Secure Data Collection with Cryptography for Wireless

Sensor Network on a Simulator

2013SE265 EUGENE TAN Chuen Liang
Supervisor: GOTO Kunio

1 Introduction

Development of various areas of Information and
Communication Technology (ICT) has led to an explo-
sive growth in volume of data. The term Big data has
become a popular word in the last few years. Organiza-
tions started to analyze data to make better decisions
for business moves. One of the characteristics of Big
Data, “variety® has led us to WSN (Wireless Sensor
Network). Gathering the large volume and wide variety
of sensed data, it is unable to ignore the security risk of
information leakage. Security in WSN has always been
a challenge[4]. Therefore the cryptography complexity
needs to be minimize to fit these restrictions.

The goal of this paper is to construct WSN in OM-
NeT++ general simulator with encryption communi-
cation on Ubuntu 14.04.5 LTS Linux version 3.13.0
64bit. We will use an extension INET framework of
OMNeT++ that provides protocol implementations to
construct WSN and decide transmission details. For
encryption we have choosed NTRU public key cryptog-
raphy, a lattice-based public key cryptosystem for se-
curity innovation [2], because NTRU encryption imple-
mentations is a compact and low cost that is suitable
for sensors. And for easy use of NTRU encryption we
implemented C++ class definitions. We will establish a
general method to implant encryption into OMNeT++.
With this technique, future WSN simulation project to
be more secure and efficient and can be applied with
other cryptosystem.

2 Simulators for Wireless Sensor Net-
work

In this section, we discuss about the network simulator
to the base of this research.

2.1 OMNeT++ and INET Framework

OMNeT++ is a discrete event network simulator built
in C++, a general network simulator. And OMNeT++
can support protocols and simulate power consumption
in WSN using INET Framework extension.

INET Framework is an open-source model library for
the OMNeT++ simulation environment. It provides
protocol implementations and several application mod-
els for communication networks. We will use the follow-
ing version; omnetpp-5.0, inet-3.4.0.

3 Secure data collection

In this section, we will discuss about the cryptography
used for the simulation in OMNeT++.

WSN poses challenges such as strict resource con-
straints on each individual sensor, lack of processing
capability, etc. Therefore the cryptography complexity
needs to be minimized to fit these restriction.

3.1 NTRU public key cryptography

The NTRU cryptosystem is patented by NTRU
CRYPTOSYSTEMS (http://www.ntru.com) is one of
the fastest public-key encryption schemes known today

[3]. The cryptographic strength is equivalent to RSA,
and NTRU has a faster private key operation. NTRU
security is based on the hardness of the Shortest Vector
Problem (SVP) in a very high dimension lattice [1]. It
still uses relatively large operands, but it reduces the
overall asymptotic complexity of the encryption opera-
tion to O(n?) compared to RSA’s O(n?) [2].

3.2 NTRU Program

To begin NTRU cryptography you would need to in-
stall the NTRU Library. We have downloaded the C++
library from “https://github.com/tbuktu/libntru“. Ac-
cording to README.md in the source file, we used
NTRU_DEFAULT_PARAMS_ 256 BITS for the pro-
gram, encryption block size not more than 106 octets
and encrypted output is a fixed size of 1022 octets.

Listing 1 NTRU encrypt and decrypt

1static void generateRandomKey (std::
keyBaseName) ;

2static uint8_t* encrypt(const uint8_tx input,
int ilen, std::string keyBaseName, intx
outLen) ;

3static uint8_t* decrypt(const uint8_t= input,
std :: string keyBaseName, int* outLen);

string

The NTRU library implementations codes was com-
plicated, therefore we have implemented an C++ class
definitions for easy use listed in Listing 1. First, gen-
erateRandomKey will generate a binary file; public key
and private key. The file name is decided with the in-
putted string in keyBaseName.

In encrypt, input is the input message in 8-bit un-
signed integer, and ilen the length of the input message
in bytes, keyBaseName the public key, outLen the length
of the encrypted result in bytes.

As for decrypt, the process are similar, input, key-
BaseName, outLen has the same function. The differ-
ences is that it does not have ilen, the length of the
message in bytes. This is because, the length of the
message before encryption is the same.

4 System Implementation
Figure 1 is the goal network image in GUI.

DataServer

packets received: 0

SensorNode

Module
for

GUI,
Network,
Signal,

Figure 1 Simulation Network

To construct this network, the following files need to
be created. (Only important files are listed; encryption
and communication process.) All created files is placed
in the same arbitrary directory.

Configurator.

1. WirelessSensorMap.ned 2. omnetpp.ini
3. DataServer.cc 4. Sensor.cc
5. UDPMessage.msg 6. PayloadFormat.h

First, ini file for network configuration, NED (Network
Description) file is to describe structure of the simula-
tion model. And cc files for communication process.

Listing 2 is the automatic generation command for
Makefile and run command. MYPROG is the path in
your computer from home to inet/src. And arbitrary di-
rectory is automatically generated with opp_makemake.

Listing 2 Makefile Generation and Run Command

1opp-makemake —f —I MYPROG/src (INET include path
) —Intru (External library) —L MYPROG/src (
INET library path) —lINET

2
3./arbitrary directory —m MYPROG/inet /src:.

Figure 2 is a sequence diagram for the communication
content in the simulation.

After all Sensor node and DataServer has initialized,
DataServer will generate tickets and send out to all
nodes and starts the ticket valid timer. When individ-
ual SensorNode receives the ticket, they will send back
an acknowledgement and begin sending encrypted mes-
sages while the ticket is valid. Finally, DataServer will
regenerate a new ticket and the process repeats.

‘DataServer‘ ‘SensorNodeO‘ ‘SensorNodel }-»--4--{SensorNode8‘

Start timer Generate
for Ticket Ticket

Send out 4>{ receive ticket
end ou receive ticket

T
|
! Ticket [p—
i cke receive ticket
i ‘ | \
1 «——{;EAW i
! 1 send ACK
; send ACK
i i
i encrypted
| message
P encrypted
Timer for message
Ticket expires \— encrypted
message
v v

Figure 2 Communication Content Sequence Diagram

Algorithm 1 is the overall process of DataServer.
Ticket generation, ticket encryption and delivery and
decryption.

Algorithm 1 DataServer process

if timerl then
ticket generation and destination decision then
ticket send process and encryption

end if

: if timer2 then
check for ticket arrival and re-transmit

end if

: if receive UDP data then

process receive and decrypt message

: end if

QXA W

[y

Algorithm 2 is the overall process of Sensor. Receive
encrypted packet from DataServer and respond back.
In the encrypted message contains parameters; temper-
ature, etc.

5 Results

Implementation according to Figure 2 have caused se-
vere packet collisions. Therefore, we have re-implement

Algorithm 2 Sensor process

1: if receive packet from server then
2: decrypt and store ticket

3: send encrypted message(parameters; temperature, etc)
with ticket

4: update value(parameters; temperature, etc)

5: end if

to ticket and sending process to individually. And ac-
cording to the reference implementation of NTRU, max-
imum encryption length is 104 octets. Any messages
longer than this will be fragmented and reassemble on
the receiving end.

Listing 3 is the result of the encryption process.

Listing 3 ticket and message transmission

-- to: client0:60000 ticket 825198428,
expiration 22, encrypted in 1022 octets

client0 Received packet from server (10.0.0.1)

payloadlen 1022

server message (decrypted): plen 10,
825198428, expiration 22

client0 sending data with ticket 825198428

-- sendint to server, length(raw)/(enc) 47/1022

DataStr = t 13.415423, h 2.682374, e 32.081550

server Received packet from client0(10.0.0.2),
plen 1022

-- decrypted len = 47

ticket

header: totalfrags 1, plen 47
ticket 825198428, datalID 0, fragSeq 1
DataString t 13.415423, h 2.682374, e 32.081550

6 Conclusion

We have managed to implement WSN in OMNeT++
simulator with an extension of INET framework and us-
ing NTRU public key cryptography C++ library as en-
cryption. We have successfully establish UDP encrypted
communication with NTRU in OMNeT++.

Future challenges is to apply the method in this pa-
per to other encryption such as DTLS protocol to fur-
ther encryption strength. And the current transmission
order for this network is based on simple acknowledge-
ment transmission. Which is to verify NTRU public key
encryption process on all transmission. Therefore this
need to be reconsider for smother communication and
error scenario for abnormal cases suited for wireless sen-
sor network. A communication scenario more suited for
wireless sensor network.

References

[1] Gaubatz, G., Kaps, J. P., Ozturk, E. and Sunar,
B.: State of the Art in Ultra-Low power Public Key
Cryptography for Wireless Sensor Network, Third
IEEFE International Conference on Pervasive Com-
puting and Communications Workshops, pp. 1-5
(2005).

[2] Gaubatz, G., Kaps, J. P. and Sunar, B.: Public Key
Cryptography in Sensor Networks—Revisited, Secu-
rity in Ad-hoc and Sensor Networks, Lecture Notes
in Computer Science, Vol. 3313, pp. 2-18 (2004).

[3] Nguyen, P. Q. and Pointcheval, D.: Analysis and Im-
provements of NTRU Encryption Paddings, Lecture

Notes in Computer Science - Advance in Cryptology,
Vol. 2442, pp. 210-225 (2002).

[4] Perrig, A., Tankovic, J. and Wagner, D.: Security
in wireless sensor networks, Communications of the

ACM, Vol. 47, pp. 53-57 (2004).

