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1 Introduction

In general, linear system is studied to include uncer-
tain parameters[1],[2]. Recently, linear MIMO system
which is described polytopic system is reported. Then
in the real system, we cannot obtain the all states. The
synthesis of an observer and the controller correspond-
ing to uncertain parameter is necessary.
This paper presents a robust H2 control system with
polytopic observer for MIMO system which as described
as descriptor form. Generally, the performance degra-
dation is expected to happen in case that uncertainty
which is considered in the robust observer for veloc-
ity estimate design[3],[4] and robust control synthesis
process[5],[6],[7]. Robust observer theory have potential
to improve performance and estimate velocity in con-
trol system. In this study, we focus on this character-
istics of robust observer algorithms into usual robust
control system. The proposed system is synthesized by
two-step approach. First, polytopic observer is designed
that minimizing an upper bound on a given quadratic
cost function derived[3]. Second, robust H2 controller is
synthesized through solving some LMI conditions.
In this study, LMI based stability analysis method for
the combined with system of attached minimal convex
polytope algorithm[8],[9],[10],[11],[12] and MIMO sys-
tem described as descriptor form. Our approach for
MIMO descriptor systems are extension of polytopic ob-
server which is designed minimizing an upper bound on
a given quadratic cost function. In this study, we show
that Lyapnov stability is guaranteed. Next, we synthe-
sized the robust controller. Finally, the effectiveness of
the proposed procedure is verified by simulations and
experiments with 3-DOF helicopter.
We show the whole system which is combined with the
full order observer in Fig.1.

Figure 1 Robust H2 control system with full order ob-
server

2 Robust observer synthesis

It is difficult to deal with uncertainties in state space
representation whose dependency is not affine. In this
paper, we avoid this difficulty with using descriptor rep-
resentation. Consider a continuous time multi-input
multi-output system described by:(

E +
k∑

i=1

δiEi

)
ẋ(t) =

(
A+

k∑
i=1

δiAi

)
x(t) +

(
B +

k∑
i=1

δiBi

)
u(t)

y = Cx(t) (1)

where E,Ei,A,Ai ∈ ℜn×n,B,Bi ∈ ℜn×m,C ∈ ℜl×n.Eq(1)
has affine perturbation in each coefficient matrices. Ad-
ditionally, δi ∈ ℜ is perturbation elements which satisfy
|δi| ≤ 1. For simplicity E(δ),A(δ) and B(δ) matrices are
defined as:

E(δ) = E +
k∑

i=1

δiEi, A(δ) = A+
k∑

i=1

δiAi

B(δ) = B +
k∑

i=1

δiBi

In this section, polytopic observer and quadratic sta-
bility analysis for full order observer is discussed. Oya
etal [3] developed a LMI-based stability analysis method
that quadratic cost function for SISO system.
Consider the MIMO system described as descriptor sys-
tem. Let descriptor variable is x̂(t) = [xT ẋT ]T then
Eq(1) is described as follows.

Ê ˆ̇x(t) = Â(δ)x̂(t) + B̂û(t), y = Ĉx̂(t) (2)

Ê = diag{I, 0}, Ĉ = [ C 0 ]
T

Â(δ) =

[
0 I

A(δ) −E(δ)

]
, B̂ =

[
0

B(δ)

]
Where Eq(2) is redundant descriptor state space equa-
tion as estimated mechanism. The full order observer
for argued system is describe as follows.

Ê ˙̂x(t) = Â(δ)T x̂(t)+ĈTu(t)+H(y(t)−B̂(δ)T x̂(t)) (3)

Matrix H is observer gain. We consider to minimizing
the following cost function.

J =

∫ ∞

0

x̂(t)TQx̂(t) + u(t)TRu(t)dt (4)

Where Q ∈ ℜn×n > 0,R ∈ ℜm×m are given weighting
matrices. The observer gain H is synthesized by opti-
mazing Eq(4). Estimation error e(t) ≜ x− x̂ is defined.
Estimation error system is as follow.

ė(t) = (A(δ)−HC)e(t)

+ (Ae −HCe −BeKx)x̂ (5)



Where Ae = A(δ) − A,Be = B(δ) − B,Ce = C(δ) − C.
In this study, the system which omitted x̂.

ė(t) = (A(δ)−HC)e(t) (6)

We consider an observer gain is guaranteed e(t) → 0 of
Eq(6).

Lemma1: Consider the following e ≜ x− x̂.
Letting xe = [x̂T eT ]T as extended system. then Eq(7)
is described as follows.

ẋe = Aϕ(δ)xe (7)

Aϕ =

[
Aϕ11 HC
Aϕ21 A(δ)−HC

]
(8)

Aϕ11 = A+HCe −BKx

Aϕ21 = Ae +HCe −BeKx

If there exists P̂ > 0, such that Eq(9) hold.

AT
ϕ P̂ + P̂Aϕ +Θ < 0 for ∀ ∈ δ

Θ =

[
Q+KT

x RKx Q
Q Q

]
, P̂ =

[
P11 0
0 P22

]
(9)

In this approach, the full order observer which guar-
anteed asymptotically stability. The robust controller
which is combined with robust observer is discussed.
Then, Eq(9) satisfies Kx,H.If there exists e(t) →
0,x̂(t) → 0, we obtain x(t) → 0. The whole system
is performed asymptotic stability.
We obtained following relationship:

V̇ (e) < 0 → lim
t→∞

e(t) = 0 (10)

2.1 Robust observer design

Eq(11) is the control plant for dual system.{
Edẋd(t) = Adxd(t) +Bdud(t)
yd(t) = Cdxd(t)

(11)

Ao =

[
Â(δ) B̂(δ)
0 0

]
, Bo =

[
0
I

]
Co = [ C 0 ]

Cw =

[
Q 0
0 0

]
, Dw =

[
0
R

]
Ad = AT

o ∈ ℜn×n, Bd = CT
o ∈ ℜn×m, Cd = BT

o ∈ ℜl×n

X =

[
X11 0
X21 X22

]
, Y = [ Y11 0 ]

minimize γ

X11 > 0[
He[AdminX +BdY ] (CwX −DwY )T

CwX −DwY −I

]
< 0 (12)[

He[AdmaxX +BdY ] (CwX −DwY )T

CwX −DwY −I

]
< 0 (13)

Y11 = KdX11

Observer gain H is obtained by Eq(12),Eq(13).

H = −KT
d (14)

3 Robust controller synthesis

Generally, it is difficult to analyze the system stabil-
ity directly whose E(δ) matrix has uncertainty param-
eters.However through adopting descriptor variables as
x̆(t) := [xT ẋTuT ]T ,uncertainties in each coefficient ma-

trices are integrated into matrix Ă.

Ĕ ˘̇x = Ă(δ)x̆+ B̆u, y = C̆x̆ (15)

Ĕ = diag{I, 0, 0}, C̆ = [ C 0 0 ]
T

Ă(δ) =

[
0 I 0

A(δ) −E(δ) B(δ)
0 0 −I

]
, B̆ =

[
0
0
I

]
Note that Ĕ is independent from uncertainty parameters
and only Ă linearly depends on uncertainty.

3.1 Extended system

One integrator is added into the closed loop sys-
tem. For the plant model Eq(15),let y and r are
output, reference, respectively.Letting state as x̃(t) =[ ∫

r − y x̆ u
]T

,We finally obtain Eq(16) for the
augmented system with integrator.

Ẽ ˙̃x(t) = Ãx̃(t) + B̃ũ(t) (16)

Ẽ =

[
I 0

0 Ĕ(δ)

]
, Ã =

[
0 −C

0 Ă(δ)

]
, B̃ =

[
0

B̆(δ)

]
, Br =

[
I
O

]

3.2 H2 controller synthesis

The plant is described as follows:

Ẽ ˙̃x(t) = Ãx̃(t) + B̃ũ(t) +Brr
z(t) = C̃x̃(t) + D̃u(t)

(17)

C̃ =

[
We 0 0
0 Wx 0
0 0 0

]
, D̃ =

[
0
Wu

]
where We,Wx and Wu are weights for the integration of
error, the state, and the input. For the redundant de-
scriptor system, we have already obtained the following
lemma in the previous research[5],[6],[7].
Lemma2 If there exist X11 > 0, X,Y such that
Eq(18),(19) hold, then the closed loop system with the
state feedback u = K11x := Y11X

−1
11 x is stable.

X =

[
X11 0 0
X21 X22 X23

X31 X32 X33

]
, Y = [ Y11 0 0 ]

minimize γ

X11 > 0[
He[ÃminX + B̃Y ] (C̃X − D̃Y )T

C̃X − D̃Y −I

]
< 0 (18)[

He[ÃmaxX + B̃Y ] (C̃X − D̃Y )T

C̃X − D̃Y −I

]
< 0 (19)[

γ2 BrI
BT

r X11

]
> 0 (20)

K = [ K11 0 ] (21)

Furthermore, through maximaizing the trace of X11.
Synthesized controller is divided into integration gain
Ki ∈ ℜm×m and state gain Kx ∈ ℜm×n as K = [KiKx].



4 Applying to 3-DOF helicopter

The picture of the 3-DOF helicopter is put on Fig.2.It
has two propellers drew by DC motors at front and
back.The helicopter can move in horizontal and verti-
cal direction.The simple figure of the helicopter is il-
lustrated in Fig.3.The support beam AB can rotate on
point O.Where ϵ(t)[deg] is the angle in vertical plane and
λ(t) is the angle in horizontal plane.The support beam
CD can rotate in vertical direction on point B.Where
ρ(t)[deg] is the angle of this time.Where uf [V] and ub[V]
are the input voltage of the front rotor and back rotor
each.The counter weights is added to keep the balance
of the helicopter and it saves the energy of the rotors.

Figure 2 3-DOF helicopter

Figure 3 Schematic drawing

Mf Mass of the front rotor [kg]
Mb Mass of the back rotor [kg]
Mw Mass of the counter weight [kg]
g Gravitation acceleration [m/s2]
La Distance from O to B [m]
Lh Distance from B to C or D [m]
Lw Distance from O to A [m]
Kf Lift coefficient [N/V]

Table 1 Physical parameters

4.1 State space equation

The state vector for the 3-DOF helicopter is defined as

x(t) =
[
ϵ(t) ρ(t) λ(t) ϵ̇(t) ρ̇(t) λ̇(t)

]T
. Input

is defined as u(t) = [ uf (t) ub(t) ]
T
. The state space

representation is given as follows:{
Eẋ(t) = Ax(t) +Bu(t) + L
y(t) = Cx(t)

(22)

E =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 Jϵ (Mf − Mb)LaLh 0
0 0 0 2(Mf − Mb)LaLh Jρ 0
0 0 0 0 0 Jλ



A =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , B = Kf


0 0
0 0
0 0
La La
Lh −Lh

La sin ρ(t) La sin ρ(t)



C =

[
1 0 0 0 0 0
0 0 1 0 0 0

]

L =


0
0
0

−(Mf + Mb)gLa + MwgLw

−(Mf − Mb)gLh
0


where Jϵ[kg·m2],Jρ[kg·m2] and Jλ[kg·m2] are each mo-
ment of inertia. There are given as follows.

Jϵ = (Mf +Mb +Mg)L
2
a +MwL

2
w (23)

Jρ = (Mf +Mb)L
2
h (24)

Jλ = (Mf +Mb)(L
2
a + L2

h) +MwL
2
w (25)

Now take notice of sin ρ(t) = ρ(t) as sin ρ(t) = ρ(t),then

λ̈(t) =
U(t)

Jλ
ρ(t), (U(t) := KfLa(uf (t) + ub(t))) (26)

Eq(26) is nonlinear.Matrices E, A and B are rewritten
by linearization around equilibrium point, U0 = 0 and
ρ0 = 0.

E =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 (Mf + Mb)L

2
a + MwL2

w (Mf − Mb)LaLh 0
0 0 0 2(Mf − Mb)LaLh (Mf + Mb)L

2
h 0

0 0 0 0 0 1



A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

0
U0
Jλ

0 0 0 0

 , B = Kf


0 0
0 0
0 0
La La
Lh −Lh
0 0



We verify the proposed method using the simulation
and experiments in 3-DOF helicopter. In this simula-
tions and experiments, we add a weight of 50.0[g] at
the helicopter to verify the robust control and observer
performance. We,Wx and Wu are chosen as follows.

We =

[
1 0
0 1

]
,Wu =

[
0.5 0
0 0.5

]



Wx =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 0.5 0
0 0 0 0 0 1


The simulation and experiment results are shown for

the Fig.4, Fig.5 and Fig.6. The step response of 3-DOF
helicopter is verified by simulations and experiments.
The step response of elevation which is given 30 seconds
later is 0.26[rad](15[deg]).

Figure 4 positioning of elevation(simulation)

Figure 5 positioning of elevation(experiment)

Figure 6 velocity estimation

5 Conclusion

In this study, we designed robust H2 control system
which is combined with robust observer. In addition,
we show the method to deal with uncertain parameters
which is described in rational function by redundant de-
scriptor system. The effectiveness of proposed system
is verified by the experiments. It can be said that the
proposed method, that is the combination of robust con-
troller and robust observer theory, is able to improve the
robust control performance.
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