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Introduction

This extended abstract is to introduce a logical study of game theoretical problem with a focus on bounded
rationality in game theory. This interdisciplinary field has many aspects, which can be investigated from
various research lines. Here, we will take one specific approach which has been developed in Kaneko-
Suzuki [3, 4, 5], and will report some new concepts and results along that approach.

Since game theory intends to treat behavior and decisions of people in social contexts, it naturally
includes limitations of people’ s cognitive abilities, which is so-called “bounded rationality”. In fact,
“bounded rationality” is not a single notion, but has many different aspects. In the literature of game
theory and economics, however, the problem is not well specified. The present game theory does not have
enough vocabulary in its mathematical formulation to talk about bounded aspects of cognitive abilities
of players. The approach initiated in Kaneko-Suzuki [3, 4, 5] has enough vocabulary for it. In this article,
particularly, we will introduce a measure of logical inferences required for some decision making in a
game. More generally, it provides a measure of how large a mathematical proof is.

In particular, we will introduce the contentwise complexity measure, which measures a size of a proof
or a size of required inferences. This will help us study decision making of a player with limitations on
logical abilities.

In §1, we present our basic motivation of our reseach line. In §2, we briefly explain what a game
means in this article. Game theoretic motivation of “bounded rationality” is shown in §3. Our main
technical feature, contentwise complexity measure, is given in §4. This tool is properly defined in a system
of intuitionistic epistemic (multi-modal) logic IGEF . We will give concluding remarks in §5.

1 Basic Motivation of Our Research

The game theory may be described as a scientific (or, mathematically sophisticated) study of behavior of
people in iteractive situations. Those people are called players of a game, and game theorists typically
assume that players are all “rational”. On the other hand, logic may be described as a scientific study of
reasoning and inferences of rational human beings. We focus on the deductive reasoning as an important
facet of rationality, and link two disciplines with the word “rationality”. In particular, epistemic logics
deal with epistemic notions such as beliefs and knowledge. Given a game with multiple players, we have
an interactive situation in which those players think about other players’ beliefs and/or knowledges as
well as their own. Our present approach is a logical investigation of epistemic reasonigs and inferences of
players in such a game-theoretical iteractive situation.

Although we take the logical approach and borrow basic notions from epistemic logics, our epistemic-
logical approach is not simple applications of old results and techniques in the field of logic. Considerations
of game theoretical phenomena in terms of epistemic logic supply genuinely new problems in logic itself.
Our interactive studies between logic and game theory must be beneficial to both fields. Some of such
interactive discussions can be found in Kaneko [2] as a drama.
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2 Games and Players

In this section, we briefly explain what a game means in this article. We will illustrate some basic concepts
by giving examples. Note that this section is not intended to be an introduction of game theory. Readers
who intened to learn basics of game theory are recommended to consult good text books e.g. [7].

Let us take a look at Tabel 1.1 and Table 1.2 which describe two games g1 and g2.

Table 1.1: g1 = (g1
1 , g1

2) Table 1.2: g2 = (g2
1 , g2

2)
s21 s22

s11 (5, 5) (1, 6)
s12 (6, 1) (3, 3)

s21 s22
s11 (5, 5) (1, 2)
s12 (6, 1) (3, 3)

These g1 and g2 are a two-person games, i.e. we have players 1 and 2. Each player i = 1, 2 has two pure
strategies si1, si2, and chooses simultaneously one from them. The entries of Tables are pairs of payoffs to
the players, e.g., if 1 and 2 choose s12 and s21, they would receive 6 and 1, respectively. This is expressed
also by payoff functions gi = (gi

1, g
i
2): gi

1(s12, s21) = 6 and gi
2(s12, s21) = 1.

In g1, the second strategy, s12, for player 1 gives a better payoff whatever player 2 chooses, and the
symmetric argument holds for player 2. In this sense, the second strategy for each player is called a
dominant strategy. If both players have the decison criterion DC: “Choose a dominant strategy”, then
both players can make their decison. Following DC, player i has only to check that the second strategy
is dominant by making use of the information on ones own payoff g1

i . This is done by two comparisons:
5 < 6 and 1 < 3. Then each player infers that DC recommends si2.

On the other hand, in g2, player 2 has no dominant strategy, while player 1 has the same dominant
strategy. Thus, player 2 cannot make his/her decision by making use of the criterion DC any more. One
possible way to have a decision for player 2 is to have a prediction about what player 1 would choose.
That is, player 2 would choose s22 maximizing his/her payoff under the prediction that player 1 would
choose the dominant strategy s12. This criterion is called a prediction-decision criterion PDC. Following
PDC, player 2 has to think about player 1’s mind and player 1’s second strategy is dominant, i.e., player
2 have to check 5 < 6 and 1 < 3. Next player 2 has to predict player 1’ choise, s12 with a prediction
criterion that player 1 uses DC, and has to check that s22 gives the best response to s12.

Thus, players can make their decision in both cases, if they have enough informaton, good criteria,
and rationality . An important difference between these two cases is that in g2 player 2 needs epistemic
inference, i.e., player 2 has to think about player 1’s mind, while in g1 none of them can make their
decision without epistemic inferences.

3 Bounded Rationality in Game Theory

As mentioned in §2, the players of g1 and g2 can make a decision (choose a strategy), if they are rational.
Hence, the assumption that all players are rational can be regarded as reasonable for gametheoretical
considerations.1 However, it is common that most people are, and could be, only partly rational. Let us
explain one aspect of such limitation on rationality by giving examples.

Table 3.1: g3

s1 s2 s3
2 3 1

Table 3.2: g4

s1 s2 s3 s4 s5 s6 . . . s2005
2 3 1 2 1 2 . . . 1

These games g3 and g4 are one-person games. In both games, player can make a decision by finding
a strategy which gives the largest payoff. Here the decision criterion is simply to maximize the payoff.
However, we can see that the decison making in g4 “costs” more than that in g3 does. The difference is
the cost of inference, i.e., how much inferences are required for the decision making for the player. If a
player’s resources (time, effort, etc.) for decision making process (inference) is limited, then the player
can make decision in g3 but cannot in g4.

Our contemplexity measure is applied to each of these problems to measure the required inferences
for decision making in each of those problems. The point is that the structures of these games are the

1In this line, many game theorists have worked on generalization of the structure of games under the same assumption
of the ratoinality of players. Superfacially, they retaine the same assumption. But, in fact, the more the structure of games
gets, the more hyperrational players are supposed to be. See [2, Act 1].



same and simple. The difference that we want to evaluate is depending on the content of games. In g3,
the player needs at least two comparisons to conclude that s2 gives the largest payoff, while in g4 the
player needs 2004 comparisons.

4 Contentwise Complexity as a Cost of Inferences

Now we introduse our system IGEF , which is an epistemic (multi-modal) propositional calculus. We
formulate our logical system IGEF as sequent calculus in the Gentzen-style 2. We introduced GLEF ,
with which we developed a theory for intrapersonal epistemic inferences. The subscripts E and F are
called descriptive and inferential epistemic structures, which are constraints on interpersonal epistemic
introspections. The first E constrains the description of formulae or sequents just syntactically, but
F constrains how deep a player thinks about other players’ minds, in which sense the latter is more
important. Our system IGEF is obtained from GLEF by substituting intuitionistic logic as the base
logic for classical logic. This substitution is crucial for the development of the theory of the contentwise
complexity measure, though the definition of the measure is possible independent of a base logic.

Most important technical features of IGEF (and GLEF as well) are:

1. introducing thought sequents,
2. separating descriptive and inferential epistemic structures,
3. separating epistemic and non-epistemic rules.

All these points are related to each other. Here we briefly explain 1 and 3. For the 2nd point and
interralaton between these three points, see [3, 4, 5] for details.

Our propositional language consists of the usual propositional language for sequent calculi plus epis-
temic operators B1, B2, . . . , Bn, where N = {1, 2, . . . , n} is the set of all players. The intended meaning
of an expression Bi(A) is that player i believes that A. Let e = (i1, i2, . . . , im) be a finite (possibly
empty) sequence of players, Γ, Θ finite sets of formulae. Using auxiliary symbols [ and ], we intro-
duce a new expression Be[Γ → Θ] := Bi1Bi2 · · ·Bim [Γ → Θ], which we call a thought sequent . By
Bi1Bi2 · · ·Bim [Γ → Θ], we express the idea that player im the mind of im−1 . . . in the mind of i1 con-
ducts logical reasoning and believes that Γ → Θ. Note that we are working with intuitionistic logic as
our base logic. Hence we put a restriction |Θ| ≤ 1 in Be[Γ → Θ], where |Θ| is the cardinality of Θ.

In this article, the 3rd point is crucial. The non-epistemic logical reasoning of the innermost player
im is governed by intuitionistic logic LJ. Non-epistemic rules are generally characterized as follows:

Non-Epistemic Rules: If
S1 (S2)

S
is an LJ-rule, then

Be[S1] (Be[S2])
Be[S]

is a IGEF -rule.

That is the innermost player im is assumed to be capable of conducting (non-epistemic) logical reasonings
described by LJ. Thus, the outermost Be[· · ·] is kept unchanged. On the other hand, epistemic reasoning
is described in the following way:

Epistemic Rule (Distribution Rule):
BeBi[Γ → Θ]

Be[Bi(Γ) → Bi(Θ)]
(Bi → Bi), subject to |Θ| ≤ 1.

Note that IGEF has only one epistemic rule, and that any application of Epistemic Rule must leave its
fingerprint on the outer Be of thought sequents. Hence we can inpose constraints on epistemic inferences
by controling e in Be. See [3, 4, 5] for details.

Now we define the contentwise complexity measure η. Given a proof P in IGEF , we define the
contentwise complexity measure η(P ) of P to be the number of occurrences of initial sequents of P . Then
we define the contentwise complexity η(Be[Γ → Θ]) of a thought sequent Be[Γ → Θ] by

η(Be[Γ → Θ]) =
{

min{η(P ); P is a cut-free proof of Be[Γ → Θ]} if Be[Γ → Θ] is provable,
∞ otherwise.

The contentwise complexity for a given statement is the minimum number of indispensable contents
included in the statemane to prove itself. Note that we ask a minimum proof of a given statement, that

2The cut-elimination theorem holds for IGEF . The cut-elimination theorem is crucial for the development of our present
reseach. We can establish Kripke-style semantics as well.



is, the best case for the given instance, not the “worst.” It measures the contents of a statement from the
viewpoint of inferences. If the contentwise complexity of a statement surpasses a given limitation of the
logical ability of a player, then the player cannot conclude the statement, even if the statement is correct
and theoretically provable.

Let us calculate η of the statements of feasibility of decision making in g3 and g4. After somewhat
complicated discussion, we have (η in g3) = 2 and (η in g4) = 2004. Then we can say that the “cost”
of decision making in g4 is greater than that in g3. The η captures, at least, qualitative aspects in these
examples. (See [6] for details).

5 Concluding Remarks

We introduced the contentwise complexity measure η defined on the framework of an epistemic logic based
on intuitionistic logic IGEF . The η captures, at least, qualitative aspects in examples. We will apply the
η to measure the required inferences for decision making in a game. There are abundant of examples, in
which the complexity values given by η give insights to our study of game theoretical decision making.

There are some open questions, conceptual and technical ones. The question must be How well does
η capture the “complexity of inferences” required from the viewpoint of logic as well as game theory?
First, we should text our mathematical definition of in rather simple examples. Indeed, we considered
various relatively simple examples in [6]. Then we go further to investigate more conceptual and technical
properties of it. In this manner, we will evaluate the contentwise complexity measure.

The first technical question must be: Is there any language and/or system dependence? This question
depends strongly on the previous conceptual question. Namely, the way of mathematical expresseion of
games and structures of games itself is the point of this question.

Since η is defined in an epistemic logic IGEF , the η must reflect the interactive nature of intrapersonal
inferences and interpersonal epistemic introspection. That is, interpersonal introspections would decrease
contentwise complexity, while in other cases, it would be more complex. We explain it in the following
example. (See [6] for details.)

Table 5.1: g5

s21 s22 s23 · · · s2 10

s11 200 0 11 10 · · · 3
s12 600 2 3 2 · · · -5

In g5, player 2’s payoffs are strongly affected by player 1’s choice, while player 1’s payoffs are not. Note
that player 2 has a dominant strategy. Hence player 2 can make decision using DC. The η of this decision
making process is 9+9=18. Player 2 can make decision by using PDC as well. In this case, η is much
smaller: 1+1+9=11. However, this 1+1 is caused by epistemic inference. At present, we cannot evaluate
this epistemic “cost.” Here we have one question: How to evaluate the cost (complexity) of epistemic
inferences? This question is both conceptual and technical.
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