人体近傍に配置された2線式 折り返しダイポールアンテナの広帯域化に関する研究

M2012MM034 榊原拓馬

指導教員:奥村康行

1 はじめに

無線通信を用いたサービスを利用するには、通信機器に 搭載されたアンテナによる電波の送受信が必要不可欠で ある.携帯電話をはじめとした、無線通信機器による通話 姿勢においては、アンテナが人体頭部に極めて近接して使 用される.電磁波による人体への作用については、これま でにさまざまな研究・報告が行われており [1],特に携帯 電話システムに使用されるマイクロ波帯においては、電磁 波エネルギーの吸収による熱作用が支配的であるとされ ている [2].一方で、人体の高誘電率の損失性媒質により、 アンテナの諸特性も共振周波数のシフトや、放射効率の低 下などの影響を受ける.よって、携帯電話をはじめとする 携帯通信端末用のアンテナを設計・開発する際には、アン テナと人体の相互作用を考慮することが不可欠である.

2 課題と解決策

本論文では、シミュレーション及び実測を通じて、無線 通信が用いられる場面において、発生するアンテナと人体 の相互作用の低減法を提案する事が課題である.本研究 では先行研究 [3] 同様、図1のように移動通信端末を半波 長ダイポールアンテナ、人体頭部を人体頭部モデル(人間 の脳と同じ電気定数を持つを一辺200 mmの立方体)に 置き換え、人間の移動通信端末を用いた通話姿勢のモデル 化を行う.

図1 アンテナと人体の相互作用のモデル化

また上記のモデルに反射板付き折り返しダイポールア ンテナを用いる事で、ファントム表面の局所 SAR 及び VSWR 特性劣化の低減が可能である事を示している [3]. しかし、この手法をモデルに適応する事で、放射アンテナ が狭帯域化する問題点が発生する.そこで解決策として、 折り返しダイポールアンテナの step up ratio を変化させ る事で、給電線路とのインピーダンス整合を取り、アンテ ナの広帯域化を図る.そして、シミュレーションと実験を 通じて広帯域化手法の有効性を示すことで、本研究の課題 であるアンテナ・人体間の相互作用低減法に対するアプ ローチを図る.

3 反射板の配置による局所 SAR の低減法

電磁波による人体への熱作用の一般的な指標として,式 (1) に示す比吸収率 (SAR: Specific Absorption Rate) が用いられている.

$$SAR = \frac{\sigma E^2}{\rho} [W/kg] \tag{1}$$

上記の式において、Eは電界の振幅(実効値)[V/m]、 σ は 生体組織の導電率 [S/m]、 ρ は生体組織の密度 [kg/m³] を 表している [3].本節では半波長ダイポールアンテナと人 体頭部モデルの間に反射板を配置し、人体モデル表面の局 所 SAR を低減する手法について、シミュレーションを用 いて検討する.

3.1 解析モデル及びシミュレーション条件

図 2 に、本シミュレーションの解析モデルを示す. 半波 長ダイポールアンテナ (Dipole antenna) と人体頭部モデ ル (Head model) 表面の距離を 15 mm する.素子長 0.47 λ のダイポールアンテナから 5mm 離れた位置に、素子長 *L* の反射板 (Planer reflector) を平行に配置する.反射板の 幅は 10mm とした.人体頭部モデルとして一辺 200 mm の立方体脳等価モデル (比誘電率 $\epsilon_r = 42.5$,導電率 $\sigma =$ 1.51 S/m,密度 $\rho = 1030 \text{ kg/m}^3$ [3]) を用いる.反射板の モデル化は、セルの 1 表面にのみ導電率 $\sigma = \infty \varepsilon 与える$ ことで表現している.素子長 *L* = 0.49 λ , 0.55 λ , 0.60 λ の 反射板を配置した場合,および反射板を配置しない場合の 観測線上 SAR 分布を求める.SAR の解析線は、人体頭部 モデル表面上の中心点から左右 50mm と設定し、入力電 力は 1 W で規格化した.またシミュレーション条件を 表 1 に示す.

図 2 反射板の配置による局所 SAR の低減法に関する解 析モデル

表 1	シミュ	レーシ	ΈŻ	イのバ	ラメ	ータ	表

	x = 220				
Number of cell	y = 280				
	z = 220				
Length of cell [mm]	1				
Boundary condition	Absorbing (Mur 2nd)				
Wave form	Sinusoid				
Frequency [GHz]	2.45				

3.2 シミュレーション結果

図3のシミュレーション結果より, SAR の分布は大きく 変化している. $L = 0.49\lambda$ の反射板を配置した場合, SAR 分布はダイポールアンテナのみの場合と同様にx = z = 0の1箇所にピークを持つ分布となる.最大 SAR は 17.6 W/kg となっており, 反射板を配置しない場合と比較する と,約52%の SAR を低減している. $L = 0.60\lambda$ の反射 板を配置した場合, SAR 分布が2箇所にピークを持つ分 布となる.最大 SAR は 2.56 W/kg で,約93%低減され ている. $L = 0.55\lambda$ の反射板を配置した場合, SAR 分布 が3箇所にピークを持つ分布となる.最大 SAR は 1.82 W/kg となり,約95%の低減を確認できる.SAR のピー ク値の分布が多く低減量も多い事から, $L = 0.55\lambda$ が最も 適切な長さとなる.また,先行研究[3]の結果と同傾向と なり,シミュレーション結果の妥当性を確認できる.

図 3 反射板の配置による局所 SAR の低減法に関するシ ミュレーション結果

4 反射板付き折り返しダイポールアンテナを 用いた VSWR 特性劣化低減法

給電線路にインピーダンス不整合が起きると,進行波 の一部がその点で反射されその振幅に波を生じる.この 最大の振幅と最小の振幅の比率を電圧定在波比 (voltage standing wave ratio; VSWR) と言う.VSWR の値が1 に近似すれば振幅が一定となり,アンテナと給電線路との インピーダンス整合が取れていると言える[4].前章の解 析モデルでは,反射板を用いて局所 SAR を低減すること によって,アンテナ側に VSWR 特性劣化が確認できた. VSWR 特性劣化の原因として,入力インピーダンスが大 きく低下することが挙げられる[3].そこで,約300Ωと高 いインピーダンスを持つ,折り返しダイポールアンテナを 放射アンテナとして用いることで,給電線路とのインピー ダンス整合を取り、VSWR 特性劣化の低減を図る. この 低減手法について、シミュレーションを用いて検討する.

4.1 **VSWR** 特性の解析結果

図2と同一の解析モデル及びシミュレーション条件に おける,反射板 (Planer reflector)の素子長 L を変化させ た場合の VSWR の変化を図5のグラフに示す.何も配置 しない場合,ダイポールアンテナの入力インピーダンスは 人体頭部モデル近接時の VSWR は約 1.6 となるので,反 射板を配置することによる VSWR 特性劣化を図4のグ ラフから確認できる.

図4 反射板配置した場合の VSWR 特性の変化の推移

4.2 解析モデル及びシミュレーション条件

図 5 に、本シミュレーションの解析モデルを示す.人体 頭部モデルのパラメータ及びアンテナとの距離は前章と 同様とする.折り返しダイポールアンテナ (Folded dipole antenna)部分は素子長 52 mm (0.42 λ)の2つの導線が、 素子間隔9 mm (0.07 λ)と十分近接して折り返された構 造となっている.その2つの導線のうち、給電しない導 線から3mm (0.03 λ)離れた位置に、素子長L,幅10 mm (0.08 λ)の反射板を平行に配置している.この反射板の 素子の長さを0.45 < L/λ < 0.65の範囲で変化させた時 のVSWRを求める.また、上記の条件で自由空間に反射 板付きアンテナを配置したシミュレーションも行う.シ ミュレーション条件は表1と同一とする.

図 5 VSWR 特性劣化低減法に関するシミュレーション の解析モデル

4.3 シミュレーション結果

図6はアンテナと人体頭部モデルを近接した (Close to the head) 場合と,自由空間 (Free space) に反射板付きア ンテナを配置した場合の VSWR の推移の解析結果を示し たグラフである.自由空間において,0.45 < L/λ < 0.52 では VSWR は降下していくが,0.52 < L/λ から 1.5 < VSWR < 2.2 と 安定する.また VSWR は人体頭部モ デル近接時において,0.45 < L/λ < 0.65 の広い範囲で VSWR < 2.2 を維持している.図6の反射器及び反射板 を配置した時の VSWR の推移と比較すると,インピーダ ンス整合上の問題を解決している.また,先行研究 [3] の 結果と同傾向となり,シミュレーション結果の妥当性を確 認できる.

図 6 VSWR 特性劣化低減法に関するシミュレーション 結果

5 太さの異なる2線式折り返しダイポールア ンテナの広帯域化手法

図7はシミュレーションによる,人体頭部モデル近接時 における半波長ダイポールアンテナ (Half wave dipole) と 反射板付き折り返しダイポールアンテナ (Folded dipole) の反射係数 S₁₁ を表したグラフである.半波長ダイポール アンテナでは、2~3GHz 間において比帯域 (S₁₁ が-10dB 以下)約50%となる.一方,反射板付き折り返しダイポー ルアンテナは比帯域 (S₁₁ が-10dB 以下)約35%となり, 帯域幅が狭くなる.そこで,給電部が付加されている1次 線よりも2次線の素子を太くすることで,step up ratio を 上昇させる.そして,給電線路とのインピーダンス整合を 取る事で,アンテナの広帯域化を図る.広帯域化手法につ いて、シミュレーションを用いて検討する.

図7 帯域幅の狭帯域化

5.1 折り返しダイポールアンテナの step up ratio

折り返しダイポールアンテナのインピーダンス Z は式(2)で表すことができる [5].

$$Z = 1/v_i^2 Z_r \tag{2}$$

上記の式において, Z_r はダイポールアンテナの入力イン ピーダンス [Ω] である. $1/v_i^2$ は step up ratio(ステップ・ アップ・レシオ) とよばれる. 1 次線と 2 次線の太さが等 しい場合は 4 となり, 1 次線に対して 2 次線を太くすれば 4 より大きくなる [6]. この理論を用いることで, インピー ダンスを調節する事が可能となる.

5.2 解析モデル及びシミュレーション条件

図8にシミュレーションで用いた解析モデルを記す.折 り返しダイポールアンテナと人体頭部モデル表面の距離を 15 mm する.人体頭部モデルは,前章と同様のものを用 いる.折り返しダイポールアンテナ部分は素子長 52 mm (0.42 λ)の2つの導線が,素子間隔9 mm (0.07 λ)と十 分近接して折り返された構造となっている.その2つの 導線のうち,2次線から3 mm (0.03 λ)離れた位置に,素 子長 67mm (0.55 λ),幅10 mm (0.08 λ)の反射板を平 行に配置している.折り返しダイポールアンテナの1次 線を直径1mmと固定し,2次線を直径1mm,2mm,3mm と変化させた時の反射係数 S_{11} を測定する.またシミュ レーション条件を表2に示す.

図8 アンテナの広帯域化手法に関する解析モデル

	x = 220				
Number of cell	y = 280				
	z = 220				
Length of cell [mm]	1				
Boundary condition	Absorbing (Mur 2nd)				
Wave form	Gaussian				

表2 シミュレーションのパラメータ表

5.3 広帯域化に関するシミュレーション結果

図9はシミュレーション結果示したグラフである.ま ず1次線,2次線共に1mmの場合,2~3GHz間におい て比帯域(S₁₁が-10dB以下)約35%となり,3種類のア ンテナの中で最も広帯域となる.しかし一方で,1次線 1mm,2次線2mmの場合,比帯域(S₁₁が-10dB以下)約 14 %となり,1 次線 1mm,2 次線 3mm の場合は,比帯域 (*S*₁₁ が-10dB 以下)約0%となる.よってこの解析モデル において,折り返しダイポールアンテナの1次線に対し2 次線の素子を太くする程,狭帯域となる事がわかる.

図 9 アンテナの広帯域化手法に関するシミュレーション 結果

6 実験

前章で行われたシミュレーションと同条件の実験を行う.実験結果とシミュレーション結果の比較を行い,シ ミュレーション結果の妥当性を示す.

6.1 実験の概略図

図 10 は実測の概略図である.実験に使用する,線幅の 異なる 3 本の折り返しダイポールアンテナ(1 次線:2 次 線=1mm:1mm,1 次線:2 次線=1mm:2mm,1 次線:2 次線 =1mm:3mm),銅板,脳等価ファントム[7]をそれぞれ自 作する.そして反射板を固定する冶具や土台は,発泡ス チロールや木材など不導体で構成する.シレーション条 件と同じく、アンテナの給電部からファントムまでの距離 は 15mm とし、反射板と折り返しダイポールアンテナの 2 次線との距離は 3mm とする.この実験ではネットワー クアナライザを測定器として用いて、3 種類のアンテナの 反射係数 S₁₁を測定する.

図 10 実験の概略図

6.2 実験結果およびシミュレーション結果との比較

図 11 は 3 種類の折り返しダイポールアンテナの反射係 数 S₁₁ のグラフである.1 次線,2 次線共に 1mm の場合, 最も広帯域となった. この場合, 2~3GHz 間において比 帯域 (S_{11} が-10dB 以下)約 10%となっている. 一方で, 2次線 2mm, 3mmのアンテナは,比帯域 (S_{11} が-10dB 以 下)0%となる. さらに2次線が 2mmの時より, 3mmの ほうが狭帯域となる為,1次線に対し2次線の素子を太く する程,アンテナは狭帯域化する事がわかる. グラフの波 形や S_{11} の値に誤差が生じているが,シミュレーションと 実験は同傾向となり,結果の妥当性を確認できる.

図 11 実験結果

7 今後の課題

モデル化した条件において,折り返しダイポールアンテ ナ素子を1次線に対し2次線を太くすることで,アンテ ナの帯域幅が縮小し,広帯域化を図る事はできなかった. 入力インピーダンスが上昇し,給電線路とのインピーダン ス整合が取れなかった事が原因である.そこで,1次線に 対して2次線を細くし入力インピーダンスを低下させる ことで,給電線路とのインピーダンス整合を取り,アンテ ナの広帯域化を図る事が今後の課題である.

参考文献

- 浜田哲也,渡辺聡一,田中利幸,多氣昌生,"携帯電話 のマイクロ波曝露における局所ピーク SAR の頭部形 状依存性に関する検討,"信学技報, EMCJ-97-10, pp. 15-21, 1997.
- [2] 藤原 修, "電磁波のバイオエフェクト," 信学誌, vol. 75, no. 5, pp. 519-522, May 1992.
- [3] 岡野由樹,河井寛記,小柳芳雄,吉村博幸,伊藤公一," 反射板付き折り返しダイポールアンテナを用いた局所 SARの低減に関する検討,"信学技報,A・P2001-159, December 2001.
- [4] 石井望, アンテナ基本測定法, コロナ社, 東京, 2011.
- [5] 電子情報通信学会, "アンテナ工学ハンドブック,"オーム社, 1980.
- [6] 森下久, 小型アンテナの基礎, コロナ社, 東京, 2011.
- [7] 伊藤公一, 古屋克己, 岡野好信, 浜田リラ, "マイクロ 波帯における生体等価ファントムの開発とその特性"
 信学論 (B-II), vol.81-B-II, no.12, pp.1126-1135, Dec. 1998.