応用解析 第2回 曲線と領域

1. n 乗根

[定理1] (指数関数 $e^{i\theta}$ の指数法則まとめ)

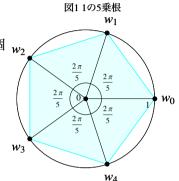
$$e^{i\theta}e^{i\tau} = e^{i(\theta+\tau)}, \ \frac{1}{e^{i\theta}} = e^{-i\theta} = \overline{e^{i\theta}}, \ \frac{e^{i\theta}}{e^{i\tau}} = e^{i(\theta-\tau)}, \ \left(e^{i\theta}\right)^n = e^{in\theta}.$$
 //

「例1] 複素数 $z=-1+i\sqrt{3}$ の累乗. $z=-1+i\sqrt{3}=2e^{(2\pi/3)i}$ より、

$$z^{6} = 2^{6} e^{6(2\pi/3)i} = 2^{6} e^{4\pi i} = 2^{6} = 64. \ z^{-2} = 2^{-2} e^{-2(2\pi/3)i} = \frac{1}{4} \left(\cos \frac{4\pi}{3} - i \sin \frac{4\pi}{3} \right) = \frac{1}{8} (-1 + i\sqrt{3}). \ //$$

△ 単位円:原点中心, 半径1の円. 方程式は 2=1.

 \triangle 複素数 α の n 乗根 $\sqrt[q]{\alpha}$: n 乗して α になる複素数. 方程式 $z^n = \alpha$ の n 個 w_2 の解. n 個まとめて $\sqrt[q]{\alpha}$ と書く.



「定理2] (1の n 乗根) $\sqrt{1} = e^{2\pi i k/n}$ ($0 \le k < n$).

(証明)
$$\left(e^{2\pi i k/n}\right)^n = e^{2\pi i k} = 1$$
. また、これら n 個の複素数

$$w_0 = e^0 = 1, w_1 = e^{2\pi i/n}, w_2 = e^{4\pi i/n}, \dots, w_{n-1} = e^{2\pi i(n-1)/n}$$

は単位円周上に、偏角 $2\pi/n$ 間隔で等間隔に並ぶ(図1)、相異なる複素数である。ゆえに、これらは方程式 $z^n=1$ の n 個の解全体となっている。//

☆ 1の n 乗根は単位円周の内接 n 角形の頂点. 円周上に点1から偏角 2π/n 間隔で等間隔に並ぶ(図1). //

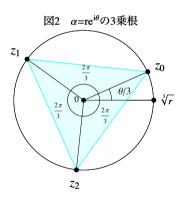
[定理3] (複素数 α の n 乗根) $\alpha = re^{i\theta}$ と極表示して,

$$\sqrt[n]{\alpha} = \sqrt[n]{r}e^{(\theta + 2\pi k)i/n} \quad (0 \le k < n)$$
. //

(証明)
$$\left(\sqrt[n]{r}e^{(\theta+2\pi k)i/n}\right)^n = re^{(\theta+2\pi k)i} = \alpha$$
. また、これら n 個の複素数

$$z_0 = \sqrt[n]{r} e^{i\theta/n}, z_1 = \sqrt[n]{r} e^{i\theta/n + 2\pi i/n}, \cdots, z_{n-1} = \sqrt[n]{r} e^{i\theta/n + 2\pi i(n-1)/n}$$

は中心0で半径 \sqrt{r} の円周上に,偏角 $2\pi/n$ 間隔で等間隔に並ぶ(図2),相異なる複素数である.ゆえに,これらは方程式 $z^n=\alpha$ のn 個の解全体となっている.//

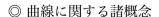


riangle lpha の n 乗根は中心0で半径 $\sqrt[q]{r}$ の円の内接 n 角形の頂点.円周上に,点 $\sqrt[q]{lpha} = \sqrt[q]{r}e^{i heta/n}$ から偏角 $2\pi/n$ 間隔 で等間隔に並ぶ(図2).//

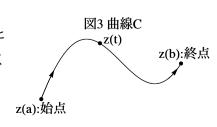
2. 複素平面上の曲線

複素平面上で、向きの付いた曲線と、それらの集合としての和を「曲線」という。

- ◎ 曲線の表現(z平面上)
- ・曲線 C: z = z(t) $(t: a \rightarrow b): t$ は実変数, z(t) = x(t) + iy(t) は実部 x(t) と虚部 y(t) が連続な複素数値関数. C は t が a から b まで動いたときの点 z(t) = x(t) + iy(t) の軌跡. z(a) を始点, z(b) を終点という(図3).

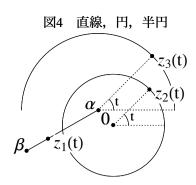


- △ 単純(単一)曲線:自分自身と交差しない曲線。
- △ 閉曲線:始点と終点が一致する曲線.



「例2〕線分、円と半円(図4)

- 1. 点 α , β を結ぶ線分 $L:z=z_1(t)=\alpha+(\beta-\alpha)t$ $(t:0\to 1)$.
- 2. 単位円(原点中心,半径1の円) $C: z=z_2(t)=e^{it} \ (t:0\to 2\pi)$. 単位円は閉曲線である.
- 3. 中心 α , 半径rの半円 $C_1: z = z_3(t) = \alpha + re^{it}$ $(t: 0 \to \pi)$.



3. 複素平面上の領域

- ◎ 領域に関する諸概念
- \triangle $\alpha \in \mathbb{C}$ の r 近傍: $B(\alpha,r) = \{z \mid |z-\alpha| < r\}$. α を中心とする半径 r の円の内部である. 以下 D を複素数の集合, すなわち, $D \subset \mathbb{C}$ とする.
- \triangle Dの補集合 $D^c = \{z | z \in \mathbb{C}, z \notin D\}$.
- $\triangle \alpha$ は D の内点 \Leftrightarrow 十分小さい r > 0 で $B(\alpha,r) \subset D$.
- $\triangle \alpha$ は D の外点 \Leftrightarrow 十分小さい r > 0 で $B(\alpha,r) \subset D^c \Leftrightarrow \alpha$ は D^c の内点.
- \triangle α は D の境界点 \Leftrightarrow どんな小さい r > 0 でも $B(\alpha,r) \cap D \neq \emptyset$ かつ $B(\alpha,r) \cap D^c \neq \emptyset$.
 - 注意:境界点 α 自身は $\alpha \in D$ のこともあり、 $\alpha \notin D$ ($\alpha \in D^c$) のこともある.
- \triangle D の境界 $\partial D = \{D$ の境界点全体}.
- \triangle D は開集合 \Leftrightarrow 全ての $\alpha \in D$ は D の内点.
- \triangle D は閉集合 $\Leftrightarrow \partial D \subset D$.
- \triangle D は**弧状連結** \Leftrightarrow D の任意の2点は D に含まれる曲線で結ばれる.
- \triangle D は領域 \Leftrightarrow D は弧状連結な開集合.

[例3] 代表的な複素数の集合

- ・ $D:|z-\alpha| < r$ は中心 α 半径 r の開円板(領域). 境界 $\partial D:|z-\alpha| = r$.
- ・ $D:|z-\alpha| \le r$ は中心 α 半径 r の閉円板. 境界 $\partial D:|z-\alpha| = r$.
- ・ $D:(|z-\alpha|-r_1)(|z-\alpha|-r_2)<0$, $r_1< r_2$ は2円 $C_1:|z-\alpha|=r_1$, $C_2:|z-\alpha|=r_2$ で挟まれた**円環領域**.
- ・ D: Re z < 0 は左半平面(領域), D: Re z > 0 は右半平面(領域),境界は共に虚軸 $\partial D: \text{Re} z = 0$.
- ・ $D: \operatorname{Im} z < 0$ は下半平面(領域), $D: \operatorname{Im} z > 0$ は上半平面(領域).境界は共に実軸 $\partial D: \operatorname{Im} z = 0$.
- ・ $D:a \leq \text{Re} z \leq b, c \leq \text{Im} z \leq d$ は境界を含む長方形. 境界 ∂D は長方形の周.
- ・ $D:a < \arg z < b$ は2本の動径 $L_1: \arg z = a$, $L_2: \arg z = b$ で挟まれた角領域。 $\partial D = L_1 \cup L_2$.

練習問題

教科書p.19演習問題より.

- 1. $\alpha = 1 + i$ を極表示し、 α^{10} を求めよ.
- 2. (|z+i|-2)(|z-i|-2)<0 を満たすzの集合を図示し、それが領域かどうか判定せよ。

練習問題

- 1. $\alpha = \sqrt{2}e^{\pi i/4}$. $\alpha^{10} = (\sqrt{2})^{10}e^{10\pi i/4} = 2^5e^{5\pi i/2} = 2^5e^{\pi i/2} = 32i$ (下左図).
- 2. (|z-i|-2)(|z+i|-2)<0 は $(|z-i|<2\cap|z+i|>2)\cup(|z-i|>2\cap|z+i|<2)$ ゆえ,集合は下右図の開集合.

上半月部と下半月部は集合内部の曲線でつなげない。よって、この集合は弧状連結でないので領域ではない。2つの領域の和集合である。

