モーメント問題の解法の数値計算量の削減

11SE225 坂元 悠介 指導教員:杉浦洋

1 はじめに

村井 [2] は多項式 f(x) の領域内の零点を全て求める巻き網法を提案した。上岡 [1] はそれを解析関数 f(x) の零点問題に拡張した。巻き網法では零点はモーメント方程式の解として得られる。村井と上岡はそれを 1 変数代数方程式に変換して Aberth 法で解いた。一方、変換に伴う誤差を避けるために,山田 [3] はそれを直接多次元 Newton 法で解いた。しかし,計算量の増大が問題であった。本研究では,モーメント問題の高速解法を考える。高速解法の精度を保障するためにシミュレーションを行う。

2 モーメント問題

改めて、問題を定義する。点 $z_0,z_1,\ldots,z_n\in\mathbb{C}$ の質量を $w_0,w_1,\ldots,w_n\in\mathbb{C}$ とするとき、その $i(0\leq i\leq n')$ 次モーメントは

$$\mu_i = \sum_{i=0}^n w_j z_j^i \quad (0 \le i \le n')$$

である.逆に,与えられたモーメント $\mu_i \; (0 \leq i \leq n')$ から点の位置や質量を求める問題をモーメント問題という. モーメント問題は,

- 質量問題(質量のみ未知、線形問題 n' = n)
- 位置問題(位置のみ未知、非線形問題 n'=n)
- 位置質量問題(両方未知、非線形問題 n'=2n+1)の 3 つに分かれる。今回は、質量問題の解法シミュレーションについて述べる。

3 質量問題のLU分解法と高速解法

LU 分解法と高速解法を説明する。

- LU 分解法: 与えられた点 $z=z_0,z_1,\cdots,z_n$ の Vandelmonde 行列を V, モーメントベクトルを $\mu=(\mu_0,\mu_1,\cdots,\mu_n)^T$ とし、質量ベクトルを $w=(w_0,w_1,\cdots,w_n)^T$ とすると、モーメント方程式は $V^Tw=\mu$ とベクトル表記される。通常、この方程式は LU 分解法で解かれる。計算量は $O(n^3)$ である。
- 高速解法: $b_{ii} = a_i(0 \le i \le n)$ を初期値として, $(i = 1, 2, \dots, n)(k = n, n 1, \dots, i)$ で,

$$b_{k,k-i} = b_{k,k-i+1} - z_{i-1}b_{k-1,k-i}$$

として $m{b}=Mm{a}$ が計算でき、計算量は $\frac{n(n+1)}{2}$ である. $a_i=c_i$ $(0\leq i\leq n)$ と初期化して、 $k=(n-1,n-2,\cdots,0)$ で

$$a_j = \frac{a_j}{z_j - z_k}$$
 $(j = k + 1, k + 2, \dots, n)$

$$a_k = a_k - \sum_{j=k+1}^n a_j$$

これより $m = U^{-1}\mathbf{b}$ が計算でき、計算量は $\frac{n(n+1)}{2}$ である. よって高速解法の計算量は $O(n^2)$ である.

4 数值実験

計算途中で発生する丸め誤差が計算過程で拡大伝播せず、精度のよい計算結果を得る計算法を数値的に安定という. 拡大伝播して計算結果を破壊する計算法を数値的に不安定という. 高速解法は数学的には正しい解を与えるので、問題となるのは、数値的安定性である. 今回の高速解法の数値的安定性を調べるため、数値実験を行った.

<条件数の理論>

精度の目安を得るために、 V^T の条件数 cond (V^T) を計算する. ノルムは全て 2-ノルムである. 入力誤差を $||\Delta \mu|| = ||\mu_0 - \mu||$,出力誤差を $||\Delta m|| = ||m - m_0||$ とすると,入出力の相対誤差について

$$\frac{||\Delta \boldsymbol{\mu}||}{||\boldsymbol{\mu}||} \leq \operatorname{cond}(V^T) \frac{||\Delta \boldsymbol{m}||}{||\boldsymbol{m}||}$$

が成立する. 最悪の場合には等号が成立する. 入力相対誤差は, 丸め誤差単位 $\mathbf{u}=2^{-53}\cong 10^{-16}$ により

$$\frac{||\Delta \boldsymbol{m}||}{||\boldsymbol{m}||} \cong \mathbf{u}$$

なので, 出力相対誤差は

$$\frac{||\Delta \boldsymbol{m}||}{||\boldsymbol{m}||} \cong \mathrm{u} \; \mathrm{cond}(V^T)$$

と推定される. すなわち

$$\log_{10}(\frac{||\Delta \boldsymbol{m}||}{||\boldsymbol{m}||\mathrm{cond}(V^T)\mathbf{u}}) \cong 0$$

である.この左辺を安定性の指標とする.左辺 ≤ 0 なら安定,そうでないなら不安定である.

<実験方法>

<実験 1 >領域 $\{-r \leq Re \leq r\} \cap \{-r \leq Im \leq r\}$ に配置した z を求める. Vandelmonde 行列の大きさを n=10,15,20,25,30 の 5 パターン. r=1,10,100 の 3 パターン. 計 15 パターンで計測する.

<実験 $2 > \theta$ を $[0,2\pi]$ の一様乱数で定め,領域 $\{-r \le Re(z) - \cos\theta \le r\}$ \cap $\{-r \le Im(z) - \sin\theta \le r\}$ に配置された z を求める.Vandelmonde 行列の大きさを n=10,15,20 の 3 パターン.r=1,0.5,0.25 の 3 パターン.計 9 パターンで計測する.

それぞれ回数 1000 回ループさせ, ランダムシードを 10 に

固定して行う. 以下の項目で LU 分解法と高速解法を比較する.

- 問題の条件数 (最大・最小・平均)
- LU 分解法と高速解法の相対誤差 (最大・最小・平均・ 分散)
- 相対誤差/条件数を調べ、精度保障(最大・最小・平均)

5 高速解法の安定性

実験の結果を評価し、高速解法が安定であることを述べる.

表 1 n=10, r=1 のとき

		最大	最小	平均	分散
条件数の常用対数		7.08	1.71	3.56	
相対誤差	高速解法	-9.77	-15.0	-13.2	0.61
の常用対数	LU 分解法	-9.92	-14.8	-13.1	0.68
安定性指標	高速解法	0.81	-2.16	-0.84	
の常用対数	LU 分解法	0.01	-2.02	-0.74	

n=10, r=1 での高速解法の安定性は保障され、LU 分解法と同等の精度を得た.この結果を基準として他の結果と比較する.

表 2 n = 10, r = 100 のとき

		最大	最小	平均	分散
条件数の常用対数		24.3	19.4	21.2	
相対誤差	高速解法	-9.92	-14.9	-13.2	0.59
の常用対数	LU 分解法	-9.70	-15.1	-13.1	0.69
安定性指標	高速解法	-15.7	-20.1	-18.4	
の常用対数	LU 分解法	-15.4	-20.2	-18.3	

n=10, r=100 では、安定性は保障され、LU 分解法と同等の精度は得た。よって一様乱数を変化させても精度を保障できる.

表 3 n=30, r=1 のとき

		最大	最小	平均	分散
条件数の常用対数		15.2	6.27	10.2	
相対誤差	高速解法	-2.59	-10.8	-7.22	2.14
の常用対数	LU 分解法	-1.79	-10.5	-7.08	2.23
安定性指標	高速解法	-0.16	-3.77	-1.45	
の常用対数	LU 分解法	-0.20	-3.68	-1.32	

n=30, r=1 では、安定性は保障され、LU 分解法と同等の精度を得た、よって行列の大きさを変化させても精度が保障できる.

n=10, r=1 では、安定性は保障され、LU 分解法と同等の精度を得た、この結果を基準として、他の結果と比較する.

表 4 n=10, r=1 のとき

		最大	最小	平均	分散
条件数の常用対数		12.0	5.17	7.44	
相対誤差	高速解法	-6.63	-12.8	-10.3	0.71
の常用対数	LU 分解法	-6.24	-12.6	-10.1	0.71
安定性指標	高速解法	-0.55	-3.33	-1.80	
の常用対数	LU 分解法	-0.46	-3.49	-1.61	

表 5 n=10, r=0.25 のとき

		最大	最小	平均	分散
条件数の常用対数		15.0	10.0	11.7	
相対誤差	高速解法	-2.58	-7.35	-5.38	0.62
の常用対数	LU 分解法	-1.85	-7.71	-5.22	0.61
安定性指標	高速解法	-0.32	-2.45	-1.15	
の常用対数	LU 分解法	-0.15	-2.63	-0.99	

n=10, r=0.25 では、安定性は保障され、LU 分解と同等の精度を得た、条件数が小さければよい精度の解を求められる.

表 6 n=20, r=1 のとき

		最大	最小	平均	分散
条件数の常用対数		19.9	12.0	15.3	
相対誤差	高速解法	0.62	-6.70	-3.77	1.34
の常用対数	LU 分解法	-0.06	-6.74	-3.57	1.32
安定性指標	高速解法	-1.71	-4.89	-3.19	
の常用対数	LU 分解法	-1.60	-4.71	-2.99	

n=20, r=0.25 では,LU 分解法は安定性が保障され,我々の高速解法は安全性が保障されなかった.相対誤差もLU 分解法より明らかに悪い結果を得た.

6 おわりに

本研究では、発見した高速解法と LU 分解法を比較し、 LU 分解法とほぼ同等の精度の結果を得ることができた. 今後の課題として一様乱数で生成された問題以外でも精度 が保障できるのかを実験し、確認する.

参考文献

- [1] 上岡航平: 複素周回積分による解析関数の因数分解, 南山大学数理情報システム数理学科 2012 年度卒業論文 (2013).
- [2] 村井智:複素関数による多項式の因数分解,南山大学数理情報システム数理学科 2011 年度卒業論文 (2011).
- [3] 山田ひかる:複素周回積分による非線形方程式の解法, 南山大学数理情報システム数理学科 2012 年度卒業論 文(2013).