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1 Introduction

Most static revenue management models attempt
to maximize the expected revenue in a single-
period seat inventory model, when the booking
limit for low fare demands is fixed. In these mod-
els, once the booking procedure has been stopped,
then it is never reopened. On the other hand,
there are several papers discussing the dynamic
airline seat inventory control. Most of them are
related to discrete time (see [3]).

In this thesis we consider a seat inventory
model. It differs from the existing literature in a
sense that the planning horizon is continuous. We
assume two fare classes for a set of identical seats.
Furthermore, booking limits for the fare class can
be reset to upward or downward, depending on
whether the amount of high fare demands is large
enough or not after a certain period of time.

In section 2 we develop a general framework
of the continuous-time seat inventory model and
then derive the expected revenue function under
such booking policies. In section 3 we develop the
reset model to incorporate cancellations with and
without the callable property. In section 4 we ex-
plore some properties of value functions by using
numerical examples.

2 The Model of Seat Alloca-
tion Problems

Let T be the time epoch at which sale ends. Let
Xt and Yt be the number of high fare and low fare
demands at time t, respectively, which satisfy

dXt = µ1dt + σ1dZ1(t), 0 ≤ t ≤ T (1)

and
dYt = µ2dt + σ2dZ2(t), 0 ≤ t ≤ T, (2)

where Z1(·) and Z2(·) are independent and stan-
dard Brownian motions. Also, we assume that
X0 = Y0 = 0. Note that E[Xt] = µ1t and
V ar[Xt] = σ2

1t. Negative values of demand can
be treated as cancellations.

The cumulative demands X
t2−t1 from time t1

to t2 is given by

X
t2−t1 =

∫ t2

t1

Xsds, 0 ≤ t1 ≤ t2 ≤ T

and

Y
t2−t1 =

∫ t2

t1

Ysds, 0 ≤ t1 ≤ t2 ≤ T.

X
t2−t1 is normally distributed with mean µ1(t22 −

t21)/2 and variance σ2
1(t32 − 3t21t2 + 2t31)/3. The

expected value and variance of Y have much the
same as that of X.

Furthermore, let C be the total number of seats
and L the initial booking limit for low fare. Let
p and q be the high fare and the low fare, respec-
tively and t0 be the reset time.

The class of booking policies is restricted within
the narrow limits satisfying the following proce-
dure:

(i) Choose L, α, β and γ satisfying 0 ≤ L ≤ C,
γ ≤ 1, α ≤ 1 and 1 ≤ β ≤ {C−γ(C−L)}/L.

(ii) Observe the cumulative booking requests
from the high fare X

t0 at the reset time t0，
0 ≤ t0 ≤ T .

(iii) Reset the initial limit, according to the fol-
lowing two cases;

Case 1
If X

t0 ≥ γ(C −L), then the initial booking limit
L should be reset downward to the level αL for
α ≤ 1.

Case 2
If X

t0
< γ(C −L), then the initial booking limit

L should be reset upward to the level βL for 1 ≤
β ≤ {C − γ(C − L)}/L.

Let v1(L,X, Y ) be the total revenue from the
booking policy for case 1 and v2(L,X, Y ) the total
revenue for case 2. Then, we have

v1(L,X, Y )

= q min{MY (L) + Y
T−t0

, βL}

+ pmin{Xt0 + X
T−t0

, C−βL ∧ (MY (L) + Y
T−t0)}

(3)

and

v2(L,X, Y )

= q min{MY (αL) + Y
T−t0

, αL}

+ pmin{Xt0+X
T−t0

, C− αL ∧(MY (αL)+Y
T−t0)},

(4)



where MY (L) = min{Y t0
, L} and MY (αL) =

min{Y t0
, αL}.

The expected total revenue V (L) over the time
interval [0, T ] is given by

V (L) = E
[
v1(L,X, Y )1{X

t0<γ(C−L)}

+v2(L,X, Y )1{X
t0≥γ(C−L)}

]
.

2.1 Special Cases

Instead of exploring some conditions for concav-
ity of V in L, we consider three special cases by
adding special conditions to demand as follows;

a. A case of low fare demands large enough

b. A case when low fare demands are accepted
until the reset time

c. A case when low fare demands are upgradable
to high fare

2.1.1 A Case of Low Fare Demands Large
Enough

Suppose that low fare demands are much bigger
than the booking limit for low fare demands. Let
F

X
t0 and F

X
T−t0 be the probability distribution

of cumulative high fare demands at the reset time
t0 and the departure time T , respectively. The
equations (3) and (4) can be rewritten as

v1(L,X)= qβL + pmin{XT−t0 + X
t0

, C − βL}

and
v2(L,X)= qαL + pmin{XT−t0 + X

t0
, C − αL}.

We have the expected revenue V (L) as follows;

V (L)= pC −
∫ γ(C−L)

0

Tx1(βL)dF
X

t0 (x1)

−
∫ ∞

γ(C−L)

Tx1(αL)dF
X

t0 (x1),

where

Tx1(s) = (p − q)s + p

∫ C−s−x1

0

F
X

T−t0 (x2)dx2.

Remark 1 Both E[v1(L,X)] and E[v2(L,X)] are
concave in L but V (L) is not necessarily concave
in L.

We now investigate the booking limit L∗ max-
imizing the expected revenue V (L). Differentiat-
ing V (L) with respect to L, we obtain

γf
X

t0 (γ(C − L)){Tγ(C−L)(αL) − Tγ(C−L)(βL)}

=βpP [X
t0 + X

T−t0
> C − βL | X

t0 ≤ γ(C − L)]

+αpP [X
t0 + X

T−t0
> C − αL | X

t0
> γ(C − L)]

− q{βF
X

t0 (γ(C − L)) + αF
X

t0 (γ(C − L))}. (5)

The optimal booking limit L∗ satisfying equation
(5) can not be unique. Note that the model can be
reduced to the traditional model when we assume
t0 = T and α = β = γ = 1. In this case, the
optimal booking limit L̂ can be rewritten as

L̂ = max
{

0 ≤ L ≤ C : Pr[X
T ≤ C − L] ≥ q

p

}
.

2.1.2 Spill Rates

There are two possible interpretations of the term
“spill rate” in the airline context. The first is
that the spill rate is the expected proportion of
flights on which some high fare reservations must
be refused because of low fare bookings, called the
flight spill rate S1. The second is that the spill
rate is the expected proportion of high fare reser-
vations that must be refused out of the total num-
ber of such reservations, called the passenger spill
rate S2. It seems that the second be more mean-
ingful since it relates more closely to the amount
of high fare revenue lost.

3 A Seat Inventory Control
of Callable Seats with Up-
Down Resets.

In this section we treat with callable products in
the airlines seat inventory model in which the air-
lines is allowed to cancel the booking seats by pay-
ing some compensation to the passengers booked
in advance.

3.1 Optimal Seat Allocation with
Cancellation

In the model with reset downward, we assumed
that the airlines pays no penalty cost for low fare
passengers denied for booking. In this section, we
relax this assumption. Let h denote the compen-
sation cost (h > q) due to boarding refused. The
low fare passenger may be canceled at t0 and then
may be paid the compensation. Hence, we have
the total revenue in reset downward as follows;

v2(L,X, Y )

= v2(L,X, Y ) − (h − q)(MY (L) − αL)+. (6)



The total revenue in reset upward is the same form
of equation (3), that is,

v1(L,X, Y ) = v1(L,X, Y ).

Defining V (L) as the expected total revenue with
cancellation over the time interval [0, T ], V (L) can
be given by

V (L)= E
[
v1(L,X, Y )1{X

t0<γ(C−L)}

+v2(L,X, Y )1{X
t0≥γ(C−L)}

]
.(7)

3.2 The Model with Callable Prop-
erty

In this section, we consider another type of low
fare tickets that has a callable property to reduce
the cost of compensation. Low fare passengers
who agree to grant the call option are paid a pre-
specified recall price if their seats are recalled. We
call those passengers “callable passengers”. This
callable property is introduced by Gallego et al.
[2]. There are three types of tickets.

• Type 1 : High fare ticket
This type ticket is not recalled by the airlines.
The fare p is the highest among the tickets.

• Type 2 : Low fare ticket with a callable prop-
erty
This ticket has a priority to be recalled for re-
set downward and the airlines pays the recall
price d, q ≤ d ≤ p to the customer.

• Type 3 : Low fare ticket with no compensa-
tion
When the booking limit is reset downward,
this ticket is recalled after the booking of all
callable passengers are canceled. And they
receive the recall price q. Therefore, there
is no compensation since the ticket price is
equal to the recall price.

Thus, the tickets 2 and 3 share the same property
in the case of reset upward. To count the number
of the callable passengers, we define

Di =

{ 1 if the ith customer makes the decision
to grant the call,

0 otherwise.

Assume that {D1, D2, · · ·} are independent and
identically distributed with mean EDi = δ the
probability of granting the call to the airlines. If
B seats are booked, then H(B) =

∑B
i=1 Di seats

are confirmed and is binomially distributed with
mean Bδ.

In this case a sequence of operations occurs as
follows:

(i) Choose L, α, β, γ, and announce the recall
price d.

(ii) Observe the cumulative booking requests
from the high fare X

t0 at the reset time t0,

(a) If X
t0 ≥ γ(C − L), then L should be

reset downward by recalling the tickets.
And pay the compensation to the num-
ber of passengers given by min{H(Y

t0 ∧
L), αL} passengers.

(b) If X
t0

< γ(C −L), then L should be re-
set upward. The option is not exercised.

If X
t0

< γ(C − L), the total revenue ṽ1(L,X, Y )
takes the same form of (3);

ṽ1(L,X, Y ) = v1(L,X, Y ). (8)

If X
t0 ≥ γ(C − L), we have

ṽ2(L,X, Y )

= v2(L,X, Y )
−(d − q)min{H(MY (L)), (MY (L) − αL)+}.(9)

When d = h and δ = 1 in equation (9), we get
equation (6). The expected total revenue Ṽ (L) is
given by

Ṽ (L) = E
[
ṽ1(L,X, Y )1{X

t0<γ(C−L)}

+ṽ2(L,X, Y )1{X
t0≥γ(C−L)}

]
.

These arguments lead to the following result.

Lemma 2 If h ≥ d, the revenue realized with
callable ticket is greater than or equal to the cor-
responding revenue without the callable ticket for
any feasible values of L. That is,

Ṽ (L) = V (L) + R(L)

and

R(L) = F
X

t0 (x1)E[(h − d)(MY (L) − αL)+

+(d −q){(MY (L) − αL)+−H(MY (L))}+]
≥ 0.

3.3 A Case of Low Fare Demands
Large Enough with Callable
Property

We use the normal approximation to the bino-
mial distribution H(B) to compute simply. Thus,
H(B) is normal distribution with mean δB and



variance δ(1 − δ)B. Let Z denote the probability
distribution. The equations (8) and (9) can be
rewritten as

ṽ1(L,X) = qβL + pmin(X
T−t0 + X

t0
, C − βL)

and

ṽ2(L,X) = qαL + p min(X
T−t0 + X

t0
, C − αL)

−(d − q)min{H(L), L − αL}.

We have the expected revenue Ṽ (L) as follows;

Ṽ (L)= V (L) − (d − q)F
X

t0 (γ(C − L))

×

{
(1 − α)L −

∫ L−αL

0

Z(z)dz

}
.(10)

4 Numerical Examples

In this section, we present numerical results of
optimal booking policies in several examples.

4.1 Results of Section 2

Suppose that the high fare demand process is
given by equation (1). We assume that the air-
plane has the capacity C = 300 and we fix q =
100, t0 = 90, T = 120, α = 0.9, β = 1.1, γ = 0.4
and p = 350. In Table 1, we compare the revenue
function of our model with the one of the classical
model (α = β = γ = 1, t0 = T ).

4.2 Results of Section 3

Let µt0
1 and σt0

1 be the expected value and stan-
dard deviation of high fare demands in [0, t0], and
µT

1 and σT
1 be the expected value and standard

deviation of high fare demands in [t0, T ]. If low
fare passenger’s reservation price PL is uniformly
distributed between [q, p], the probability δ is

δ =
(

d − q

p − q

)+

.

Suppose that the model parameters are given by
C = 300, q = 100, t0 = 90, T = 120, α = 0.9,
β = 1.1, γ = 0.3, h = 150, p = 350, and d = 150.
In Table 2, we compare the revenue function of
callable model (10) with the cancellation model
(7).

5 Conclusion

In this thesis, we have formulated the seat alloca-
tion model with upward-downward resets for the
initial booking limit．Future research in this area
could be a dynamic model in which there are n
times of the reset opportunities available.

Table 1: The impact of revenue performance in
section 2. (C : the classical model, R : the re-
set model, D1 : (µ1,σ1)=(0.004, 0.02), D2 : (µ1,
σ1)=(0.01, 0.04), D3 : (µ1, σ1)=(0.016, 0.07)).

C ⌊L̂⌋ V (L̂) Ŝ1 Ŝ2

Xt R ⌊L∗⌋ V (L∗) % S1 S2

D1 C 263 35,452.74 29.5 9.8
R 243 35,447.14 0.00 14.8 1.1

D2 C 211 44,419.82 28.8 7.6
R 224 45,819.43 3.15 25.1 2.9

D3 C 155 52,579.02 28.7 8.3
R 173 55,115.03 4.82 27.6 5.0

Table 2: The impact of revenue performance in
section 3 and comparison of models. (R : the reset
model, CN : with cancellation model, CL : with
callable model, D1:{(µt0

1 , σt0
1 )=(0.003, 0.01), (µT

2 ,
σT

2 )=(0.008, 0.03)}, D2:{(µt0
1 , σt0

1 )=(0.007, 0.02),
(µT

1 , σT
1 )=(0.016, 0.1)}, D3:{(µt0

1 , σt0
1 )=(0.011,

0.03), (µT
1 , σT

1 )=(0.024, 0.17)}, OBL : Optimal
booking limit).

Xt Case OBL Expected Revenue %

R 233 37,980.66
D1 CN 232 37,921.20

CL 232 37,926.03 0.01

R 194 46,004.06
D2 CN 188 45,694.43

CL 193 45,900.25 0.45

R 150 54,412.58
D3 CN 144 54,074.00

CL 150 54,516.60 0.82
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