GL-provability of \(-\)-formulas in \Grz

Katsumi Sasaki
sasaki@ms.nanzan-u.ac.jp
Department of Mathematical Sciences,
Faculty of Mathematical Sciences and Information Engineering, Nanzan University

Here we discuss a relation between the provability of Grzegorczyk logic \Grz and the provability of provability logic \GL. It was defined a function \(f\) satisfying, for any formula \(A, A \in \Grz\) if and only if \(f(A) \in \GL\) (cf. Boolos [Boo93] and Goldblatt [Gol78]). While we define a function \(g\) satisfying, for any formula \(A\) having no propositional variable, \(g(A) \in \Grz\) if and only if \(A \in \GL\).

1 Introduction

We use lower case Latin letters \(p, q, \cdots\) for propositional variables. Formulas are defined inductively, as usual, from the propositional variables and \(-\) (contradiction) by using logical connectives \(\wedge\) (conjunction), \(\vee\) (disjunction), \(\supset\) (implication) and \(\Box\) (necessitation).

Definition 1.1. The depth \(d(A)\) of a formula \(A\) is defined inductively as follows:
(1) \(d(D) = 0\), for an atomic formula \(D\),
(2) \(d(B \wedge C) = d(B \vee C) = d(B \supset C) = \max\{d(B), d(C)\}\),
(3) \(d(\Box B) = d(B) + 1\).

Let \(D\) be an atomic formula in \{\(p, \bot\}\}. By \(S(D)\), we mean the set of formulas constructed from \(D\) by using \(\wedge, \vee, \supset\) and \(\Box\). We put \(S^n(D) = \{B \in S(D) \mid d(B) \leq n\}\).

By \Grz, we mean the smallest set of formulas containing all the tautologies and the axioms
\[K : \Box(A \supset B) \supset (\Box A \supset \Box B),\]
\[T : \Box A \supset A,\]
\[grz : \Box(\Box(A \supset \Box A) \supset A) \supset \Box A \quad \text{(Grzegorczyk axiom)},\]
and closed under modus ponens and necessitation. By \GL, we mean the smallest set of formulas containing all the tautologies, \(K\) and the axiom
\[L : \Box(\Box A \supset A) \supset \Box A \quad \text{(Löb’s axiom)},\]
and closed under modus ponens and necessitation.

Definition 1.2. A list \(F_0, F_1, \cdots\) of formulas are defined inductively as follows:
(1) \(F_0 = p,\)
(2) \(F_{k+1} = F_k \supset \Box F_k.\)

Definition 1.3. A list \(g_0, g_1, \cdots\) of functions from \(S(\bot)\) to \(S(p)\) are defined inductively as follows:
(1) \(g_0(\bot) = \Box F_1,\)
(2) \(g_i(B \wedge C) = g_i(B) \wedge g_i(C),\)
(3) \(g_i(B \vee C) = g_i(B) \vee g_i(C),\)
(4) \(g_i(B \supset C) = g_i(B) \supset g_i(C),\)
(5) \(g_i(\Box B) = \Box g_{i+1}(B).\)

The function \(g_0\) transforms the formula \(\Box(\Box(\bot \supset \bot) \supset \bot)\), a instance of the axiom \(L\), into a formula
\[g_0(\Box(\Box(\bot \supset \bot) \supset \bot)) = \Box(\Box(\Box(F_1 \supset \Box F_1) \supset \Box F_1) \supset \Box \Box F_1).\]
Here we note that the image is similar to \(\Box (\Box (F_1 \supset \Box F_1) \supset F_1) \supset \Box F_1 \), an instance of the axiom \(grz \), and that the image and the instance are equivalent in \(Grz \).

The main result is

Theorem 1.4. For any formula \(A \in S(\bot), \)

\[
A \in GL \text{ if and only if } g_i(A) \in Grz.
\]

To prove the theorem, we use properties of the structures \((S^n(p)/ \equiv_{Grz}, \leq_{Grz}) \) and \((S^n(\bot)/ \equiv_{GL}, \leq_{GL}) \), where for \(L \in \{Grz, GL\}, \)

\[
A \equiv_L B \text{ if and only if } (A \supset B) \land (B \supset A) \in L,
\]

\[
[A] \leq_L [B] \text{ if and only if } B \supset A \in L.
\]

In the next section, we construct a representative of each equivalent class of the above two structures following [Boo93] and [Sas04]. In section 3, we show an outline of a proof of the theorem using the lemmas in section 2.

2 Construction of representatives

Here we construct a representative of each equivalent class in the quotient sets \(S^n(p)/ \equiv_{Grz} \) and \(S^n(\bot)/ \equiv_{GL} \). It is known, however, two structures \((S^n(p)/ \equiv_{Grz}, \leq_{Grz}) \) and \((S^n(\bot)/ \equiv_{GL}, \leq_{GL}) \) are boolean(cf. Chagrov and Zakharyaschev [CZ97]). So, we have only to construct representatives of generators of these two booleans. Representatives of generators of the structure for \(Grz \) was given in [Sas04] and those for \(GL \), we can refer [Boo93].

Definition 2.1. For a formula \(A, \Box^n A \) \((n = 0, 1, \cdots)\) are defined inductively as follows:

1. \(\Box^0 A = A \),
2. \(\Box^{k+1} A = \Box \Box^k A \).

Definition 2.2. The sets \(G_n \) \((n = 0, 1, 2, \cdots)\) of formulas are defined as follows:

\[
G_0 = \{F_0\}, \\
G_1 = \{F_0, F_1\}, \\
G_{k+2} = \{F_{k+1}, F_{k+2}, \Box F_{k+1} \supset \Box F_k, \cdots, \Box F_1 \supset \Box F_0\}
\]

Lemma 2.3.

1. \(S^n(p)/ \equiv_{Grz} = \{[\bigwedge_{A \in S} A] | S \subseteq G_n\} \).
2. For subsets \(S_1 \) and \(S_2 \) of \(G_n\),

 (2.1) \(S_1 \subseteq S_2 \) if and only if \([\bigwedge_{A \in S_1} A] \leq_{Grz} [\bigwedge_{A \in S_2} A]\),

 (2.2) \(S_1 = S_2 \) if and only if \([\bigwedge_{A \in S_1} A] = [\bigwedge_{A \in S_2} A]\).

Definition 2.4. The sets \(G_n^* \) \((n = 0, 1, 2, \cdots)\) of formulas are defined as follows:

\[
G_0^* = \{\bot\}, \\
G_{k+1}^* = \{\Box^{k+1} \bot, \Box^{k+1} \bot \supset \Box^{k} \bot, \cdots, \bot \supset \bot\}
\]

Lemma 2.5.

1. \(S^n(\bot)/ \equiv_{GL} = \{[\bigwedge_{A \in S} A] | S \subseteq G_n^*\} \).
2. For subsets \(S_1 \) and \(S_2 \) of \(G_n^*\),

 (2.1) \(S_1 \subseteq S_2 \) if and only if \([\bigwedge_{A \in S_1} A] \leq_{GL} [\bigwedge_{A \in S_2} A]\),

 (2.2) \(S_1 = S_2 \) if and only if \([\bigwedge_{A \in S_1} A] = [\bigwedge_{A \in S_2} A]\).
(2.2) \(S_1 = S_2 \) if and only if \(\bigcap_{A \in S_1} A = \bigcap_{A \in S_2} A \).

3 An outline of a proof

Here we give an outline of a proof of Theorem 1.4. We define functions \(h_i \) and show two lemmas.

Definition 3.1. For \(S \in \mathcal{P}(G^*_n) \), we put

\[
h_i(S) = \{ F_{n+i} \mid \Box^n \bot \in S \} \cup \{ F_{n+i+1} \mid \Box^n \bot \in S \} \cup \bigcup_{k=1}^{n} \{ \Box F_k \Box F_{k+1} \mid \Box^k \bot \in S \}.
\]

Lemma 3.2. Let \(S \) and \(S_1 \) be subsets of \(G^*_n \). Then

1. \(h_i(S) \subseteq G_{n+i+1} \),
2. \(\bigwedge_{B \in S} g_i(B) \equiv_{Grz} \bigwedge_{B \in h_i(S)} B \),
3. if \(S \neq S_1 \) implies \(\bigwedge_{B \in h_i(S)} B \neq_{Grz} \bigwedge_{B \in h_i(S_1)} B \).

Lemma 3.3. Let \(A \) be a formula in \(S^n(\bot) \) and let \(S \) be a subset of \(G^*_n \). Then for any \(i \),

\[
A \equiv_{GL} \bigwedge_{B \in S} B \text{ if and only if } g_i(A) \equiv_{Grz} \bigwedge_{B \in S} g_i(B).
\]

Proof. We use an induction on \(A \).

Basis (\(A = \bot \)): It is not hard to see that

\[
A = \bot \equiv_{GL} (\Box^n \bot) \land (\Box^n \bot \lor \Box^{n-1} \bot) \land \cdots \land (\Box \bot \lor \bot) = \bigwedge_{B \in G^*_n} B.
\]

and

\[
g_i(A) = g_i(\bot) = \Box F_i \equiv_{Grz} \Box F_{n+i} \land (\Box F_{n+i} \lor \Box F_{n+i-1}) \land \cdots \land (\Box F_i \lor \Box F_{i+1}) \equiv_{Grz} \bigwedge_{C \in h_i(G^*_n)} C.
\]

So, using Lemma 3.2, if \(S = G^*_n \), then we have both of \(A \equiv_{GL} \bigwedge_{B \in S} B \) and \(g_i(A) \equiv_{Grz} \bigwedge_{B \in S} g_i(B) \); if not, neither.

Induction step (\(A \neq \bot \)): We only show the case that \(A = \Box A_1 \): By Lemma 2.3, there exists a subset \(S_1 \) of \(G_{n-1}^* \) such that

\[
A_1 \equiv_{GL} \bigwedge_{B \in S_1} B.
\]

Using the induction hypothesis, we have for any \(k \),

\[
g_k(A_1) \equiv_{Grz} \bigwedge_{B \in S_1} g_k(B).
\]

If \(S_1 \subseteq \{ \Box^{n-1} \bot \} \), then the lemma is not so difficult. Here we suppose that \(S_1 \not\subseteq \{ \Box^{n-1} \bot \} \). Then we have \(S_1 - \{ \Box^{n-1} \bot \} \neq \emptyset \). Since \(S_1 \subseteq G_{n-1}^* \), we have \(\emptyset \neq S_1 - \{ \Box^{n-1} \bot \} \subseteq \{ \Box^{n-1} \bot \lor \Box^{n-1} \bot \lor \cdots \lor \bot \lor \bot \} \). So, there exists the minimum \(k = \min\{ \ell \mid \Box^{n-1} \bot \lor \Box^{n-1} \bot \lor \cdots \lor \bot \lor \bot \} \). Hence we have

\[
A = \Box A_1 \equiv_{GL} \Box \bigwedge_{B \in S_1} B \equiv_{GL} \Box B \equiv_{GL} \bigwedge_{C \in \{ \Box B \mid B \in S_1 \}} C
\]
\[\equiv_{GL} \quad \bigwedge_{C \in \{0^n \mid \text{n-1} \leq i \leq n \}} C \]

\[\equiv_{GL} \quad \bigwedge_{C \in \{0^n \mid \text{n-1} \leq i \leq n \}} C \]

\[\equiv_{GL} \quad \bigwedge_{C \in \{0^n \mid \text{n-1} \leq i \leq n \}} C \]

\[\equiv_{GL} \quad \bigwedge_{C \in \{0^n \mid \text{n-1} \leq i \leq n \}} C \]

\[\equiv_{GL} \quad \bigwedge_{C \in \{0^n \mid \text{n-1} \leq i \leq n \}} C \]

and

\[g_i(A) = g_i(\square A_1) = \square g_{i+1}(A_1) \equiv_{Grz} \bigwedge_{B \in S_1} g_{i+1}(B) \equiv_{Grz} \bigwedge_{B \in S_1} \square g_{i+1}(B) \]

\[\equiv_{Grz} \quad \bigwedge_{C \in \{0^n \mid \text{n-1} \leq i \leq n \}} C \]

\[\equiv_{Grz} \quad \bigwedge_{C \in \{0^n \mid \text{n-1} \leq i \leq n \}} C \]

\[\equiv_{Grz} \quad \bigwedge_{C \in \{0^n \mid \text{n-1} \leq i \leq n \}} C \]

\[\equiv_{Grz} \quad \bigwedge_{C \in \{0^n \mid \text{n-1} \leq i \leq n \}} C \]

\[\equiv_{Grz} \quad \bigwedge_{C \in \{0^n \mid \text{n-1} \leq i \leq n \}} C \]

So, by Lemma 3.2, if \(S = \{ \square^n \perp, \square^n \perp \supset \square^{n-1} \perp, \ldots, \square^{k+1} \perp \supset \square^k \perp \} \), then we have both of \(A \equiv_{GL} \bigwedge_{B \in S} B \)

and \(g_i(A) \equiv_{Grz} \bigwedge_{B \in S} g_i(B) \); if not, neither.

Considering the case that \(S = \emptyset \) in Lemma 3.3, we obtain Theorem 1.4.

References

