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Abstract

In this study, the control method for biped robot walk-
ing system is proposed. Furthermore, the robust stabil-
ity for length of legs is guaranteed by using polytopic
representation. Descriptor representation and linear
fractional transformation(LFT) are adopted to obtain
an equivalent polytopic representation of biped robot
walking system which has multi affine. The robust con-
troller is obtained by solving a finite set of Linear Ma-
trix Inequalities (LMIs). The robust LQ controller that
guarantees the stability of the system for variation range
of length of leg is designed. The effectiveness of pro-
posed method is illustrated by simulations.

1 Introduction

Recently, several robots are used in various places.
In several robots, biped robot has mainly two strong
points that flexibility and sense of affinity. Everything
that exist in the world is made on the premise that used
by human. The usage environment also is similar. It
is assumed that Biped robot that resembles to human
soon accommodates itself to the environment. Because
biped robot is similar, it is assumed that human is easy
to find something congenial. Thus, it is assumed that
these features are used in the care, danger area which
cannot enter and so on. In the danger area, if there
is an accident, biped robot soon accommodates itself it
and can keep action. In the care, from its visual aspect,
requiring long-term care feel as if they are received the
care by human doing. Thus, it is expected that biped
robot is used as substitute for human. To use biped
robot as substitute for human, it is necessary for it to
perform like human. It is mentioned that walking like
human is important point to achieve the performance.
To achieve the walking, many researchers studied many
researches. For example, Qiang Huang et al. (2001)
studied about an actuator used link[1], Kemalettin Er-
batur et al. (2009) studied about many link walking
with 12 DOF[2]. Many of these studies adopted manip-
ulator as foot. However, it is a strong nonlinear and
complex system. It is not easy to control it. It takes
moderate times to achieve controlling it, which is diffi-
cult to perform like human.
In this study, by using simple system, biped walk-

ing is achieved easily and more quickly. In generally,
biped robot has two legs so that it can walk by chang-
ing one leg called support leg and the other leg called
swing leg. The support leg is regard as inverted pendu-
lum. In many research, swing leg is regarded as simple
pendulum from its dynamics. However, the simple pen-
dulum depends on gravity so that it is not controlled
and it takes some times. To walk quickly, the swing leg
is also regarded as inverted pendulum that is enabled
to control itself from its dynamics. In this study, be-
cause linear inverted pendulum is enabled to keep waist
position constant by stretching itself so that biped walk-
ing is used easily, it is adopted as inverted pendulum in
each leg. To walk easily, biped robot is assumed only

to leave two legs. However, biped robot is similar visual
aspect of human so that mass and length of robot also
are required to the parameters which is similar those of
human. Length of legs is varied by biped robot of type
and swing leg is stretched during it is moved down so
that length of leg is varying parameter. The dynamics
of biped robot depends on the varying parameter. The
robust stability is required to design biped robot with
varying parameter. By using matrix polytopic represen-
tation, the robust stability for the system has varying
parameter is guaranteed theoretically. Descriptor rep-
resentation and linear fractional transformation(LFT)
are adopted to obtain an equivalent polytopic represen-
tation of biped robot walking system which has multi
affine. The problem is formulated as solving a finite
set of Linear Matrix Inequalities(LMIs). In this study,
to achieve to walk similar human, it is also required
the walking speed so that LQ controller that yields an
optimum performance with small input and high readi-
ness by minimizing the cost function is used. Then, this
study adopts the robust LQ controller that guarantees
the stability of the system for variation range of length
of leg. Thus, by changing two inverted pendulums that
guaranteed varying parameter, this study indicates that
biped walking is achieved easily and quickly. At last,
the effectiveness of proposed method is illustrated by
simulations.

2 Modeling and Control Target

In this study, the biped robot in XZ plane is compared
to an inverted pendulum, and a system is disassembled
by handling as a simply system consists of a support
leg and a swing leg as follows. Here, linear inverted
pendulum which length from the floor to the top is a
height of the robot’s waist is applied as support leg. And
a mass of an upper body of the robot is extremely large
toward that of the support leg so that a gravity position
of support leg exists the height of the robot ’s waist.
Moreover, the support leg and the swing leg are fixed
on the floor and on the waist respectively. Here, when
the support leg inclines to one side, a changed gravity
position can go back to a prior height by expanding
and contracting the inverted pendulum. By keeping the
gravity position, walking of biped robot is considered
easily.

2.1 Support leg

2.1.1 Control target and physical parameter

The model of the support leg used in this study is
shown in Fig.1. Table 1 shows the physical constants
and variables used in this study.

2.1.2 Dynamical equation

The mathematics model expresses behavior of sup-
port leg is derived as follows by using Newton’s motion



Fig. 1 Support leg

Table 1 Physical Constants and Variables

symbol parameter unit

g Acceleration of gravity [ kg
s2
]

msu Mass of support leg [kg]
fsu Kick force of support leg [N]
θsu Angle of support leg [rad]
rsu Length of support leg [m]
τsu Torque to incline support leg [Nm]

equation.

rsu(t)θ̈su(t) =
τsu(t)

msu
− 2rsu(t)ṙsu(t)θ̇su(t) (1)

+grsu(t) sin θsu(t)

r̈su(t) =
fsu(t)

msu
+ rsu(t)θ̇su(t)− g cos θsu(t) (2)

To linear Eq.(2) and Eq.(2), let rsu(t), θsu(t) and fsu(t)
define as folllows.

rsu(t) = r0su + δrsu(t)

θsu(t) = θ0su + δθsu(t)

fsu(t) = f0su(t) + δfsu(t)

(3)

where δrsu, δθsu and δfsu(t) are small variation of rsu,
θsu and fsu and r0su, θ0su and f0su are initial value of
rsu, θsu and fsu and r0su, θ0su respectively. From Fig.1
a start position of inverted pendulum is stand upright
so that θ0su and f0su(t) are as follows.{

θ0su = 0

f0su(t) = msug cos θsu(t)
(4)

And assuming that reference rake is within 30[deg], a
linearization is obtained sin θsu(t) ≈ θsu(t), cos θsu(t) ≈
1. By using Eq.(3) and Eq.(4), Eq.(1) and Eq.(2) are
linearized as follows.

r20su
¨δθsu(t) =

τsu(t)

msu
+ gr0suδθsu(t) (5)

δr̈su(t) =
δfsu(t)

msu
(6)

By let state variable xsu(t) = [x1su(t) x2su(t)

x3su(t) x4su(t)]
T=[δθsu(t) δθ̇su(t) δrsu(t) δṙsu(t)]

T

be and control input usu(t) = [τsu(t) δfsu(t)]
T be as

follows, from Eq.(5) and Eq.(6), State space representa-
tion is obtain as follows.

ẋsu(t) = Asuxsu(t) +Bsuusu(t) (7)

ysu(t) = Csuxsu(t) (8)

2.1.3 Extended system

To track output to reference without error, let
that system extended as follows by let xesu(t) =
[xsu(t) ωsu(t)]

T=[xsu(t) ω1su(t) ω2su(t)]
T=[xsu(t)∫

(θsuref − δθsu)dt
∫
(rsuref − δrsu)dt]

T be.

ẋesu(t) = Aesuxesu(t) +Besuusu(t) + IesuHesu (9)

Aesu =

[
Asu 0
−Csu 0

]
, Besu =

[
Bsu

0

]
, Iesu =

[
0
I

]
, Hesu =

[
θsuref
rsuref

]
2.1.4 Polytopic representation

I’ll show the process to obtain polytopic representa-
tion of the system with varying parameter r0su. Be-
cause Eq.(9) has rational terms of varying parameter, it
is difficult to use polytopic representation directly. The
system is transformed to an equivalent system that is
multi-affine r0su by using descriptor representation and
linear fractional transformation (LFT).

2.1.5 Transformation to polynomial

Eq.(9) has rational terms of r0su. It is difficult to use
polytopic representation. Eq.(9) is transformed to de-
scriptor form to transform from rational to polynomial.
Descriptor equation is obtained as follows.

Esuẋsu(t) = Dsuxsu(t) + Fsuusu(t) (10)

Eq.(10) is polynomial for varying parameters r0su.

2.1.6 Putting Varying Parameter into One Ma-
trix

Eq.(10) becomes polynomial for varying parameter
r0su. However, there exists this parameter in matrices
Esu and Dsu. If Eq.(10) is transformed to an ordinary
state space representation ẋ(t) = D−1

su Fsux(t), matrices
E−1

su Dsu has rational terms of r0su. It is difficult to use
polytopic representation. I put varying parameter into
one matrix by expanding dimension of matrices. Vary-
ing parameters r0su is put into matrix Ddsu by defining
xdsu(t) = [xesu(t) δθ̈su δr̈su ω̇su(t) usu(t)]

T .

Edsuẋd(t) = Ddsuxd(t) + Fdsuu(t) (11)

There exist the varying parameter r0su.

2.1.7 Transformation to Multi-affine

Only the matrix Ddsu has varying parameter. How-
ever there are higher oder terms of r0su in it. In this
case, it is still difficult for the matrix to use the poly-
topic representation. LFT is applied to tranform the
high order terms of r0su to first order terms of r0su.
Matrix Ddsu can be represented by Eq.(12). Here Dnsu

is the matrix which only contains first order terms of
r0su. And Bδsu∆Cδsu is the matrix which contains high
order terms. Dnsu, Bδsu, Cδsu and ∆su are as follows.

Ddsu = Dnsu +Bδsu∆suCδsu (12)

Dnsu and Cδsu are multi-affine with respect to msu and
r0su, and Bδsu is constant matrix. Eq.(12) is expressed
as follows by using Dnsu, Bδsu, Cδsu and ∆su.

Edsuẋd = Dnsuxd +Bδsuwδsu + Fdsuu (13)

zδsu = Cδsuxdsu

wδsu = ∆zδsu



Let x̃dsu be new descriptor variable x̃dsu(t) =
[xT

dsu(t) zδsu(t)]
T , and the descriptor equation which

is transformed by LFT is as follows. Then, the system
becomes multi-affine for msu and r0su.

Ẽdsu
˙̃xdsu(t) = D̃dsux̃dsu(t) + F̃dsuu(t) (14)

Ẽdsu =

[
Edsu 0
0 0

]
, F̃dsu =

[
Fdsu

0

]
, D̃dsu =

[
Dnsu Bδsu∆su

Cδsu −I

]
Dnsu, Cδsu and Bδsu∆su have not polynomial but only
multi-affine terms of msu and r0su. Biped robot system
which is multi-affine for msu and r0su can finally be
obtained. In this study, the polytopic representation is
used to guarantee the robustness. The upper and lower
bound of r0su composed of matrix Aesu and Besu are as
follows.

r0su ∈ [r0sumin, r0sumax] (15)

Let D̃d1 and D̃d2 be the vertex matrices for the variation
range of matrix D̃dsu.

D̃d1 = D̃dsu(r0sumin), D̃d2 = D̃dsu(r0sumax) (16)

It is assumed that the system stabilizes in the range of
the convex hull of the two vertexes.

2.2 Swing leg

2.2.1 Control target and physical parameter

The model of swing leg used in this study is shown in
Fig.2. Table 2 shows the physical constants and vari-
ables used in this study.

Fig. 2 Swing leg

Table 2 Physical Constants and Variables

symbol parameter unit

g Acceleration of gravity [ kg
s2
]

msw Mass of swing leg [kg]
fsw Stretch force of swing leg [N]
θsw Angle of swing leg [rad]
rsw Length of swing leg [m]
τsw Torque to swing up downward [Nm]

2.2.2 Dynamical equation

The mathematics model expresses behavior of
swing leg is derived as follows by using Newton’s motion
equation.

rsw(t)θ̈sw(t) =
τsw(t)

msw
− 2rsw(t)ṙsw(t)θ̇sw(t) (17)

−rsw(t) sin θsw(t)

r̈sw(t) =
fsw(t)

msw
+ rsw(t)θ̇sw(t) (18)

+g cos θsw(t)

To linear Eq.(18) and Eq.(19), let rsw(t), θsw(t) and
fsw(t) define as with Eq.(3). Here, δrsw, δθsw and
δfsw(t) are small variation of rsw, θsw and fsw respec-
tively. From Fig.2, a start position of swing leg r0sw and
f0sw(t) are as follows.{

r0sw = rsw
cos 0sw ∴ r0sw = δrsw

cos θ0sw−1

f0sw(t) = −mswg cos θsw(t)
(19)

By using Eq.(19) and equations are similar to Eq.(3) and
Eq.(4), Eq.(17) and Eq.(18) are linearized as follows.

r20sw
¨δθsw(t) =

τsw(t)

msw
− gr0swδθsw(t)

− cos θ0sw
cos θ0sw − 1

gθ0swδrsw (20)

δr̈sw(t) =
δfsw(t)

msw
(21)

Afterwad, swing leg is handled as described in (2.1.2)-
(2.1.7). After that, in swing leg, the upper and lower
bound of r0sw composed of matrix Aesw and Besw are
as follows.

r0sw ∈ [r0swmin, r0swmax] (22)

Let D̃d3 and D̃d4 be the vertex matrices for the variation
range of matrix D̃dsw.

D̃d3 = D̃dsw(r0swmin), D̃d4 = D̃dsw(r0swmax) (23)

It is assumed that the system stabilizes in the range of
the convex hull of the two vertexes.

3 Control Design

I design a controller that guarantees stability ro-
bustness for varying parameters r0su and r0sw with the
initial state.

3.1 LQ control

To derive a stabilizing state feedback u(t) = K̃dx(t),
I consider minimizing the following quadratic cost func-
tion.

J =

∫ ∞

0

{x̃d(t)
TQx̃d(t) + u(t)TRu(t)}dt (24)

Here Q ≥ 0 is a weight matrix for state variables, and
R ≥ 0 is a weight matrix for inputs. This is the same
quadratic cost function LQ control.

3.2 LMI condition

The following LMI condition is applied for both of
support leg and swing leg. The system is stabilized by
u(t) = K̃dx̃d(t) and J < γ is guaranteed. In view of

structure of Ẽd, we restrict X̃d, Ỹd as follows.

X̃d =

[
X11 0
X21 X22

]
, Ỹd = [ Y1 0 ] (25)

Lemma 1 : If there exists X11 ≻ 0, X̃d, Ỹd

satisfying the following LMI, the system is stable.
minimize :γ



subject to X11 ≻ 0 He[D̃dkX̃d + B̃dỸd] X̃T
d (Q

1
2 )T Ỹ T

d (R
1
2 )T

Q
1
2 X̃d −I 0

R
1
2 Ỹd 0 −I

 ≺ 0 (26)

(k = 1, 2, 3, 4)[
W I
I X11

]
≻ 0 (27)

trace(W ) ≺ γ (28)

The controller K̃d with framework of the descriptor rep-
resentation is given as follow.

K̃d = [Y X−1
11 0] (29)

3.3 Switching foots

In this study, by using the following algorithm, sup-
port leg and swing leg are switched. 1.Support leg is
inclined from start angle to reference angle. 2.Support
leg is extended until reference gravity position. 3.Swing
leg is swung downward from present angle to ground.
4.Support leg and swing leg are switched.

4 Simulation

4.1 Support leg

To stable the support leg system for variable range, it
is important to guarantee the robustness of the upper
and lower bound of r0su. And the range of r0su is as
follows.

r0su ∈ [r0sumin r0sumax] = [0.5, 1.0] (30)

In this study, let reference angle be 15[deg]. The simu-
lation results of support leg is shown in Fig.3 and Fig.4.

Fig. 3 Angle of support leg Fig. 4 Length of support leg

4.2 Swing leg

The initial position of swing leg is not defined same
position because of swing leg is swung up. So r0sw is a
varying parameter. So to stable the swing leg system,
it is important to guarantee the robustness of the upper
and lower bound of r0sw. The range of r0sw is as follows.

r0sw ∈ [r0swmin, r0swmax] = [0.5, 1.0] (31)

Swing leg is only swing downward so that let reference
angle be 0[deg]. The simulation results of swing leg is
shown in Fig5 and Fig6.

4.3 Biped robot

In this study, biped robot walking system is composed
to support leg and swing leg. The simulation results of
biped robot is shown as follows. Fig.7 indicates angle

Fig. 5 Angle of swing leg Fig. 6 Length of swing leg

of support leg and swing leg during it walks. Fig.8 in-
dicates length of support leg and swing leg during it
walks. Fig.9 indicates center of gravity(COG) of biped
robot during it walks.

Fig. 7 Angle of support leg
and swing leg

Fig. 8 Length of support leg
and swing leg

Fig. 9 COG of biped robot

5 Conclusion
In this study, the proposed method to guarantee

the robust stability for Biped robot system is shown.
The controller is designed to minimize the quadratic
cost function. Descriptor representation and LFT are
adopted to obtain the system which has multi affine for
length of leg. Then, polytopic representation for the
each system with these parameters is provided. From re-
sults of simulations, the validity of the proposed method
is indicated and robust stability is verified. Hence, biped
robot walking is achieved.
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