
Design and Implementation of Malware Dynamic
Analyzer using Network Emulator GINE

M2011MM048 MITSUEDA Yasuaki

Supervisor：OKUMURA Yasuyuki

1 Introduction

Recently the number of malicious programs have been
increasing in a short period of time. We need to know
their behavior to cleanse them.
Although dynamic analysis is not able to figure out

exact malware behavior, it is able to analyze malware
behavior in a short period of time. It executes the bi-
nary in a disconnected Internet environment and ana-
lyzes malware behavior. However, there is a drawback
with dynamic analysis. Most malwares try to connect
to the Internet to connect to the corresponding server
that malware’s creator prepares.
To overcome this drawback, there are two previous

works for emulating the network. The first one is “Im-
proving Isolated Sandbox using Fake DNS Server”[1]. It
use Isolated Sandbox using a number of computers. It
provide the Fake DNS service with malware. The fake
DNS service replies predefined domain name or IP ad-
dress in case the domain name or IP address are not in
the list.
Secondly, “Trumanbox”[2] uses two computers. One

computer provides malware with servers such as HTTP,
FTP, IRC, and SMTP. The other runs malware sam-
ples connected to one another. It redirects malware
traffic to servers using ebtables and iptables command.
This study analyzes the traffic to figure out malware be-
havior. Therefore, it redirects the traffic, only between
servers and malware. Furthermore, it provides the DNS
service which resolves the requested hostname to prede-
fined IP addresses.
In this paper, we extend previous research[3] in 2012.

We use the network emulator GINE[4] and the virtual
machine QEMU to make a disconnected the Internet en-
vironment on one computer. We make malware connect
to several virtual hosts and observe malware infection
action. In addition, by providing fake servers, we figure
out malware behavior.

2 System Overview

In this section, we explain virtual networks using
QEMU and GINE.

2.1 Test Network Configuration

In this study, we make two virtual networks. The first
one is the dissconected internet environment (see Fig.1).

• Virtual Windows Host
We install virtual Windows OS on QEMU. QEMU
is Open Source and it is possible to make a con-
nection, using tap function, between guest OS and
GINE nodes. Therefore we use QEMU as a vir-
tual machine. By using the virtual machine, we are
able to clean up the guest machine. We explain the
method of connection between QEMU and GINE
node in section 3.1.

• Virtual Switch
Using kernel bridge, QEMU connects to the Inter-
net directly. In this case, GINE nodes are impos-

Figure 1 System Architecture

sible to connect to QEMU host. Therefore, we use
virtual GINE switch, without assign IP addresses,
which is possible to make a connection between
QEMU host and GINE nodes.

• Virtual NAT Host
We translate, using iptables, virtual Windows OS’s
destination IP address into fake server’s IP address.
We configure iptables rule below.
“-d 0.0.0.0/0 -j DNAT -to-destination A.B.C.D”

• Virtual Fake Servers
We provide malware with fake services such as
HTTP, FTP, IRC, SMTP and DNS.

Providing malware with fake servers, we always have
to assign IP address. Malware always tries to connect
to the original server. In this case, malware connects
to fake servers. For example (see Fig.1), virtual Win-
dows host connects a DNS server’s IP address “A”. Vir-
tual NAT host receives malware’s packets on veth1 and
translates malware’s destination IP address into the fake
server’s IP address “X”. In addition, it forward the
packets to the fake servers.
Secondly, we make a connection between malware and

the original server (see Fig.2).

Figure 2 The transparent proxy

“vProxy” is a virtual GINE host and the transparend
proxy host. It only permits port 80(HTTP) and port
53(DNS) using iptables command to prevent the infec-
tion. We make malware connect to the original server
using network bridge. The bridge can make a connec-
tion between NIC(eth0) and virtual NAT host’s NIC.

Therefore, we can make malware connect to the original
server with benign.

2.2 Network and Hosts Virtuarization

GINE(Goto’s IP Network Emulator) emulates
IPv4/v6 network which component some router and
link. GINE uses NETNS(Network Name Space) which
is a Linux kernel virtual host. It uses only network
virtualization and do not use file system nor process
virtualization since it is rather inconvenient for network
emulation purpose. Since network interfaces including
loopback interface(lo) and Unix domain sockets are
not shared among virtual network stacks and the host
OS ’s original network stack, a special virtual network
device, called Virtual Ethernet Pair(vethdevice), must
be used.
GINE can not emulate Windows hosts. Therefore, we

use QEMU to make networks including Windows hosts
and NETNS hosts. QEMU has a tap function to connect
to other virtual hosts.

3 Implementation

In this section, we explain the implementation.

3.1 Connection of Virtual Hosts and Routers

In this section, we explain the method to connect a
virtual QEMU host and internal GINE hosts[3]. In the
case of executing QEMU with default (user mode net-
work), QEMU prepares NAT DHCP server, DNS server
and Samba server for guest OSs. Consequently, other
hosts are not able to connect to guest OSs since there
is the NAT DHCP server for guest OSs. Furthermore,
the guest OS can not connect to other guest OSs and
the host OS. Therefore, we use QEMU’s tap function.
Guest OSs are able to connect other hosts by tap func-
tion. To use tap function, we have to execute QEMU
with the options below.

• qemu -net nic, vlan=1 -net tap, vlan=1, if-
name=tap0

“-net nic” is an option which creates virtual network
card and “-net tap” connects tap device to QEMU.
We use these options to make the connection between
QEMU host and GINE host (see Fig.3).

Figure 3 Connection of QEMU host and GINE host

GINE uses NETNS and veth to make a connection
GINE hosts each other. Therefore, GINE hosts can not
make a connection to tap device. Then, we connect

veth1 to a virtual GINE switch which connect tap de-
vice. Therefore, we can make the connection between
GINE host and QEMU virtual host.
However, some malware detect the virtual environ-

ment and stop execution itself to prevent analysis. In
this case, we execute malware on a real computer. We
use two real computers (see Fig.4).

Figure 4 Using two real computers

One computer is a malware computer. The other one is
a GINE computer which provides fake servers with mal-
ware. We connect the malware computer to the GINE
computer with a crossing cable. The virtual NAT host
connects to the malware host by bridging. Fake servers
are the same as the previous section’s fake servers.

3.2 Fake Servers

SMTP and DNS are complicate mechanisms. Thus,
we use standard server software. For SMTP, we use
Postfix. In addition, we use NSD and Unbound for DNS.
• Fake DNS server
We use NSD for fake DNS root server and set up
fake DNS server on the virtual Internet and config-
ure zone file (see below). Fake DNS server always
replies the same IPv4 address for A record query by
using wild-card. For AAAA query, it replies with
the same way. For reverse query, we implement
a program which always replies the same domain
using unbound library. However, we do not imple-
ment this since it is low-priority[5].

zone file configuration(IPv4)� �
* IN A 1.2.3.4� �

We configured the zone file and set fake DNS
server’s IP address(Ex:1.2.3.4) on the IP field. In
this case, the DNS server always replies same IPv4
address(1.2.3.4).

• Fake SMTP server
We use Postfix for fake SMTP server. We set up
this server on the virtual Internet. This server only
replies SMTP messages. it does not send E-mail for
real.

On the contrary, HTTP, FTP and IRC services are
simple mechanisms. Therefore, We use xinetd. xinetd is
the Internet services daemon. Each time accepting con-
nections, xinetd starts services according to port num-
ber. In addition, xinetd is able to redirect access to an-
other port. In the case of starting services, xinetd can
run server program and an arbitrary program. Hence,
we implement server program easily.
We implemented the fake HTTP server program. This

program always respond with same reply to malware.

This program reply these message below.

Messages of HTTP� �
HTTP/1.1 200 OK
Content-type: text/html

<html>
<head></head>
<body>
<h1>Hello, world!</h1>
<?php
print (”fake script”);
?>
</body>
</html>

� �
“200” is a HTTP message. It shows acceptance malware
requirements. The fake HTTP sever always reply this
messages.
We extended the ftpd[6] which is a opensource soft-

ware. In the case of using ID and password, the fake
FTP server ignores login ID and password which are
sent. Therefore, malware always succeeds entering the
FTP server, as if malware used the correct ID and pass-
word. In addition, the fake FTP server accept anony-
mous login. Every time malware requires files, the fake
FTP server replies fake files according to file exten-
sion(exe, png, jpeg, jpg, gif, html, php and pdf). For
example, malware requires A.exe file. In this case, the
fake FTP server replies fake.exe file. In addition, the
fake FTP server reply image files because malware re-
quires image files which embedded malicious code.
We identify protocol by well known port. However, in

some malware, well knownport numbers are not used.
Identification of protocol is important for our study.
Therefore, we identify protocol by payload protocol
identification[2]. We identify protocol according to ta-
ble 1. For example, There is “GET” in client’s payload.

Table 1 Protocol Identification
Protocol Pattern (at the beginnig) Pattern (somewhere)
HTTP “GET /”
IRC “NICK ”
FTP “220” “ftp” (case insensitive)
SMTP “220” “mail” OR “smtp” (case insensitive)

We identify HTTP. If there is no payload, we identify
protocol according to destination port number.

3.3 Transparent Proxy with Body Removal

In some malware, our fake server can be detected.
Moreover, if malware can connect to the original server,
we can figureout exact behavior. Hence, we use trans-
parent HTTP proxy. It forwards the original server
packets to malware. However, we should not forward
the original packets without any change. Therefore, we
implemented the transparent proxy with perl since perl
can manipulate text easily.
Client(malware) send http request to the original

server. When forwarding the request, we have to use
iptables command to redirect the packet to the trans-
parent proxy. Then, the proxy establish the connection
with non blocking mode to make wait the connection.
In addition, it gets the client’s destination IP address
using “getsockopt” function. It sends the request to the
original server by proxy. After receiving the HTTP re-

ply, if the reply is 200s, it removes the HTTP body and
forwards the reply to the client (see below).

Original HTTP headers� �
HTTP/1.1 200 OK
Date: Tue, 11 Dec 2012 10:03:53 GMT
Server: Apache/2.2.14 (Ubuntu)
Last-Modified: Thu, 29 Nov 2012 06:45:40 GMT
ETag: ”7e22f2-10d-4cf9ca1aa15c0”
Accept-Ranges: bytes
Vary: Accept-Encoding
Content-Encoding: gzip
Content-Length: 205
Content-Type: text/html

Malicious Code Message Body� �
Malware gets a file by using HTTP get method. In the
case of HTTP response message being 200s, the proxy
replaces original HTTP body with benign body(see be-
low).

Replaced HTTP headers� �
HTTP/1.1 200 OK
Date: Tue, 11 Dec 2012 09:35:35 GMT
Server: Apache/2.2.14 (Ubuntu)
Last-Modified: Thu, 29 Nov 2012 06:45:40 GMT
ETag: ”7e22f2-10d-4cf9ca1aa15c0”
Accept-Ranges: bytes
Vary: Accept-Encoding
Content-Length: 31
Content-Type: text/html

<html><body>HELLO!!</body></html>� �
The proxy removes HTTP body into “HELLO!!”. The
proxy does not do anything in the case of such as 300s,
400s and 500s. There is room to consider other protocol
such as FTP.

4 Experimental Results

We analyze malware samples from MWS(anti Mal-
ware engineering WorkShop) 2012 Datasets[7]. These
sample are collected between 1st and 31th Jan. in 2012
using 12 honeypots. In addition, We analyze samples
using fake servers in next section.

4.1 Malware Analysis with Fake Servers

We classified these 10538 samples using clamAV.
There were 17 classes and 11 samples which clamAV
could not detect malware. We analyzed 1 sample for
each class and the 11 samples (They are described in
the top 5 digit hash). Therefore, we analyzed 28 sam-
ples. We executed 28 samples on the virtual windows
XP for 10 minutes. 11 of 28 samples did not run on vir-
tual Windows XP, virtual Windows 7(32bit,64bit) and
Windows 7(64bit) on real a machine. We show the re-
sults of malware samples behavior (see Table.2). Then,
we captured malware traffic. We describe a part of mal-
ware behavior.
Allaple sent ICMP request to a host(219.151.X.X)

twice. Then, this sample tried to connect to the host
with port 139(NETBIOS−SSN). We guess that it is a
infection action.
Trojan.Inject, Trojan.Jorik, Trojan.Injector, Trojan

.Kazy, 42b2f, 8e915, ce891, 56404 and e0428 showed

Table 2 Malware Classification and Behavior
Class Used protocol or port number
Allaple ICMP, netbios-ssn(port 139)
Trojan.Inject DNS
Trojan.Crypt DNS, microsoft-ds(port 445), port 555
Trojan.Dropper.Agent microsoft-ds(445), DNS, port 976
Trojan.IRCBot DNS, microsoft-ds(port 445), port 555
Trojan.Injector DNS
Trojan.Jorik DNS
Trojan.Kazy DNS
W32.Virut DNS, HTTP, port 555
42b2f... DNS
8e915... DNS
e95f7... HTTP, port 7007
54932... netbios-dgm(port 138)
ce891... DNS
56404... DNS
8746e... netbios-dgm(port 138)
e0428... DNS

same behavior. These samples sent same DNS request
of TXT record. Therefore, we configured fake DNS
server to reply TXT record and analyzed Trojan.Injector
again. This sample only continued TXT record request.
We guess that the action is DoS attack which using DNS
query.
Trojan.IRCBot, Trojan.Dropper.Agent, W32.Virut,

and Trojan.Crypt showed similar behavior. These sam-
ples tried to enter the IRC server with password.
Trojan.IRCBot, W32.Virut and Trojan.Crypt used port
555. Trojan.Dropper.Agent used port 976. Trojan.IRC
Bot sent “Password h4xg4ng”, “NICK [00|JPN|XP|339
952]” and “User ID SP0-805 * 0 :M11MM0482LBFCJ”
to the server. The others sent similar information. We
guess that the password is used to enter the server and
NICK is infected host information. In addition, USER
ID was infected Windows user name. We guess that
malware’s creator collects infected host information to
control. Furthermore, these samples sent ARP request
to the same segment network hosts. Receiving ARP re-
ply from a host, these sample tried to connect to the
host using microsoft-ds. After these samples sending
ARP request X.X.X.254, these samples sent ARP re-
quest to the next segment. We guess that this is the
infection action.
e95f7 resolved a domain “www.google.com” and tried

to connect to the domain. Then, it resolved a do-
main “www.what...” and tried to connect to the do-
main. This domain was a website which showed client’s
IP address. In addition, this website showed client’s IP
address as a image. This sample sent HTTP request
“GET / HTTP/1.0” to the website. However, the web-
site only replied for “HTTP/1.1” request. We guess
that the website changed the specification. In addition,
the sample sent “USER M11MM048-2LBFCJ n n :nser-
vice” and “NICK P|000|JPN|XP-SP0|zkpregfscf|” to a
domain “frayednd...” with port 7007. Furthermore, it
sent ARP request to same segment hosts which is simi-
lar to Trojan.IRCBot. We guess that this is the infection
action.
54932 and 8746e show same behavior. These samples

continued sending packets with ports 137 and 138 to
192.168.0.255. We guess that this is the infection action.
After analysis, we tried to connect to each correspond-

ing servers with the same port. However, we could not
connect to servers.

4.2 Malware Analysus with TransParent Proxy

We did not analyze malware samples with transpar-
ent proxy since we could not connect to corresponding

servers. Hence, we tested the proxy using the wget com-
mand. A host tried to get fake.exe file, using wget with
transparent proxy, from our server. The host executed
“wget h303.../fake.exe” command. Then, the host got
the fake.exe. We show the fake.exe below.

Content of fake.exe� �
<html><body> HELLO!! </body> </html>� �

Although the host requested exe file, the proxy removed
http body.

5 Conclusion

We made the disconnected internet environment on
one computer using GINE and QEMU. Providing fake
DNS, HTTP, IRC and FTP servers, we could figure out
malaware behavior. This study is effective for types of
malware that sends infected host information. There
are many possible improvements. We show the improve-
ments below.
• Spam analysis mail attachmented file

• Malware analysis with transparent HTTP proxy

• Implementation of transparent proxy with other
protocols

Acknowledgments. This study was supported by
the anti-Malware engineering WorkShop(MWS).

References

[1] S. Miwa, D. Miyamoto, H. Hazeyama, D. Inoue,
and Y. Kadobayashi, “Improving isolated sandbox
using fake dns server,” in Cyber Clean Center・
Information Processing Society of Japan, anti
Malware engineering WorkShop 2008（MWS2008),
http://www.iwsec.org/mws/2008/manuscript/
1019.pdf, Oct. 2008 (In Japanese with English
summary).

[2] G. Christian, F. C. Freiling, M. Kuhrer, and T. Holz,
“Truman box: Improving dynamic malware analy-
sis by emulating the internet,” in 13th International
Symposium, SSS 2011, Grenoble, France, Oct. 2011,
pp. 208–222.

[3] M. Yasuaki and K. Goto, “Design and implemen-
tation of malware analysis using network emula-
tor GINE,” in Computer Security Symposium 2012
(CSS2012), Vol. 2012, No. 3, Oct. 2012 (In Japanese
with English summary), pp. 114–121.

[4] K. Goto, “Network emulator with virtual host and
packet diversion,” in Cyber Journals: Multidisci-
plinary Journals in Science and Technology, Journal
of Selected Areas in Telecommunications (JSAT),
Vol. 3, No. 3, 2012, pp. 13–20.

[5] J. A. Morales, A. Al-Bataineh, S. Xu, and
R. Sandhu, “Analyzing and exploiting network be-
haviors of malware,” in Security and Privacy in
Communication Networks Lecture Notes of the Insti-
tute for Computer Sciences, Social Informatics and
Telecommunications Engineering, Vol. 50, 2010, pp.
20–34.

[6] VA Linux Systems, “ftpd,” accessed Feb. 2013,
http://jftp.sourceforge.net/.

[7] anti-Malware engineering WorkShop,
“About mws,” accessed Feb. 2013,
http://www.iwsec.org/mws/2009/en about.html.

