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Abstract

We discuss an approach to reduce counter-models for S4 based on sequent system. Our counter-

models are constructed from failed proofs when a proof-search fails for a given sequent. Failed proof

is like proof but not all of whose top sequents are initial sequents.

1 A sequent system for S4

Let small letters p, q etc. be propositional variables. Formulas are defined in the usual way with logical
connectives ∧, ∨, ⊃, ¬ and ¤. Capital letters A, B etc. denote arbitrary formulas. Greek capital letters
Γ, ∆ etc. denote (finite, possibly empty) sets of formulas. Subscripts are used if necessary. The notation
¤Γ denotes the set of formulas {¤A1, · · · ,¤An} when Γ is {A1, · · · , An}.

Now, we introduce a sequent system for S4 proposed in [2]. Hereafter, we call it SS4. A sequent of
SS4 is an expression of the form Γ → ∆ 〈¤Σ | ¤Π〉. The pair 〈¤Σ | ¤Π〉 of sets of ¤-formulas is called
history which is for detecting loops in proof-search. Let H be a history. Initial sequents are of the form
Γ, p → p, ∆ H. Rules of SS4 are given in Figure 1, though they are slightly modified so that we can
easily incorporate a rule introduced later into SS4.

Γ, A, B → ∆ H

Γ, A ∧ B → ∆ H
(∧ →)

Γ → ∆, A H Γ → ∆, B H

Γ → ∆, A ∧ B H
(→ ∧)

Γ, A → ∆ H Γ, B → ∆ H

Γ, A ∨ B → ∆ H
(∨ →)

Γ → ∆, A, B H

Γ → ∆, A ∨ B H
(→ ∨)

Γ → ∆, A H Γ, B → ∆ H

Γ, A ⊃ B → ∆ H
(⊃→)

Γ, A → ∆, B H

Γ → ∆, A ⊃ B H
(→⊃)

Γ → ∆, A H

Γ,¬A → ∆ H
(¬ →)

Γ, A → ∆ H

Γ → ∆,¬A H
(→ ¬)

A,¥A, Γ → ∆ H

¤A, Γ → ∆ H
(T )

¤Γ → A1 〈¤Γ | ¤Θ,¤Σ〉 | · · · | ¤Γ → Ak 〈¤Γ | ¤Θ,¤Σ〉

¥Γ, p1, · · · , pm → ¤A1, · · · ,¤Ak,¤∆, q1, · · · , qn 〈¤Γ | ¤Σ〉
(¤)s

where ¤Θ = {¤Ai | ¤Ai 6∈ ¤Σ, 1 ≤ i ≤ k}, ¤∆ ⊆ ¤Σ

¤Γ → A1 〈¤Γ | ¤Θ〉 | · · · | ¤Γ → Ak 〈¤Γ | ¤Θ〉

¥Γ, p1, · · · , pm → ¤A1, · · · ,¤Ak, q1, · · · , qn 〈¤Π | ¤Σ〉
(¤)t

where ¤Θ = {¤A1, · · · , Ak}, ¤Π ⊂ ¤Γ

Figure 1: Rules of SS4

The (¤)s and (¤)t rules are called transitional rules, while the rules except them are called static rules.
Applications of the rules are meant to be backward application, that is the upper sequent(s) are generated
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from the lower sequent. For a given sequent Γ → ∆, a proof-search with SS4 starts from Γ → ∆ 〈∅ | ∅〉.
In the (T ) rule, the principal formula ¤A is marked with ¥ after its application so that (T ) would
never be re-applied to the same ¤A. Also, in the (¤)s and (¤)t rules, all possible choices of the upper
sequents are shown with a vertical line |. This means existential branch, that is if one of the upper
sequents is provable then so is lower sequent. Let Sub(Γ) denote the set of the all subformulas of all
formulas in Γ. Any formula occurring in all proofs of Γ → ∆ is in (Γ ∪ ∆)SS4∗, where (Γ ∪ ∆)SS4∗ =
Sub(Γ ∪ ∆) ∪ {¥A | ¤A ∈ Sub(Γ ∪ ∆)}.

2 Construction of counter-models

Here, we will briefly introduce how to construct counter-models for S4 from failed proofs for a given
unprovable sequent in SS4. History of such a method can be seen in [1], though it is based on tableau
system. The reader is supposed to be familiar with Kripke semantics of modal logics. For a sequent
Γ → ∆, let a(Γ → ∆) = Γ and s(Γ → ∆) = ∆, respectively. Also, for a set Γ = {A1, · · · , An} of
formulas, let Γ∗ and Γ∗ denote A1 ∧ · · · ∧ An and A1 ∨ · · · ∨ An, respectively. For simplicity’s sake, we
sometimes omit histories of sequents.

In constructing counter-models, we associate sequents with possible worlds. We denote possible
worlds corresponding to sequents as w, u, v etc. In static rule, the upper sequent(s) and the lower sequent
represent the same world in the same model, while in transitional rule, the upper sequent and the lower
sequent represent different worlds in the same model. Suppose that failed proofs for a sequent Γ0 → ∆0

unprovable in SS4 is given. First of all, in order to generate possible worlds, we focus on its sub-proofs
constructed only by applications of the static rules. Suppose that each of the end-sequents is Γ1 → ∆1.
At the first application of a static rule to Γ1 → ∆1, since Γ0 → ∆0 is unprovable, at least one of the
upper sequents, say Γ2 → ∆2, must be unprovable. Then put w = Γ1 ∪ Γ2 → ∆1 ∪ ∆2. Note that w
is still unprovable in SS4. Continue this step with w for the above applications of static rules. By the
iteration, we can obtain sequents as possible worlds. We have to take all sub-proofs from all possible
upper sequents of the (¤)s and (¤)t rules. We call this procedure saturation. Let W consist of all w
generated by saturation. Then we can construct the following:

Definition 2.1 (S4–Model Graphs) Let W be a nonempty set and R be a binary relation on W , that

is R ⊆ W ×W . Then a S4-model graph for a sequent Γ → ∆ is a finite S4-frame (W, R) such that W
consists of SS4-saturated sequents w with a(w), s(w) ⊆ (Γ ∪ ∆)SS4∗ and

1. Γ ⊆ a(w0) and ∆ ⊆ s(w0) for some w0 ∈ W ,

2. if ¤A ∈ s(w) then there exists some w′ ∈ W with wRw′ and A ∈ s(w′),

3. if wRw′ and ¤A ∈ a(w) then A ∈ a(w′).

For the readability’s sake, we call SS4-model graphs just model graphs. Second of all, it reminds to be
defined R. For w, w′ ∈ W , where w′ is an immediate successor of w, if the occurrences of ¤-formulas
in a(w) and that of a(w′) are the same, then put wRw′ and w′Rw, otherwise wRw′. Finally, replace R
with the reflexive and transitive closure of R and we can obtain a model graph (W, R).

Once we construct a model graph, we can obtain an S4-model immediately by giving a valuation such
that for any w ∈ W , w |= p ⇐⇒ p ∈ a(w).

Lemma 2.2 (Satisfiability Lemma) If (W, R) is a model graph for Γ → ∆ then there exists an S4-

model (W, R, |=) such that w 6|= Γ∗ ⊃ ∆∗ for some w ∈ W .

3 Reduction of counter-models

We can observe that some counter-models from model graph by the above construction include redundant
possible worlds. In this section, we discuss an approach to obtain reduced model graphs.

Is it known that transitive frames (W, R) form cluster-trees. Formally, we first define an equivalence
class relation ∼ on W . For every w, w′ ∈ W , we write w ∼ w′ if w = w′ or (wRw′ and w′Rw). The



equivalence classes with respect to ∼ are called clusters. The cluster containing a possible world w is
denoted by C(w). Then a transitive frame (W/∼, R/∼) with respect to ∼ forms a cluster-tree, where
W/∼ = {C(w) | w ∈ W}, and C(w) R/∼ C(w′) ⇐⇒ wRw′.

Here, we call ¤-formulas occurring in the left hand-side of sequents, valid ¤-formulas. Once a valid
¤-formula occurs in a sequent in proof of SS4, it also occurs in all of the above sequents. Taking it into
account, when we observe a model graph constructed based on SS4, we can seen that the upper clusters
from the root of the cluster-tree we visit, the more occurrences of valid ¤-formulas we have. In addition,
the occurrences of valid ¤-formulas in all sequents(possible worlds) contained in each cluster are the same.
From the observation, we have an approach to reduce the number of clusters in modal graphs. Suppose
that a sequent Γ → ∆ unprovable in SS4 is given. We say that ¤A1, · · · ,¤An ∈ Sub(Γ ∪ ∆) (n ≥ 0)
are left-valid ¤-formulas of Γ → ∆, if ¤A1, · · · ,¤An occur in some cluster of a model graph for Γ → ∆
and {¤A1, · · · ,¤An} ∪ Γ → ∆ is still unprovable in SS4. We always take the maximal set of left-valid
¤-formulas of Γ → ∆. Our approach is to put the maximal set of left-valid ¤-formulas of Γ → ∆ in the
root of the cluster-tree. Then we can easily see the following theorem:

Theorem 3.1 Let (W0, R0) be a model graph for Γ → ∆ and ¤Λ be the maximal set of left-valid ¤-

formulas of Γ → ∆. Also, let (W1, R1, |=1) be a counter-model for ((¤Λ)∗ ∧ Γ∗) ⊃ ∆∗, where (W1, R1) is

a mode graph. Then,

• if, for w ∈ W1, w 6|=1 ((¤Λ)∗ ∧ Γ∗) ⊃ ∆∗, then w 6|=1 Γ∗ ⊃ ∆∗,

• |W1/∼1
| ≤ |W0/∼0

|, where ∼1 and ∼0 are the equivalence class relations on W1 and W0,

respectively.

However, it is hard to find the maximal set of left-valid ¤-formulas of Γ → ∆ because not all valid
¤-formulas are always left-valid ¤-formulas. For the purpose of facilitating finding them, we incorporate
the following static rule into SS4:

Γ → ∆,¥A, A 〈¤Π | ¤A,¤Σ〉 A, Γ → ∆,¥A 〈¤Π | ¤Σ〉

Γ → ∆,¤A 〈¤Π | ¤Σ〉
(cut)R

In the (cut)R rule, the principal formula ¤A of the (cut)R is marked with ¥ after its application so
that (cut)R would never be re-applied to the same ¤A. We call the sequent system SS4 with (cut)R,
SS4(cut)R

, where the (¤)s and (¤)t rules are meant to be applicable even if ¥-formulas occur in the right-
hand side of the lower sequents. Since applications the (T ) and (cut)R rules can bring formulas within
the scope of ¤ to the current possible world, we can find the maximal set of its left-valid ¤-formulas
throughout the saturation step of SS4(cut)R

.
In the following example, two counter-examples for ¤¬¤p are shown, where the left one is constructed

by SS4, while the right one is done by SS4(cut)R
:

p,¥p → 〈∅|¤¬¤p〉

¤p → 〈∅|¤¬¤p〉

→ ¬¤p〈∅|¤¬¤p〉

→ ¤¬¤p〈∅|∅〉
(¤)s

p,¥p → ¥¬¤p〈∅|¤¬¤p〉

¤p → ¥¬¤p〈∅|¤¬¤p〉

→ ¥¬¤p,¬¤p〈∅|¤¬¤p〉
...

→ ¤¬¤p〈∅|∅〉
(cut)RPSfrag replacements

w1

w0 u0
p

p

w1 = p,¥p,¤p → ¬¤p u0 = p,¥p,¤p → ¬¤p,¥¬¤p,¤¬¤p
w0 = → ¤¬¤p

Figure 2: Counter-models for ¤¬¤p



In the Figure 2, the possible worlds w0 and w1 are generated from the left failed proof, while u0 is
generated from the right one. The arrows denote the accessibility relations, though the reflexive ones are
omitted. Each propositional variable shown at every possible world is true at the world, for example in
the left counter-model, p is true at w1, but it is not true at w0. Neither w0 nor u0 makes ¤¬¤p true. The
maximal set of left-valid formulas of → ¤¬¤p is the set {¤p}. In the right failed proof, we can see that
¤p occurs at the left-hand side of the sequent ¤p → ¥¬¤p 〈∅ | ¤¬¤p〉 after the consecutive applications
of the (cut)R and (→ ¬) rules. In the left counter-model, there are 2 cluster and 2 possible worlds, while
in the right one, 1 cluster and 1 possible world, therefore, the number of clusters is reduced. Since the
right counter-example has no redundant possible world, we obtained a really reduced counter-model for
¤¬¤p with SS4(cut)R

.
However, we can not always obtain a really reduced counter-model even if the (cut)R is applied as

shown in the following example:

PSfrag replacements

w0

w1

w2

w3

u0

u1u2 u3

v0

v1 v2

p

p q

p q

p qp q

p q

p q

p q
p r p q rp q r

a(w3)
¤ = {¤p, ¤r} a(u3)

¤ = {¤p, ¤q, ¤r}
a(w2)

¤ = {¤p, ¤q, ¤¬r} a(u2)
¤ = {¤p, ¤q, ¤¬r}

a(w1)
¤ = {¤p, ¤q} a(u1)

¤ = {¤p, ¤q}
a(w0)

¤ = {¤p} a(u0)
¤ = {¤p, ¤q}

Figure 3: Counter-models for ¤p ⊃ (¤(¬¤q ∨¤¬¤¬r) ∨¤¬¤r)

In Figure 3, three counter-models for ¤p ⊃ (¤(¬¤q∨¤¬¤¬r)∨¤¬¤r) (denoted by A below) are shown,
where the left one is constructed by SS4, while the middle one is done by SS4(cut)R

. The right one will
be explained later. For briefness’s sake, only valid ¤-formulas of every possible world are shown in the
above, where for a possible world w, a(w)¤ denotes the set of the valid ¤-formulas of w. Neither w0 nor
u0 makes A true. We can see that there are 4 clusters and 4 possible worlds in the left counter-model,
while 3 cluster and 4 possible worlds in the middle one. Since the maximal set of left-valid ¤-formulas
of → A is {¤q}, ¤q occurs at every world in the middle counter-model.

Although the number of clusters is reduced, the number of possible worlds still leaves unchanged.
The middle counter-model includes a redundant world u1. In fact, there is a counter-model as shown in
the right in which there are 3 clusters and 3 possible worlds, and v0 6|= A. Here, we note that the right
counter-model is not a model graph, that is every possible world does not correspond to any sequent.
In constructing the middle counter-model, or rather model graph by SS4(cut)R

, the world u1 has to be
generated so that the second condition of model graph can be satisfied. Therefore, the right counter-
model can not be constructed from model graph by SS4(cut)R

. From this case, we can see that the
structure of model graph can be an obstacle to obtain a reduced counter-model.
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