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1 INTRODUCTION
When a person and a cargo are hanged by a wire and a

rope from a helicopter, and the helicopter does a rescue oper-
ation, it is desirable to prevent swinging a suspended load for
safety. About the oscillation suppression control of the sus-
pended load, it is often the helicopter does not have a sensor
to measure a swing angle of the load. We may not completely
acquire a state because we are not able to use a sensor from
reasons such as the mechanism of the system and cost in a
real system. In this paper, we reproduce this situation using
a 3-DOF helicopter which is experiment machine in imita-
tion of a helicopter of tandem rotor type.

Some results are reported about such oscillation suppres-
sion control. Sonobe treats each state independently and
suggests the control method to consider each to be plural
SISO system[1]. On the other hand, there is the study us-
ing adaptive control method depending on a state estimate of
the suspended load and the rope length by the image process-
ing for the three-dimensional model[2]. Bisgaard considered
a restriction condition of motion of the helicopter and the
suspended load. A study using adaptive control method is
reported about the oscillation suppression control in case of
the swing angle of the suspended load is not able to measure
using the 3-DOF helicopter[3].

The purpose of the study is designing a controller for at-
titude control of the 3-DOF helicopter and oscillation sup-
pression control of the suspended load while being affected
by the wind disturbance and motion of the helicopter. The
state of the suspended load of the 3-DOF helicopter is not
able to measure, but we pay attention to the point that is de-
tectable and stabilizable. Using this, in this study, we con-
sider stabilizing closed loop system by output feedback con-
trol theory. Also mass of the suspended load may not be
the same all the time. Therefore we treat the mass of the
suspended load as varying parameter and design a controller
for robust stabilization in the range of the varying parameter.
There is a study of the robust stabilization using polytope
representation for the parameter that the range is decided on
like this time[4]. And it is easy to treat the problem using
polytope representation because it is relatively easy. How-
ever, we are not able to design a controller for robust stabi-
lization by polytope representation using output feedback be-
cause its possible solution condition is not able to arrived at
LMIs(Linear Matrix Inequalities)[5]. Therefore in this study,
we treat the problem of the varying parameter as robust stabi-
lization problem using H∞ control theory[6]. And we design
the controller which is guaranteed the stabilization of the he-
licopter and the suspended load for the parameters variation
range. We design the H∞ controller using output feedback
by solving the LMIs using MATLAB[7]. Then, we choose
penalty weights so that good control performance is provided
by simulation using simulink.

2 MODELING OF THE PLANT
2.1 State equations

The schematic figure of the 3-DOF helicopter is illustrated
in Figure 1. The support beam AB can rotate on point O.
Let ϵ(t)[rad] is the angle in vertical plane and λ(t)[rad] is the

angle in horizontal plane. The support beam CD can rotate in
vertical direction on point B. Let ρ(t)[rad] is the pitch angle.
In addition, a suspended load of mass Mp[kg] is hung by a
rope from the helicopter. Let l[m] is the rope length. Let
θ(t)[deg] is the swing angle of the suspended load. Now, 3-
DOF helicopter has sensors to measure the states ϵ(t), λ(t)
and ρ(t), but does not have a sensor for θ(t). So, the state θ(t)
is not able to be measured directly.
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Figure 1 Schematic drawing of the 3-DOF helicopter

We derive the state equations that show the movement of
the 3-DOF helicopter using Euler-Lagrange equation based
on Figure 1. A state variable of the plant is defined as xp(t) =
[ϵ(t) ρ(t) λ(t) θ(t) ϵ̇(t) ρ̇(t) λ̇(t) θ̇(t)]T. An input is defined as
u(t) = [u f (t) ub(t)]T. The state equation is given as Eq(1).
Where u f (t)[V] and ub(t)[V] are each the input voltage of the
front rotor and the back rotor.

ẋp(t) = Apxp(t) + Bpu(t) (1)
Now, Ap and Bp are given as follows.

Ap = E−1
0 A0 , Bp = E−1

0 B0

E0 =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 Jϵ + MpL2

a
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
Jρ 0 0
0 Jλ + MpL2

a MplLa
0 MplLa Mpl2





A0 =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 −Bϵ 0 0 0
0 0 0 0 0 −Bρ 0 0
0 U 0 0 0 0 −Bλ 0
0 0 0 Mpgl 0 0 0 0


B0 =

[
0 0 0 0 K f La K f Lh 0 0
0 0 0 0 K f La −K f Lh 0 0

]T
Where Jϵ , Jρ and Jλ[kg·m2] are each moment of inertia.

2.2 Servo system
We synthesis a controller that follows a provided reference.

In order to remove a steady-state error, a servo system is
used. The error between the observed output y(t) and the ref-
erence r(t) is e(t). w̃(t) is [rϵ(t) rλ(t)]T . The state variable of
the servo system satisfy x(t) = [xp(t)

∫ t
0 eϵ(t)dt

∫ t
0 eλ(t)dt]T.

The servo system is expressed as follows.
ẋ(t) = Ax(t) + B̃1w̃(t) + B2u(t)
z̃(t) = C̃1x(t)
y(t) = C2x(t)

(2)

Where matrices A, B̃1, B2, C̃1 and C2 are given as follows.

A =
[

A0 0
−Ce 0

]
, Ce =

[
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0

]

B̃1 =

[
0
I

]
, B2 =

[
B0
0

]
, C̃1 =

[
0 I

]

C2 =


1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


2.3 Extended system

We consider to realize stability for the swing angle θ(t) of
the suspended load that is not able to be measured directly.
Where wθ(t) is disturbance for θ(t). w(t) is [wθ(t) w̃(t)]. The
extended system is expressed as follows.

ẋ(t) = Ax(t) + B1w(t) + B2u(t)
z(t) = C1x(t) + D12u(t)
y(t) = C2x(t)

(3)

Where matrices B1,C1 and D12 are given as follows.

B1 =

 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


T

C1 =


0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 Wθ 0 0 0 0 0 0
0 0 0 0 0 0 0 0 Weϵ 0
0 0 0 0 0 0 0 0 0 Weλ


D12 =

[
Wu
0

]
Where Wθ,Weϵ ,Weλ and Wu are each weighting constants for
the states and the input.

3 CONTROLLER SYNTHESIS
3.1 Robust stabilization problem

Mass of the suspended load may not be the same all the
time. Where ∆m(s) is uncertainty of the multiplication of the
nominal plant and the perturbated plant. We apply a small
gain theorem and derive a frequency weight Wt satisfying
σ̄{∆m( jω)} < |Wt( jω)|. Where matrix Wt is given as follows.

Wt =

[
At Bt
Ct Dt

]
Singular plots of the frequency weight and uncertainty of the
multiplication are shown in Figure2. Now, the range of the
varying parameter Mp is 2.85≤ Mp ≤ 3.15. We choose the
frequency weight to cover each uncertainty of the multipli-
cation. In Figure2, a dotted line is the frequency weight Wt.
The generalized plant G(s) is expressed as follows.
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Figure 2 σ̄{∆m( jω)} < |Wt( jω)|

G(s) =


A 0 B1 B2

BtC3 At 0 0
C1 0 D11 D12

DtC3 Ct 0 0
C2 0 D21 0

 (4)

Where matrix C3 is given as follows.

C3 =

 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


3.2 H∞ controller synthesis using output feedback

Now, Eq(4) is expressed as Eq(5). We design the out-
put feedback controller K expressed as Eq(6) using H∞ con-
troller synthesis for the generalized plant Eq(5).

G :


ẋ(t) = AG x(t) + BG1w(t) + BG2u(t)
z(t) = CG1x(t) + DG11w(t) + DG12u(t)
y(t) = CG2x(t) + DG21w(t)

(5)

K :
{

ẋK(t) = AK xK(t) + BKy(t)
u(t) = CK xK(t) + DKy(t) (6)



There is a constant value γ∞ > 0. If X ∈ Sn
++,Y ∈ Sn

++, ÂK ∈
Rn×n, B̂K ∈ Rn×ny , ĈK ∈ Rnu×n and D̂K ∈ Rnu×ny which satisfy
following LMIs(7), (8) exist, the closed loop system is stable.
Also the output feedback control gain which realize ∥ G ∥∞<
γ∞ is given as Eq(6).

[
X I
I Y

]
≻ 0 (7)


He(AGX + BG2)ĈK ∗

ÂK + (AG + BG2D̂KCG2)T He(YA + B̂KCG2)
BT

G1 + DT
G21D̂T

K BT
G2 BT

G1Y + DT
G21B̂T

K
CG1X + DG12ĈK CG1 + DG12D̂KCG2

∗ ∗
∗ ∗
−γ2
∞I ∗

DG11 + DG12D̂K DG21 −I

 ≺ 0 (8)

We derive desired H∞ controller using X,Y, ÂK , B̂K , ĈK and
D̂K satisfying the LMIs(7), (8). Where matrices I − XY and
M,N ∈ Rn×n are regular. They satisfy I − XY = MNT .

DK := D̂K

CK := (ĈK − DKCG2X)M−T

BK := N−1(B̂K − YBG2DK)
AK := N−1(ÂK − NBKCG2X − YBG2CK MT

−Y(AG + BG2DKCG2)X)M−T


(9)

4 SIMULATION
The output feedback gain is obtained by solving the

LMIs(7), (8). Then, D11 = 0,D21 = 0, and matrices M and
N is derived by LU decomposition.

4.1 Simulation adding disturbance
The weighting constants Weϵ ,Weλ and Wu are chosen by

trial and error. We set the reference of ϵ(t)[deg] and λ(t)[deg]
to 20[deg] and 200[deg] respectively. Then, we add the wind
disturbance for the suspended load at 30[sec] to the simula-
tion. The simulation results are shown in Figure3, Figure4,
Figure5 and Figure6.
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In Figure3 and Figure4, it can be seen that results of the
simulation of the elevation and the traveling converge in the
reference. Thus, we were able to design the controller for po-
sition control of the 3-DOF helicopter. In Figure5, it can be
seen that the simulation of the swing angle of the suspended
load suppresses the wind disturbance at 30[sec]. Thus, we
were able to design the controller for stabilization of the state
that is not able to be measured directly by output feedback.
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4.2 Simulation using nominal controller

We simulate to verify the robust stability. At first, we use
the controller of not considering the robust stability. Then,
mass of the suspended load Mp is 0.15[kg] heavier than the
nominal load. The simulation results are shown in Figure7,
Figure8, Figure9 and Figure10.
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In Figure7, Figure8, Figure9 and Figure10, the signals are
not able to be stabilized when we used the nominal controller.
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Figure 10 input(nominal controller)

4.3 Simulation using robust controller
Next, we use the controller which guaranteed the robust

stability on a condition same as 4.2. The simulation results
are shown in Figure11, Figure12, Figure13 and Figure14.

In Figure11, Figure12, Figure13 and Figure14, the signals
are able to be stabilized when we used the proposed con-
troller. Thus, the controller which is guaranteed the robust
stability for varying parameter by H∞ control using output
feedback is effective.

5 CONCLUSION
In this paper, we show the stabilization for the unmeasur-

able state using output feedback. In addition, we realized
robust stability by H∞ control using output feedback for the
control object which has a varying parameter including the
state space representation.
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