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What is a natural way of introducing modalities in substructural logics? There are several papers (e.g.
by K. Došen, G. Restall) which discussed modalities in substructural logics, but choices of modal axioms
for substructural logics in them look sometimes ad hoc even for the case of the substructural analogue
of the normal classical modal logic K. For, two axiom systems which determine a same classical modal
logic are not always equivalent when they lack some of structural rules.

Here, we propose some of basic normal modal logics over the substructural logic FL using sequent
formulations, and give a justification from an algebraic point of view. At the end, we show an extended
form of Gödel translation. We assume familiarity with basic results on substructural logics over FL

(full Lambek calculus) and their relations to residuated lattices. Recall here that an algebra A =
〈A,∨,∧, ·, \, /, 1〉 is a residuated lattice (RL), if it satisfies the following:

1. 〈A,∨,∧〉 is a lattice,

2. 〈A, ·, 1〉 is a monoid with the unit 1,

3. for all x, y, z ∈ A, x · y ≤ z iff y ≤ x\z iff x ≤ z/y.

When we add 0 as a type and interpret it by a fixed element of a given RL, it is called a FL-algebra or
a pointed residuated lattice. The element 0 is used for defining two kinds of negations ∼ x = x\0 and
−x = 0/x. In the following, we consider always pointed RLs and call them simply RLs.

Adding structural rules is reflected by additional algebraic conditions on RLs. For instance, exchange
rule is expressed by the commutativity of the monoid operation ·. In commutative RLs, x\y = y/x holds,
and either of them is usually denoted by x → y. Also, contraction rule, left and right weakening rules
can be expressed by x ≤ x2 (square-increasingness), 1 = ⊤ (integrality) and 0 = ⊥, respectively. The
class of RLs and all of subclasses with some of the above conditions are equationally definable, and thus
each of them forms a variety. For more information, see e.g. [2, 4]. This is a joint work with N. Galatos.

1 Modalities in substructural logics and modal residuated lat-

tices

As shown in [2], sequent formulations can describe well how fusion behaves. Thus, to get a proper form
of modal axioms, it seems suggestive to consider rules for � in sequent systems. Let us consider the
following rule K for � over the sequent system FL:

Γ ⇒ α

�Γ ⇒ �α
: K

In Hilbert-style system, this rule can be expressed by the following axioms and rule.

• 1. �1 2. (�α · �β)\�(α · β),

• from α\β, infer �α\�β (monotonicity).



Similarly, axioms T and 4 are given as follows.

• �α\α,

• �α\��α.

Thus, Hilbert-style system for our substructural analogue of modal logic S4 over FL (S4FL, in symbol)
is given by adding these four axioms and the monotonicity rule for � to the axiom system FL. These
axioms and rule are expressed by the following algebraic conditions on RLs.

• (M1) �x ≤ x

• (M2) �x ≤ ��x

• (M3) x ≤ y implies �x ≤ �y

• (M4) �x · �y ≤ �(x · y)

• (M5) 1 ≤ �1

If a unary operation � satisfies conditions from (M1) to (M3), it is called an interior (or, a coclosure)
operation. Also, an interior operation satisfies moreover (M4), it is called a (quantic) conucleus in the
context of quantales, i.e. lattice complete RLs without assuming the existence of the unit 1 (see [5]). For
any operation � on a RL, satisfying the monotonicity (M3), the following two conditions are shown to
be equivalent:

• for all x, y, �x · �y ≤ �(x · y),

• for all x, y, �(x\y) ≤ �x\�y.

Now let us define a modal residuated lattice to be an algebra 〈A,�〉, where A is a pointed RL and �

is a conucleus satisfying the necessitation (M5). Note that the condition (M3) on the monotonicity of �

can be replaced by the inequation �(x ∧ y) ≤ �x. Hence the class of modal RLs forms also a variety.

For a given modal RL 〈A,�〉, let A� = {�x;x ∈ A}. We can show that A� is closed under ∨
and ·. Then, it is easy to see the following, where ∧∗, \∗, and /∗ are defined respectively as x∧∗y =
�(x ∧ y), x\∗y = �(x\y) and x/∗y = �(x/y).

Lemma 1 For each modal RL 〈A,�〉, A� = 〈A�,∨,∧∗, ·, \∗, /∗, 1,�0〉 forms a pointed RL.

Note that the identity map Id on a RL is a conucleus satisfying (M5). Hence 〈A, Id〉 is a modal RL,
and moreover the induced RL AId is equal to A. A conucleus � is localic if it satisfies �(x∧y) = �x ·�y.
Then, for any conucleus � satisfying (M5), the following are equivalent:

1. � is localic,

2. in A�, the element 1 is the greatest, and the monoid operation is both commutative and square-
increasing.

Hence, for any localic conucleus � satisfying both (M5) and �0 ≤ �x for all x, A� forms a Heyting
algebra. Note that Girard’s exponential ! can be regarded as a localic conucleus from an algebraic point
of view.



2 Gödel translation extended

Let us define a translation D of non-modal formulas into modal formulas, inductively as follows.

1. D(p) = �p for every propositional variable or constant p,

2. D(φ ∗ ψ) = D(φ) ∗D(ψ) for ∗ ∈ {∨, ·},

3. D(φ ∗ ψ) = �(D(φ) ∗D(ψ)), otherwise.

Then, we can show the following.

Lemma 2 For each modal RL 〈A,�〉 and for each non-modal formula φ, D(φ) is valid in 〈A,�〉 iff φ
is valid in the RL A�.

For each modal substructural logic M over S4FL, define the substructural logic ρM over FL by

ρM = FL + {φ |D(φ) ∈ M} .

Note that ρ(S4FL) = FL. The following theorem is a generalization of a result by Maksimova and
Rybakov [3].

Theorem 3

For every modal substructural logic M over S4FL and for every non-modal formula φ, ⊢ρM φ iff ⊢M D(φ).

Following the idea by Dummett and Lemmon [1], for every substructural logic L over FL, we can
define the modal substructural logic τL by

τL = S4FL ⊕ {D(φ) | φ ∈ L}.

Theorem 4

For every substructural logic L over FL, L = ρτL, and τL is the smallest modal companion of L, i.e. it

is the smallest logic in ρ−1(L).

As a particular case, consider modal companions of Int. As is well-known, S4 is a modal companion of
intuitionistic logic Int and the logic S4⊕Grz is the greatest modal companion. Using the above results, we
can show that the smallest modal companion τInt is axiomatized as S4FL⊕{�α\(�α)2,�β\1,�0\�γ}.
By using the fact that the set of modal companions of a give logic is convex, ILL+{�0 → ⊥} and IntS4

are modal companions of Int.

Using Zorn’s lemma, we can show that ρ−1(L) has always a maximal logic for each substructural
logic L. It will be an interesting problem to see whether ρ−1(L) has always a single maximal (hence the
greatest) logic.
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