (ẼdP (θ))T ⪰ 0 (16)

P (θ)(Ãd(θ) + B̃dK̃d(θ)) + (Ãd(θ) + B̃dK̃d(θ))
TP (θ)

+ Q+ K̃d(θ)
TRK̃d(θ) ≺ 0 (17)

Let X̃d(θ) := P (θ)−1. Then, let Ỹd(θ) := K̃d(θ)X̃d(θ).
Although I extended the dimension of the system by
using descriptor variables, I can design the controller
that uses original states without extended variables by
giving these restrictions. In view of structure of Ẽd, I
restrict X̃d(θ) and variable matrix Ỹd(θ) as follows.

X̃d(θ) =

[
X11(θ) 0 0
X21(θ) X22(θ) X23(θ)
X31(θ) X32(θ) X33(θ)

]
, Ỹd(θ) = [ Y (θ) 0 0 ](18)

The stability is guaranteed by solving LMIs with the
scheduling parameters θ at vertexes of the parameter
box. Let matrices X̃d(θ), X11(θ) Ỹd(θ), Y (θ) be as fol-
lows, the matrices are represented by Θi(i=1,...,16).

X̃d(θ) = X̃d0 + θ1X̃d1 + θ2X̃d2 (19)

X̃11(θ) = X̃11,0 + θ1X̃11,1 + θ2X̃11,2 (20)

Ỹd(θ) = Ỹd0 + θ1Ỹd1 + θ2Ỹd2 (21)

Y (θ) = Y0 + θ1Y1 + θ2Y2 (22)

Θ1 = (θ1, θ2, θ3, θ4),Θ2 = (θ̄1, θ2, θ3, θ4)...

Θ15 = (θ̄1, θ̄2, θ̄3, θ4),Θ16 = (θ̄1, θ̄2, θ̄3, θ̄4) (23)

The cost function J shown in Eq.(15) is adopted to de-
rive the stabilizing state feedback GS controller. Then,
multi-affine restriction is applied for Eq.(17). LMI con-
dition to derive the stabilizing state feedback GS con-
troller is as follows.
Lemma 1 If there exists X11(Θi)≻0, X̃d(Θi),

Ỹd(Θi) satisfying the following LMI, the system is
stable.
minimize :γ
subject to X11(Θi) ≻ 0 M(Θi)− Ẽd

˙̃Xd(Θi) X̃d(Θi)
T (Q

1
2 )T Ỹd(Θi)

T (R
1
2 )T

Q
1
2 X̃d(Θi) −I 0

R
1
2 Ỹd(Θi) 0 −I


≺ 0 (24)[

W I
I X11(Θi)

]
≻ 0 (25)

trace(W ) < γ (26)

M(Θi) := He[Ãd(Θi)X̃d(Θi) + B̃dỸd(Θi)] (i = 1, ..., 16)

The gain scheduling controller K̃d(θ) with framework of
the descriptor representation is given as follow.

K̃d(θ) = [Y (θ)X11(θ)
−1 0 0] (27)

Finally, the controller K(θ) = Y (θ)X11(θ)
−1 with

framework of state space representation is obtained.

5 Estimation of Friction Coefficient

In this paper, the GS controller whose scheduling pa-
rameters are friction coefficient and car velocity is de-
signed. However, friction coefficient can not be mea-
sured on real time. UKF is able to apply for nonlinear
system. Therefore, UKF is applied to estimate friction
coefficient. To apply the UKF, system to estimate the
friction coefficient is considered. From Eq.(2), (3), the
following equations is derived.

ω̇2 = −r2MgS

J2
− r2SM1

J2
(28)

S =
µ

L(sinϕ− µcosϕ)
(29)

From Eq.(28), nonlinear state space representation to
estimate the friction coefficient is built and S is function
of µ. To estimate the friction coefficient, S is added to
state variable. Let state variable xz(t) be xz(t)=[ω2(t)
S(t) ]T and input uz(t) =τ1.

ẋz(t) = Axz(t) +BzS(t)uz(t) (30)

y(t) = Cz(t)xz(t)

Az =

[
0

Mgr2
J2

0 0

]
, Bz = [ r2

J2 0 ]
T

Cz = [ 1 0 ]
T

The nonlinear state space representation (30) is dis-
cretized. Since µ is varying parameter, S is also varying
parameter. S is defined as follows.

S(k + 1) = S(k) + v(k) (31)

v is process noise. The discretized nonlinear state space
representation (32) is as follows. Let state variable



xzd(t) be xzd(t)=[ω2(k) S(k) ]T and input uzd(t) =τ1.

xzd(k + 1) = Azdx(k) +BzdS(k)uzd(k) +Bvv(k) (32)

y(k) = Czxzd(k) + w(k)

Azd = eAzTs , Bzd = (

∫ Ts

0

eAzλdλ)Bz

Bv = [ 0 1 ]
T

v(k) is process noise, w(k) is observation noise. Ts is
sampling time. UKF can be applied for nonlinear sys-
tem (32). let x̂(k) be a state estimate. By the following
equation, optimal value of x̂(k) is decided.

x̂(k) = x̂−(k) + g(k){y(k)− ŷ−(k)} (33)

x̂−(k) is a priori state estimate. g(k) is a kalman gain.
ŷ−(k) is a priori output estimate. Optimal value of g(k)
is decided by the following equation.

g(k) =
P−
xy(k)

P−
yy(k) + σ2

w

(34)

P−
xy(k) is a priori state, output error covariance matrix.

P−
yy(k) is a priori output error covariance matrix. σ2

w is
of covariance of observation noise w(k). Since decision
of optimal value of g(k) determines the optimal value
of x̂(k), friction coefficient can be estimated by Eq.(33),
(34).

6 Simulation

I conducted the simulations of µ = 0.7 and µ = 0.1
when slip rate is 0.2. The range that robust stability
of car velocity guaranteed in my study is from 10 to
50[km/h]. Here assuming that µ = 0.7 is dry road and
µ = 0.1 is snowy road.

Fig. 2 Slip Rate at snowy Fig. 3 Slip Rate at dry

Fig. 4 Friction coefficient at
snowy

Fig. 5 Friction coefficient at
dry

In Fig.4, 5, dot line shows friction coefficient value and
solid line shows estimated value. If UKF is applied for
ABS, slip rate can be controlled at optimal value in
snowy road. However, slip rate doesn’t reach to opti-
mal value 0.2 in dry road. The car stops at 0.81 seconds
in dry road. Since stopping time is short, it can be said
that function of ABS is fulfilled. Friction coefficient can
be estimated in both dry and snowy roads.

7 Conclusion

In this paper, a method to guarantee the robust sta-
bility for Anti-lock Braking System is shown. Since the
car velocity and friction coefficient affect the dynam-
ics, a method is designed to consider variation of these
parameters. From the simulation result, the slip rate
is controlled to optimal value in snowy road. Friction
coefficient can be estimated accurately by unscented
kalman filter. Therefore, the effectiveness of the pro-
posed method is verified.
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