分散が一様でない正規多標本モデルにおける すべての平均相違の多重比較法

M2013SS002 早川由宏

指導教員:白石高章

1 はじめに

本研究では分散の不均一性を仮定した正規標本モデルにおいてすべての平均相違の閉検定手順を提案し、その手順による検定が Games-Howell 法 [1] よりも検出力が高いことを計算機シミュレーションによって示す.

2 Games-Howell 法

Games-Howell 法は k 群の多重比較法において異なる 2 群の平均が等しい帰無仮説と異なる 2 群の平均が異なる対立仮説に対する水準の検定をシングルステップの多重比較検定をすることができる. 詳しくは文献 [2], [3] などを参照されたい.

k を群の個数, n_i は第 i 群のサイズで $n=\sum_{i=1}^k n_i$ とする. $X_{ij}\sim N(\mu_i,\sigma_i^2)$ $(j=1,\cdots,n_i;i=1,\cdots,k)$ としてすべての X_{ij} は互いに独立とする. $i=1,\cdots,k$ に対して, $\bar{X}_{i\cdot}\equiv \frac{1}{n_i}\sum_{j=1}^{n_i} X_{ij}$, $\hat{\sigma}_i^2\equiv \frac{1}{n_i-1}\sum_{j=1}^{n_i} (X_{ij}-\bar{X}_{i\cdot})^2$ とし, $i,i'=1,\cdots,k;1\leq i< i'\leq k$ を満たす $\mu\equiv (\mu_1,\cdots,\mu_k)$ に対して統計量を

$$\begin{split} T_{ii'} &\equiv \frac{\bar{X}_{i\cdot} - \bar{X}_{i'\cdot}}{\sqrt{\frac{\hat{\sigma}_i^2}{n_i} + \frac{\hat{\sigma}_{i'}^2}{n_{i'}}}}, \\ T_{ii'}(\boldsymbol{\mu}) &\equiv \frac{\bar{X}_{i\cdot} - \bar{X}_{i'\cdot} - (\mu_i - \mu_{i'})}{\sqrt{\frac{\hat{\sigma}_i^2}{n_i} + \frac{\hat{\sigma}_{i'}^2}{n_{i'}}}} \end{split}$$

とおく. 分布関数を

$$A(t|\ell) \equiv \ell \int_{-\infty}^{\infty} \{\Phi(x) - \Phi(x - \sqrt{2} \cdot t)\}^{\ell-1} d\Phi(x),$$

$$TA(t|\ell, \nu) \equiv \int_{0}^{\infty} A(ts|\ell)g(s|\nu)ds$$

とする. ただし,

$$\begin{split} \Phi(x) &= \int_{-\infty}^{x} \varphi(z) dz, \ \varphi(x) = \frac{1}{\sqrt{2\pi}} \, e^{-\frac{x^2}{2}} \ , \\ g(s|\nu) &\equiv \frac{\nu^{\nu/2}}{\Gamma(\nu/2) 2^{\nu/2-1}} s^{\nu-1} e^{-\nu s^2/2}, \end{split}$$

 $\Gamma(a)$ はガンマ関数である. ガウス記号 $[\]$ を使って自由度 となる $\hat{
u}_{ii'}$ を

$$\hat{\nu}_{ii'} = \left[\frac{\left(\frac{\hat{\sigma}_i^2}{n_i} + \frac{\hat{\sigma}_{i'}^2}{n_{i'}}\right)^2}{\frac{\hat{\sigma}_i^4}{n_i^2(n_i - 1)} + \frac{\hat{\sigma}_{i'}^4}{n_{i'}^2(n_{i'} - 1)}} + \frac{1}{2} \right]$$

とする. はじめに与えられた定数 α $(0<\alpha<1)$ に対して $TA(t|\ell,\nu)=1-\alpha$ を満たす t の解を $ta(\ell,\nu;\alpha)$ とする. $\mathcal{U}\equiv\{(i,i')|\ 1\leq i< i'\leq k\},\ \Theta_0\equiv\{\mu|\ 1$ つ以上 の帰無仮説 $H_{(i,i')}$ が真 $\},\ \mu_0\in\Theta_0$ とする. この $\mu_0\equiv(\mu_{01},\cdots,\mu_{0k})$ を与えたとき,任意の $(i,i')\in\mathcal{A}\subset\mathcal{U}$ に対して帰無仮説 $H_{(i,i')}$ が真 $(\mu_{0i}=\mu_{oi'})$ で,任意の $(i,i')\in\mathcal{A}^c\cap\mathcal{U}$ に対して帰無仮説 $H_{(i,i')}$ が偽 $(\mu_{0i}\neq\mu_{0i'})$ となるように $\mathcal{A}(\neq\emptyset)$ を決める. $\mu\equiv(\mu_1,\cdots,\mu_k)$ に対して

$$B_{ii'}(\boldsymbol{\mu}) \equiv \{ |T_{ii'}(\boldsymbol{\mu})| > ta(k, \hat{\nu}_{ii'}; \alpha) \},$$

$$B_{ii'} \equiv \{ |T_{ii'}| > ta(k, \hat{\nu}_{ii'}; \alpha) \}$$

とすると, $(i,i') \in A$ と μ_0 に対して

$$B_{ii'} \subset \bigcup_{(i,i')\in\mathcal{A}} B_{ii'}$$

$$= \bigcup_{(i,i')\in\mathcal{A}} B_{ii'}(\boldsymbol{\mu}_0)$$

$$\subset \bigcup_{(i,i')\in\mathcal{U}} B_{ii'}(\boldsymbol{\mu}_0)$$

$$= \bigcup_{(i,i')\in\mathcal{U}} \{|T_{ii'}(\boldsymbol{\mu}_0)| > ta(k, \hat{\nu}_{ii'}; \alpha)\}$$
(1)

が成り立つ.

 $\Theta_1 \equiv \{ \boldsymbol{\mu} | (i,i') \in \mathcal{A} \text{ に対して} \mu_i = \mu_{i'}, \ (i,i') \in \mathcal{A}^c \cap \mathcal{U} \text{ に対して} \mu_i \neq \mu_{i'} \}, \ P(\cdot) \text{ は確率測度}, \ P_0(\cdot) \text{ は} \ \mu_1 = \dots = \mu_k \text{ の下での確率測度}, \ P_{\boldsymbol{\mu_0}}(\cdot) \text{ は} \ \boldsymbol{\mu} = \boldsymbol{\mu_0} \text{ の下での確率測度とする}. \ \boldsymbol{\mu}_0 \in \Theta_1 \subset \Theta_0 \text{ が成り立ち},$

$$P_{\boldsymbol{\mu}_{0}}\left(\bigcup_{(i,i')\in\mathcal{A}}B_{ii'}(\boldsymbol{\mu}_{0})\right) = P_{\boldsymbol{\mu}_{0}}\left(\bigcup_{(i,i')\in\mathcal{A}}B_{ii'}\right)$$

$$\leq P_{0}\left(\bigcup_{(i,i')\in\mathcal{U}}\left\{|T_{ii'}| > ta(k,\hat{\nu}_{ii'};\alpha)\right\}\right) \quad (2)$$

が示される. (1) と (2) より, Games-Howell 法では

$$P_{0}\left(\bigcup_{(i,i')\in\mathcal{U}}\{|T_{ii'}| > ta(k,\hat{\nu}_{ii'};\alpha)\}\right) \lesssim \alpha \qquad (3)$$

$$\Leftrightarrow P_{0}\left(\bigcap_{(i,i')\in\mathcal{U}}\{|T_{ii'}| \leq ta(k,\hat{\nu}_{ii'};\alpha)\}\right) \gtrsim 1 - \alpha \quad (4)$$

が成り立つ.

3 閉検定手順

帰無仮説 $H_{ii'}:\mu_i=\mu_{i'}$ vs. 対立仮説 $H_{ii'}^A:\mu_i\neq\mu_{i'}$ $(1\leq i< i'\leq k)$ に対する閉検定手順を提案し以下に述べる.

U から帰無仮説のファミリー $\mathcal{H} \equiv \left\{ H_v | v \in \mathcal{U} \right\}$ となる。 さらに $\phi \subsetneq V \subset \mathcal{U}$ を満たす V に対して、 $\bigwedge_{v \in V} H_v$ はk 個の母平均に関していくつかが等しいという仮説となる。 I_1, \cdots, I_J $(I_j \neq \phi, \ j=1,\cdots,J)$ を添え字 $1,\cdots,k$ の互いに素な部分集合の組とし同じ I_j $(j=1,\cdots,J)$ に含まれる添字をもつ母平均は等しいという帰無仮説を $H(I_1,\cdots,I_J)$ で表す。このとき、 $\phi \subsetneq V \subset \mathcal{U}$ を満たす任意の V に対して、ある自然数 J と上記のある I_1,\cdots,I_J が存在して

$$\bigwedge_{\boldsymbol{v}\in V}H_{\boldsymbol{v}}=H(I_1,\cdots,I_J)$$

が成り立つ. $M \equiv \sum_{j=1}^J \ell_j,\; \ell_j \equiv \#(I_j),\;$ とおき $,\;$ 水準 $\; lpha$ の

帰無仮説 $\bigwedge_{v \in V} H_v$ に対する検定を考えることができる.

 $\alpha(M,\ell)\equiv 1-(1-\alpha)^{\ell/M}$ とすると P_0 (ある j と $i,i'\in I_j$ が存在して $|T_{ii'}|>ta(\ell,\hat{\nu}_{ii'};\alpha(M,\ell_i)))$ の補集合は

$$P_{0}\left(\bigcap_{j=1}^{J}\left[\bigcap_{i,i\in I_{j}}\{|T_{ii'}|>ta(\ell,\hat{\nu}_{ii'};\alpha(M,\ell_{j}))\}\right]\right)$$

$$=\prod_{j=1}^{J}P_{0}\left(\bigcap_{(i,i')\in I_{j}}\{|T_{ii'}|>ta(\ell,\hat{\nu}_{ii'};\alpha(M,\ell_{j}))\}\right)$$

$$\gtrsim \prod_{j=1}^{J}(1-\alpha(M,\ell_{j}))$$

$$=1-\alpha \tag{5}$$

となる. (5) 式より

$$P_0$$
(ある j と $i, i' \in I_j$ が存在して
$$|T_{ii'}| > ta(\ell, \hat{\nu}_{ii'}; \alpha(M, \ell_j))) \lesssim \alpha \quad (6)$$

が成り立つ. よって次の閉検定手順は正当である.

(a) $J\geq 2$ のとき, $\ell=\ell_1,\cdots,\ell_J$ に対して $1\leq j\leq J$ となる整数 j と $i,i'\in I_j$ となる i< i' が存在して $ta(\ell_j,\hat{\nu}_{ii'};\alpha(M,\ell_j))<|T_{ii'}|$ ならば帰無仮説 $\bigwedge_{v\in V}H_v$ を棄

却する

 $(\mathrm{b})\ J=1(M=\ell_1)$ のとき $,i,i'\in I_1$ となる i< i' が存在して $ta(M,\hat{
u}_{ii'};lpha)<|T_{ii'}|$ ならば帰無仮説 $igwedge_{oldsymbol{v}\in V}H_{oldsymbol{v}}$ を棄

却する.

(a), (b) の方法で、 $(i,i')\in V\subset \mathcal{U}$ を満たす任意の V に対して、 $\bigwedge_{v\in V} H_v$ が棄却されるとき、多重比較検定として、 $H_{(i,i')}$ を棄却する.

4 漸近理論

文献 [2] より $i=1,\cdots,k$ に対して n_i が大きいとき

$$\lambda_i \equiv \lim_{n \to \infty} \frac{n_i}{n} \ (\lambda_i > 0)$$

とおき、 Y_i 、 Z_i はそれぞれ互いに独立で Y_i $\sim N(0,\hat{\sigma}_i^2/\lambda_i),~Z_i\sim N(0,1)$ とする.

$$n \to \infty$$
 のとき $|T_{ii'}| \xrightarrow{\mathcal{L}} \frac{|Y_i - Y_{i'}|}{\sqrt{\frac{\hat{\sigma}_i^2}{\lambda_i} + \frac{\hat{\sigma}_{i'}^2}{\lambda_{i'}}}}, \ \hat{\nu}_{ii'} \to \infty$

であるから $A(t|\ell) = 1 - \alpha$ を満たす t の解を $a(\ell;\alpha)$ とすると

$$\lim_{n \to \infty} P_0 \left(\bigcup_{(i,i') \in \mathcal{U}} \{ |T_{ii'}| > a(k,\alpha) \} \right)$$

$$= P \left(\max_{(i,i') \in \mathcal{U}} \left| \frac{Y_i - Y_{i'}}{\sqrt{\frac{\hat{\sigma}_i^2}{\lambda_i} + \frac{\hat{\sigma}_{i'}^2}{\lambda_{i'}}}} \right| > a(k;\alpha) \right)$$

$$\leq P \left(\max_{(i,i') \in \mathcal{U}} \frac{|Z_i - Z_{i'}|}{\sqrt{2}} > a(k;\alpha) \right)$$

$$= \alpha.$$
(8)

(8) 式より Games-Howell 法での漸近理論が成り立つ. 閉検定手順において $j=1,\cdots,J$ に対して $T(I_j)\equiv\max_{i< i',i,i'\in I_j}|T_{ii'}|$ とすると $T(I_j)$ は互いに独立より、

$$\lim_{n \to \infty} P_0(T(I_j) \le a(\ell_j; \alpha(M, \ell_j)), j = 1, \cdots, J)$$

$$= \prod_{j=1}^J \left\{ \lim_{n \to \infty} P_0(T(I_j) \le a(\ell_j; \alpha(M, \ell_j))) \right\}$$
(9)
$$\ge \prod_{j=1}^J A(a(\ell_j; \alpha(M, \ell_j)) | \ell_j)$$

$$= \prod_{j=1}^J (1 - \alpha(M, \ell_j))$$

$$= 1 - \alpha$$
(10)

となる. (10) 式より

$$\lim_{n\to\infty} P_0($$
ある j が存在して $, T(I_j) > a(\ell_j; \alpha(M, \ell_j)))$

$$= 1 - \lim_{n\to\infty} P_0(T(I_j) \le a(\ell_j; \alpha(M, \ell_j)), j = 1, \cdots, J)$$

$$\le \alpha$$
(11)

が成り立つ. よって次の漸近理論を用いた閉検定手順は 正当である.

(A) $J\geq 2$ のとき, $1\leq j\leq J$ となる整数 j と $i,i'\in I_j$ となる i< i' が存在して $a(\ell_j;\alpha(M,\ell_j))< T(I_j)$ ならば帰無仮説 \bigwedge H_v を棄却する.

 (B) $J=1(M=\ell_1)$ のとき, $i,i'\in I_1$ となる i< i' が存在して $a(M;\alpha)< T(I_j)$ ならば帰無仮説 $\bigwedge_{m v\in V} H_{m v}$ を棄却する.

(A), (B) の方法で, $(i,i')\in V\subset \mathcal{U}$ を満たす任意の V に対して, $\bigwedge_{m{v}\in V} H_{m{v}}$ が棄却されるとき, 漸近的な多重比較検定として, $H_{(i,i')}$ を棄却する.

5 検出力のシミュレーション

検定プログラムを用いて Games-Howell 法と閉検定手順による多重比較法を比較する. 群の数 k=5, 有意水準 $\alpha=0.05$, 標本サイズ $n_i=20$ $(i=1,\cdots,k)$ としメルセンヌツイスターとボックスミューラー法を用いて標本モデルを作成する. 表 1,2 のようにモデルの設定を行う. この標本モデル $Case1\sim7$ をそれぞれ 100,000 回シミュレーションした. 結果を表 3,4 に示す.

表 1 Case j $(j = 1, \dots, 5)$ のモデル

	平均	分散
第i群	0	$1 + \frac{(j-1)(i-1)}{4}$
第1群	0.00	1.00
第2群	0.00	1 + 0.25j
第3群	0.00	1 + 0.50j
第4群	0.00	1 + 0.75j
第5群	0.00	1 + 1.00j

表 2 Case 6, 7 のモデル

		/		
	Ca	se6	Ca	se7
	平均	分散	平均	分散
第i群	$\frac{i}{\sqrt{10}}$	1	$\frac{2i}{\sqrt{10}}$	i
第1群	0.32	1.00	0.63	1.00
第2群	0.63	1.00	1.26	2.00
第3群	0.95	1.00	1.90	3.00
第4群	1.26	1.00	2.53	4.00
第5群	1.58	1.00	3.16	5.00

表 3 Case 1, 2 のシミュレーション結果

	,			
Case 名	Ca	se1	Ca	se2
検定法	CTP	GH	CTP	GH
$\overline{H_{12}}$	0.0079	0.0068	0.0073	0.0065
$\overline{H_{13}}$	0.0078	0.0066	0.0080	0.0069
$\overline{H_{14}}$	0.0078	0.0066	0.0082	0.0069
H_{15}	0.0085	0.0070	0.0090	0.0074
H_{23}	0.0079	0.0068	0.0079	0.0067
H_{24}	0.0080	0.0068	0.0083	0.0070
$\overline{H_{25}}$	0.0079	0.0069	0.0085	0.0073
$\overline{H_{34}}$	0.0078	0.0066	0.0084	0.0071
H_{35}	0.0081	0.0068	0.0088	0.0073
H_{45}	0.0080	0.0068	0.0084	0.0067
$P_0(U)$	0.0507	0.0524	0.0501	0.0513

表 4 Case $3, \dots, 7$ のシミュレーション結果

	, , , , , ,			- 11-11-11	
Case 名	Ca	se3	Ca	se4	
検定法	CTP	GH	CTP	GH	
$\overline{H_{12}}$	0.0075	0.0069	0.0073	0.0068	
$\overline{H_{13}}$	0.0081	0.0070	0.0083	0.0073	
$\overline{H_{14}}$	0.0087	0.0073	0.0090	0.0074	
H_{15}	0.0084 0.0068		0.0094	0.0074	
H_{23}	0.0082 0.0069		0.0083	0.0071	
H_{24}	0.0083 0.0069		0.0087	0.0071	
H_{25}	0.0081	0.0063	0.0092	0.0072	
H_{34}	0.0080	0.0066	0.0085	0.0067	
H_{35}	0.0082	0.0065	0.0091	0.0072	
H_{45}	0.0080	0.0062	0.0083	0.0065	
$P_0(U)$	0.0487	0.0483	0.0494	0.0492	
	Case5		Case6		
Case 名	Ca	se5	Ca	se6	
Case 名 検定法	Ca CTP	se5 GH	Ca CTP	se6 GH	
検定法	СТР	GH	СТР	GH	
検定法 <i>H</i> ₁₂	CTP 0.0071	GH 0.0066	CTP 0.0755	GH 0.0391	
検定法 H ₁₂ H ₁₃	CTP 0.0071 0.0083	GH 0.0066 0.0073	CTP 0.0755 0.2796	GH 0.0391 0.2100	
検定法 H ₁₂ H ₁₃ H ₁₄	CTP 0.0071 0.0083 0.0091	GH 0.0066 0.0073 0.0073	CTP 0.0755 0.2796 0.6328	GH 0.0391 0.2100 0.5567	
検定法 H_{12} H_{13} H_{14} H_{15}	CTP 0.0071 0.0083 0.0091 0.0092	GH 0.0066 0.0073 0.0073 0.0070	CTP 0.0755 0.2796 0.6328 0.8869	GH 0.0391 0.2100 0.5567 0.8631	
検定法 H_{12} H_{13} H_{14} H_{15} H_{23}	CTP 0.0071 0.0083 0.0091 0.0092 0.0080	GH 0.0066 0.0073 0.0073 0.0070 0.0068	CTP 0.0755 0.2796 0.6328 0.8869 0.0755	GH 0.0391 0.2100 0.5567 0.8631 0.0400	
検定法	CTP 0.0071 0.0083 0.0091 0.0092 0.0080 0.0087	GH 0.0066 0.0073 0.0073 0.0070 0.0068 0.0070	CTP 0.0755 0.2796 0.6328 0.8869 0.0755 0.3053	GH 0.0391 0.2100 0.5567 0.8631 0.0400 0.2090	
検定法	CTP 0.0071 0.0083 0.0091 0.0092 0.0080 0.0087 0.0089	GH 0.0066 0.0073 0.0073 0.0070 0.0068 0.0070 0.0071	CTP 0.0755 0.2796 0.6328 0.8869 0.0755 0.3053 0.6318	GH 0.0391 0.2100 0.5567 0.8631 0.0400 0.2090 0.5559	
検定法 H_{12} H_{13} H_{14} H_{15} H_{23} H_{24} H_{25} H_{34}	CTP 0.0071 0.0083 0.0091 0.0092 0.0080 0.0087 0.0089 0.0084	GH 0.0066 0.0073 0.0073 0.0070 0.0068 0.0070 0.0071 0.0067	CTP 0.0755 0.2796 0.6328 0.8869 0.0755 0.3053 0.6318 0.0756	GH 0.0391 0.2100 0.5567 0.8631 0.0400 0.2090 0.5559 0.0391	
検定法 H_{12} H_{13} H_{14} H_{15} H_{23} H_{24} H_{25} H_{34} H_{35}	CTP 0.0071 0.0083 0.0091 0.0092 0.0080 0.0087 0.0089 0.0084 0.0089	GH 0.0066 0.0073 0.0073 0.0070 0.0068 0.0070 0.0071 0.0067 0.0070	CTP 0.0755 0.2796 0.6328 0.8869 0.0755 0.3053 0.6318 0.0756 0.2812	GH 0.0391 0.2100 0.5567 0.8631 0.0400 0.2090 0.5559 0.0391 0.2105	

Case 名	Ca	se7
検定法	CTP	GH
$\overline{H_{12}}$	0.0819	0.0670
$\overline{H_{13}}$	0.1727	0.1494
H_{14}	0.2395	0.2132
H_{15}	0.2818	0.2561
$\overline{H_{23}}$	0.0398	0.0243
$\overline{H_{24}}$	0.0921	0.0646
H_{25}	0.1468	0.1101
$\overline{H_{34}}$	0.0248	0.0146
$\overline{H_{35}}$	0.0573	0.0376
H_{45}	0.0231	0.0118

 $H_{ii'}$ は $H_{ii'}$ の棄却率, $P_0(U)$ は $P_0($ ある j と $i,i' \in I_j$ が存在して $|T_{ii'}| > ta(\ell_j,\hat{\nu}_{ii'};\alpha(M,\ell_j)))$ である.GH は Games-Howell 法で CTP は閉検定手順による多重 比較法である. $\hat{\nu}_{ii'}$ が 200 より大きくなったときは漸 近理論を用いている.

6 総対検出力のシミュレーション

文献 [4] を参考にし総対検出力をシミュレーションにて比較する. 群の数 k=4,5, 有意水準 $\alpha=0.05$, 標本サイズ $n_i=20$ $(i=1,\cdots,k)$ とする. k=4,5 のとき標本モデルは表 5-7 のように平均が等間隔の場合 (EQ1,2), 最小範囲の場合 (MIN1,2), 最大範囲の場合 (MAX1,2) と設定した. また f はシミュレーションの際に閉検定手順による検定の棄却率が約 40,60,80% となるよう適当に調整した. 100,000 回シミュレーションした結果を表 8-10 に示す.

表 5 等間隔のモデル

	18 0		$D \cup J J$	<i>v</i>	
		EQ1		E	Q2
k = 4	k = 5	平均	分散	平均	分散
第1群	第1群	f	1	f	1
第2群	第2群	2f	1	2f	2
第3群	第3群	3f	1	3f	3
第4群	第4群	4f	1	4f	4
	第5群	5f	1	5f	5

表 6 最小範囲のモデル

		E	Q1	ΕC	Q2
k = 4	k = 5	平均	分散	平均	分散
第1群	第1群	-f	1	-f	1
第2群	第2群	-f	1	-f	2
第3群	第3群	f	1	f	3
第4群	第4群	f	1	f	4
	第5群	f	1	f	5

表 7 最大範囲のモデル設定

	-L() A	X / \+U LL V		12 AL	
		MAX1		MA	X2
k = 4	k = 5	平均	分散	平均	分散
第1群	第1群	$-\sqrt{2}f$	1	$-\sqrt{2}f$	1
第2群	第2群	0	1	0	2
第3群	第3群	0	1	0	3
	第4群	0	1	0	4
	第5群	$\sqrt{2}f$	1	$\sqrt{2}f$	5
第4群		$\sqrt{2}f$	1	$\sqrt{2}f$	4

表 8 等間隔のシミュレーション結果

		1 51113				
EQ1 (k = 4)			F	EQ2 (k =	4)	
\overline{f}	CTP	GH	f	CTP	GH	
0.884	0.4011	0.0874	2.400	0.4030	0.1214	
0.986	0.5992	0.2174	2.780	0.6002	0.2724	
1.123	0.8030	0.4626	3.315	0.7998	0.5294	
E	EQ1 (k =	5)	EQ2 $(k=5)$			
\overline{f}	CTP	GH	f	CTP	GH	
0.944	0.3995	0.0345	3.210	0.4002	0.0634	
1.044	0.6043	0.1226	3.680	0.5993	0.1826	
1.168	0.8007	0.3265	4.320	0.7991	0.4200	

表 9 最小範囲のシミュレーション結果

MIN1 (k = 4)			M	IIN2 $(k =$: 4)	
f	CTP	GH	f	CTP	GH	
0.436	0.4018	0.1915	1.200	0.3996	0.2043	
0.503	0.5998	0.3537	1.403	0.6012	0.3815	
0.588	0.8004	0.5968	1.684	0.8010	0.6278	
$\frac{\text{MIN1 } (k=5)}{\text{MIN1 } (k=5)}$			MIN2 (k = 5)			
N	IIN1 $(k =$: 5)	M	IIN2 $(k =$: 5)	
$\frac{1}{f}$	$\frac{\text{IIN1 } (k = 0)}{\text{CTP}}$	5) GH	f M	$\frac{\text{IN2 } (k = \text{CTP})}{\text{CTP}}$	5) GH	
	` `		M f 1.640			
f	CTP	GH	f	CTP	GH	

表 10 最大範囲のシミュレーション結果

MAX1 (k = 4)			M	AX2 (k =	= 4)	
f	CTP	GH	f	CTP	GH	
0.645	0.4000	0.1438	1.753	0.4002	0.1635	
0.728	0.6000	0.2995	2.075	0.5999	0.3505	
0.838	0.8003	0.5527	2.545	0.8006	0.6289	
$\frac{\text{MAX1} (k=5)}{\text{MAX1} (k=5)}$			MAX2 (k = 5)			
M	AX1 (k =	= 5)	M	AX2 (k =	= 5)	
$\frac{M}{f}$	AX1 (k = CTP)	= 5) GH	f M	AX2 (k = CTP)	= 5) GH	
	`		$ \begin{array}{c c} M \\ f \\ 2.540 \end{array} $	`		
f	CTP	GH	f	CTP	GH	

7 おわりに

Games-Howell 法と閉検定手順による多重比較法を比較するために群の数 k が 3,4,5 で動作可能な C 言語版と Fortran 版による検定のシミュレーションプログラムを作成した. このシミュレーションプログラムの作成を通じて両言語と統計学に関する研究を一段と深めることができた. 検定プログラムによるシミュレーション結果をみると Games-Howell 法より閉検定手順による検定のほうが棄却率が高くなる事象が多い, すなわち検出力が高いことが示された.

参考文献

- [1] Paul A. Games, Johan F. Howell: Pairwise Multiple Comparison Procedures with Unequal N's and/or Variances: A Monte CarloStudyAuthor Journal of Educational Statistics, Vol. 1, No. 2 (Summer, 1976), pp. 113-125
- [2] 廣田拓也, 二階堂健吾: 『分散の異なる場合の多群正規標本モデルにおけるすべての平均相違の多重比較法』. 2012 年度南山大学情報理工学部情報システム数理学科卒業論文, 2013 年 1 月.
- [3] 白石高章: 『多群連続モデルにおける多重比較法』. 共立出版,東京,2011.
- [4] 松田眞一, 永田靖: 『多重比較における新たな検出力 の提案と各手法の特徴比較』. 応用統計学 19 (1990), pp.93-113