Predicate Bimodal Logics with Irreflexive Modality

Katsuhiko SANO

ksano@sings.jp

Department of Philosophy and History of Science, Graduate School of Letters, Kyoto University, Sakyo, Kyoto, 606-8501, Japan.

In this paper, we discuss predicate extensions of bimodal logics with irreflexive modality [5]. We show that our intended predicate extension without Barcan formulas: $(\forall x) \Box A \supset \Box(\forall x)A$, etc., is complete with respect to the class of expanding Kripke frames. Suzuki, however, showed that the usual construction of the canonical model fails [6]. In order to avoid this difficulty, we modify the construction of the canonical model by the idea from [4].

1 Preliminaries

Ş

 \equiv denotes the equivalence as a symbol string. $\alpha[\beta/x]$ denotes the results of the simultaneous substitution of β for all occurrences of x in α , where α and β are symbol strings.

The *bimodal predicate language* \mathcal{L} is based on the following alphabet: (i) a countably infinite list of *free variables: a, b, ...,* (ii) a countable infinite list of *bound variables: x, y, ...,* (iii) *individual constants:* **c, d, ...,** (iv) *predicate symbols:* **P, Q, ...,** (v) the *Boolean logical connectives:* \sim, \supset , (vi) the *universal quantifier:* \forall , (vi) the *necessity operators:* \Box , \blacksquare . Note that our language does not contain function symbols and the equality symbol for simplicity. Free variables and individual constants are called *terms* (written: *t, s, ...). Formulas* (written: *A, B, ...)* and closed formulas of \mathcal{L} are defined as usual. $\Gamma, \Delta, ...$ denote sets of formulas.

A *Kripke frame* is a quadruple $\mathfrak{F} = \langle W, R, S, D \rangle$ that satisfies the following conditions (*inclusion requirements*): for any $w, w' \in W$, $wRw' \Longrightarrow D(w) \subset D(w')$ and $wSw' \Longrightarrow D(w) \subset D(w')$, where W is a non-empty set of states, $R, S \subset W \times W, D$ is a function that assigns $w \in W$ a non-empty set D(w).

Let us introduce some classes of Kripke frames. We denote the class of all Kripke frame by K_0 . We define K_1 as the class of all Kripke frames $\mathfrak{F} = \langle W, R, S, D \rangle$ that satisfy $S = (R \cap \neq)$, i.e., $wSw' \iff (wRw' \text{ and } w \neq w')$ for any $w, w' \in W$.

A valuation V on a Kripke frame \mathfrak{F} is defined as follows: $\mathbf{c}^V \in \bigcup_{w \in W} D(w)$ for an individual constant \mathbf{c} ; $\mathbf{P}^V_w \subseteq D(w)^n$ for an *n*-ary predicate symbol **P**. In the case where n = 0, we define $\mathbf{P}^V_w \in \{\text{true}, \text{false}\}$. A pair $\langle \mathfrak{F}, V \rangle$ of a Kripke frame \mathfrak{F} and a valuation V on \mathfrak{F} is called a *Kripke model* (written: \mathfrak{M}).

Consider a Kripke model $\mathfrak{M} = \langle W, R, S, D, V \rangle$. We expand the language \mathcal{L} to the language $\mathcal{L}[D]$ that contains *name constants* \underline{d} for any $d \in \bigcup_{w \in W} D(w)$ other than the alphabets of \mathcal{L} . Then, we define $\underline{d}^V = d$ for any name constant \underline{d} of \mathfrak{M} (rigorously, here \underline{d}^V must be \underline{d}^{V_D} where V_D is the expansion of V by D).

A formula *X* of $\mathcal{L}[D]$ admits the interpretation with respect to *w* in $\mathfrak{M} = \langle W, R, S, D, V \rangle$ if for any individual constants **c** that occur in *X*, \mathbf{c}^V belongs to D(w). For a Kripke model $\mathfrak{M} = \langle W, R, S, D, V \rangle$, $w \in W$, and a closed formula *X* of $\mathcal{L}[D]$ that admits the interpretation with respect to *w*, a satisfaction relation $\mathfrak{M}, w \Vdash X$ (read: '*X* is true at *w* of \mathfrak{M} ') is defined as follows:

$$\mathfrak{M}, w \Vdash \mathbf{P}(t_1, \dots, t_n) \Longleftrightarrow \langle t_1^V, \dots, t_n^V \rangle \in \mathbf{P}_w^V;$$

$$\mathfrak{M}, w \Vdash \sim A \Longleftrightarrow \mathfrak{M}, w \nvDash A;$$

$$\mathfrak{M}, w \Vdash A \supset B \Longleftrightarrow \mathfrak{M}, w \nvDash A \text{ or } \mathfrak{M}, w \Vdash B;$$

$$\mathfrak{M}, w \Vdash (\forall x) A \Longleftrightarrow \mathfrak{M}, w \Vdash A[\underline{d}/x] \text{ for any } d \in D(w);$$

$$\mathfrak{M}, w \Vdash \Box A \Longleftrightarrow [wRw' \text{ implies } \mathfrak{M}, x \Vdash A] \text{ for any } w' \in W;$$

$$\mathfrak{M}, w \Vdash \blacksquare A \Longleftrightarrow [wSw' \text{ implies } \mathfrak{M}, x \Vdash A] \text{ for any } w' \in W.$$

Definition 1 (Validity). Let \mathfrak{F} be a Kripke frame, A a formula of \mathcal{L} , and a_1, \ldots, a_n all free variables that occur in A. A is *valid in* \mathfrak{F} (written: $\mathfrak{F} \Vdash A$) if for any valuation V on \mathfrak{F} , any w in \mathfrak{F} , and any $d_1, \ldots, d_n \in D(w)$,

if A admits the interpretation with respect to w, then $\langle \mathfrak{F}, V \rangle$, $w \Vdash A[d_1/a_1] \cdots [d_n/a_n]$.

Let F be a class of Kripke frame and A a formula of \mathcal{L} . A is valid in F (written: $F \Vdash A$) if $\mathfrak{F} \Vdash A$ for any $\mathfrak{F} \in F$.

Definition 2. *Hilbert Calculus* $K_{\Box \blacksquare}$ consists of the following set of axiom schemata and rules:

where (*) means the condition that free variable *a* does not occur in *A* or *B*. *Hilbert Calculus* Ks consists of the above all schemata, rules, (M1) $\Box A \supset \blacksquare A$, and (M2) $A \land \blacksquare A \supset \Box A$. \vdash is defined as usual.

Here we give a derivation of one important theorem (used later): **Ks** $\vdash \blacksquare A \land \neg \Box A \supset (\Box B \supset B)$.

1.	$\vdash (B \supset A) \land \blacksquare (B \supset A) \supset \square (B \supset A)$	(M2)
2.	$\vdash \blacksquare A \supset \blacksquare (B \supset A)$	(∎1), (∎-rule)
3.	$\vdash (B \supset A) \land \blacksquare A \supset \Box(B \supset A)$	1, 2, PC
4.	$\vdash (B \supset A) \land \blacksquare A \supset (\Box B \supset \Box A)$	3, (□1), PC
5.	$\vdash (B \supset A) \land \blacksquare A \land \Box B \supset \Box A$	4, PC
6.	$\vdash \blacksquare A \land \Box B \supset \Box A \lor \sim (B \supset A)$	5, PC
7.	$\vdash \blacksquare A \land \Box B \supset \Box A \lor B$	6, PC
8.	$\vdash \blacksquare A \land \ \sim \Box A \supset (\Box B \supset B)$	7, PC

It is known that $\mathbf{K}_{\Box \bullet}$ is sound and complete with respect to K_0 , i.e., $\mathsf{K}_0 \Vdash A \iff \mathbf{K}_{\Box \bullet} \vdash A$ for any A(for unimodal case, see [2, ch.15]). And, it is easy to check that **Ks** is sound with respect to $\mathsf{K}_1 = \{\langle W, R, S, D \rangle | S = (R \cap \neq)\}$. From now on, we focus on the following question: is **Ks** complete with respect to K_1 ? That is, does $\mathsf{K}_1 \Vdash A$ imply **Ks** $\vdash A$ for any A? We will give a positive answer to this question(Theorem 14).

2 Bulldozing in Predicate Modal Logics

In [5], we use the notion of p-morphism to prove completeness for propositional part of **Ks**. Let us introduce the appropriate notion of p-morphism matched to our predicate setting (for intuitionistic predicate logic, see [3]).

Definition 3 (*p*-Morphism Pair). Let $\mathfrak{F} = \langle W, R, S, D \rangle$ and $\mathfrak{F}' = \langle W', R', S', D' \rangle$ be Kripke frames. Let $f : W \to W'$ and $g : \bigcup_{w \in W} D(w) \to \bigcup_{w' \in W'} D'(w')$ be mappings. $\langle f, g \rangle$ is a *p*-morphism pair if f and g satisfy:

xRy implies f(x)R'f(y). (*R*-forth) f(x)R'y' implies that there exists $y \in W$ such that f(y) = y' and *xRy*. (*R*-back) (*S*-forth) and (*S*-back) conditions defined similarly. g[D(w)] = D'(f(w)).

 \mathfrak{F}' is called a *p*-morphic image of \mathfrak{F} (written: $\mathfrak{F} \twoheadrightarrow \mathfrak{F}'$) if there exists a *p*-morphism pair $\langle f, g \rangle$ such that *f* is a surjective mapping.

Proposition 4. Let \mathfrak{F} and \mathfrak{F}' be Kripke frames with $\mathfrak{F} \twoheadrightarrow \mathfrak{F}'$. Then, for any A of $\mathcal{L}, \mathfrak{F} \Vdash A$ implies $\mathfrak{F}' \Vdash A$.

Next, we define the notion of \blacksquare -realizer and \blacksquare -realization, which is a simple generalization of bulldozing [1, ch 4.5] used in [5].

Definition 5 (\blacksquare -realizer). Let \mathfrak{F} be a Kripke frame and \mathfrak{G} in K₁. A pair $\langle f, g \rangle$ is called a \blacksquare -realizer if $\langle f, g \rangle$ is a *p*-morphism pair from \mathfrak{G} to \mathfrak{F} and *f* is surjective. \mathfrak{G} is *a* \blacksquare -realization of \mathfrak{F} if there exists a \blacksquare -realizer $\langle f, g \rangle$ from \mathfrak{G} onto \mathfrak{F} .

A similar construction to [5, Theorem 4] gives us the following proposition.

Proposition 6 (Existence of \blacksquare -realization). Let $\mathfrak{F} = \langle W, R, S, D \rangle$ be a Kripke frame that satisfies $(R \cap \neq) \subset S$ and $S \subset R$. Then, there exists a $\mathfrak{G} \in \mathsf{K}_1$ such that \mathfrak{G} is a \blacksquare -realization of \mathfrak{F} .

3 Difficulties in Proving Completeness of Ks

In this section, we construct the canonical bimodal model \mathfrak{M} of **Ks** according to [2, ch.15] and give a bit different but direct proof of Suzuki's theorem [6], which says that $(R \cap \neq) \subset S$ fails in \mathfrak{M} in spite of **Ks** \vdash (M2).

Let us introduce some basic notions. A set Γ of formulas has \forall -property if for any schema ($\forall x$) A, there exists a free variable a such that $A[a/x] \supset (\forall x)A \in \Gamma$. We define the notions of *consistent*, maximal, and maximal consistent set (MCS) as usual.

We call \mathcal{L}' an extended language of \mathcal{L} by free variables if \mathcal{L}' has the same parameters, bound variables, and logical connectives as \mathcal{L} and contains all the free variables of \mathcal{L} . For an extended languages \mathcal{L}' of \mathcal{L} by free variables, $V(\mathcal{L}')$ denotes the set of free variables.

For extended languages \mathcal{L}_1 , \mathcal{L}_2 of \mathcal{L} by free variables, \mathcal{L}_1 is ω -proper sublanguage of \mathcal{L}_2 (written: $\mathcal{L}_1 \sqsubset \mathcal{L}_2$ or $\mathcal{L}_2 \sqsupset \mathcal{L}_1$) if $V(\mathcal{L}_1) \subset V(\mathcal{L}_2)$ and $|V(\mathcal{L}_2) \setminus V(\mathcal{L}_1)| \ge \omega$.

Definition 7 ([2]). Fix a language \mathcal{L}^+ of which \mathcal{L} is a ω -proper sublanguage. Then, the canonical model of **Ks** is defined as follows:

 $W = \{ w \subset \mathcal{L}^+ \mid (\exists \mathcal{L}_w) [\mathcal{L} \sqsubset \mathcal{L}_w \sqsubset \mathcal{L}^+ \text{ and } w \text{ is MCS of } \mathcal{L}_w \text{ that enjoys } \forall \text{-property}] \}$ $wRw' \iff \{ A \text{ of } \mathcal{L}_w \mid \Box A \in w \} \subset w'$ $wSw' \iff \{ A \text{ of } \mathcal{L}_w \mid \blacksquare A \in w \} \subset w'$ $D(w) = \{ t \text{ of } \mathcal{L}_w \mid t \text{ is term} \}$ $\mathbf{c}^V = \mathbf{c} \in \bigcup_{w \in W} D(w) \text{ for any constants } \mathbf{c}$ $\langle t_1, \dots, t_n \rangle \in \mathbf{P}_w^V \iff \mathbf{P}(t_1, \dots, t_n) \in w, \text{ for any predicate symbols } \mathbf{P}.$

Fact 8 ([2]). Suppose that \mathcal{L}_1 is ω -proper sublanguage of \mathcal{L}_2 . Let Λ be a consistent set of formulas of \mathcal{L}_1 . Then, there exists a MCS Δ of \mathcal{L}_2 such that $\Lambda \subseteq \Delta$ and Δ has \forall -property.

Fact 9 ([2]). Suppose that $\mathcal{L} \sqsubset \mathcal{L}_w \sqsubset \mathcal{L}^+$ and w is MCS of \mathcal{L}_w . And suppose that $\sim \blacksquare A \in w$. Then, there is a MCS $w' \in W$ with \forall -property in a language $\mathcal{L}_{w'} \sqsubset \mathcal{L}^+$ such that $\mathcal{L}_w \sqsubset \mathcal{L}_{w'}$ and $\{\sim A\} \cup \{B \text{ of } \mathcal{L}_w \mid \blacksquare B \in w\} \subset w'$.

However, the canonical model of Ks does not work well because of the following theorem.

Theorem 10 ([6]). $(R \cap \neq) \subset S$ fails in the canonical model of Ks.

Proof. Let $\mathbf{P} \in \mathcal{L}$ be 0-ary predicate symbol. Let us consider $\Gamma = \{ \sim \Box \mathbf{P}, \blacksquare \mathbf{P} \}$. Take the following frame in K₁: $W = \{0\}, R = \{\langle 0, 0 \rangle\}, S = \emptyset, D(0) = \{a\}, \mathbf{P}_0^V = \text{false.}$ It is easy to check that for all element of Γ is true at 0, i.e., Γ is satisfiable in K₁. It follows from the soundness of Ks with respect to K₁ that Γ is consistent.

Then, we can construct MCS w of $\mathcal{L}_w \supseteq \mathcal{L}$ that enjoys \forall -property and satisfies $\Gamma \subset w$ and $\mathcal{L}_w \sqsubset \mathcal{L}^+$. From $\mathbf{Ks} \vdash (\blacksquare \mathbf{P} \land \sim \Box \mathbf{P})) \supset (\Box B \supset B)$, we deduce that $\Box A \in w$ implies $A \in w$ for any A of \mathcal{L}_w .

Take $\mathcal{L}_{w'}$ with $\mathcal{L} \sqsubset \mathcal{L}_{w} \sqsubset \mathcal{L}_{w'} \sqsubset \mathcal{L}^+$. Since *w* is consistent, we can construct MCS *w'* of $\mathcal{L}_{w'}$ that satisfies $w \subset w'$ and enjoys \forall -property. Note that $w \neq w'$ and $w' \in W$. From $w \subset w'$, we can deduce that $\Box A \in w$ implies $A \in w'$ for any *A* of \mathcal{L}_w . Thus, we conclude that wRw' but $w \neq w'$.

We prove that wSw' fails. Suppose for contradiction that wSw' holds. It follows from $\blacksquare P \in w$ that $P \in w'$ by the definition of *S*. By $\Gamma = \{ \sim \Box P, \blacksquare P \} \subset w \subset w'$, however, we have $\sim \Box P, \blacksquare P \in w'$. From $P \in w'$ and $\blacksquare P \in w'$, we have $\Box P \in w'$ by Ks \vdash (M2), which contradicts to $\sim \Box P \in w'$. Thus, we conclude that wSw' fails. QED

4 Kripke Completeness

Lemma 11. Suppose that $\mathcal{L} \sqsubset \mathcal{L}_w \sqsubset \mathcal{L}^+$ and w is MCS of \mathcal{L}_w . And, suppose that $\sim \Box A \in w$. Then, (1) there is a MCS $w' \in W$ with \forall -property in a language $\mathcal{L}_{w'} \sqsubset \mathcal{L}^+$ such that $\mathcal{L}_w \sqsubset \mathcal{L}_{w'}$ and $\{\sim A\} \cup \{B \text{ of } \mathcal{L}_w | \Box B \in w\} \subset w'$, or (2) $\{\sim A\} \cup \{B \text{ of } \mathcal{L}_w | \Box B \in w\} \subseteq w$.

Proof. Suppose that $\sim \Box A \in w$. Note that *A* is a formula of \mathcal{L}_w . (Case 1) Assume that $\sim \Box A \in w$. Clearly, (1) holds. (Case 2) Assume that $\Box A \in w$. It follows from $\mathbf{Ks} \vdash A \land \Box A \supset \Box A$ that $A \supset \Box A \in w$. Since $\sim \Box A \in w$, we have $\sim A \in w$. Let *B* be a formula of \mathcal{L}_w with $\Box B \in w$. It follows from $\Box A, \sim \Box A \in w$ and $\mathbf{Ks} \vdash \Box A \land \sim \Box A \supset (\Box B \supset B)$ that $\Box B \supset B \in w$. From $\Box B \in w$, we conclude that $B \in w$. QED

Definition 12. We define W, S, D, and V in the same way as Definition 7. We define the relation **R** as follows:

 $w\mathbf{R}w' \iff [w = w' \text{ and } \{A \text{ of } \mathcal{L}_w \mid \Box A \in w\} \subseteq w] \text{ or } wSw'.$

Then, $\langle W, \mathbf{R}, S, D, V \rangle$ is called the modified canonical model of Ks.

Remark that inclusion requirements are satisfied and $S \subset \mathbf{R}$ and $(\mathbf{R} \cap \neq) \subset S$ hold trivially. Note that the modified canonical model may contain S-reflexive states.

Lemma 13 (Truth Lemma). Let \mathfrak{M} be the modified canonical model of **Ks**. Then, for any w in \mathfrak{M} and any A of \mathcal{L}_w , $\mathfrak{M}, w \Vdash A[\overrightarrow{a_i}/\overrightarrow{a_i}] \iff A \in w$, where $\overrightarrow{a_i}$ are all free variables of \mathcal{L}_w that occurs in A.

Note that a_i belongs to D(w) and A admits the interpretation with respect to w in \mathfrak{M} .

Proof. Prove the equivalence by induction on the length of A. It suffices to show the case where A is $\Box C$.

(⇐) Suppose that $\Box C \in w$. Assume that $w \mathbf{R} x$. By the definition of \mathbf{R} , (1) $[w = x \text{ or } \{B \text{ of } \mathcal{L}_w | \Box B \in w\}]$ or (2) wSx. (Case (1)) From $\Box C \in w$ and (1), we have $C \in w$. (Case (2)) It follows from $\Box C \in w$ and $\mathbf{Ks} \vdash \Box C \supset \Box C$ that $\Box C \in w$. Since wSx, we have $C \in w$. Thus we deduce that $C \in w$. Note that $\vec{a_i} \in D(w) \subset D(x)$ because of the inclusion requirement of S. Therefore, by induction hypothesis we have $\mathfrak{M}, x \Vdash C[\vec{a_i}/\vec{a_i}]$ hence $\mathfrak{M}, w \Vdash \Box C[\vec{a_i}/\vec{a_i}]$.

 (\Longrightarrow) We prove the contraposition. Suppose that $\Box C \notin w$. Then, we deduce that (1) there is a MCS $w' \in W$ with the \forall -property in a language $\mathcal{L}_{w'} \supseteq \mathcal{L}_{w}$ such that $\{\sim C\} \cup \{B \text{ of } \mathcal{L}_{w} | \blacksquare B \in w\} \subset w'$, or (2) $\{\sim C\} \cup \{B \text{ of } \mathcal{L}_{w} | \blacksquare B \in w\} \subset w'$, or (2) $\{\sim C\} \cup \{B \text{ of } \mathcal{L}_{w} | \blacksquare B \in w\} \subset w'$, or (2) $\{\sim C\} \cup \{B \text{ of } \mathcal{L}_{w} | \blacksquare B \in w\} \subset w'$, we have $C \notin w'$. From $\overrightarrow{a_{i}} \in D(w) \subset D(w')$, we deduce that $\mathfrak{M}, w' \nvDash C[\overrightarrow{a_{i}}/\overrightarrow{a_{i}}]$ by induction hypothesis. It follows from wSw' and the definition of \mathbf{R} that $w\mathbf{R}w'$. Thus, we have $\mathfrak{M}, w \nvDash \Box C[\overrightarrow{a_{i}}/\overrightarrow{a_{i}}]$. (Case (2)) Clearly, $\sim C \in w$. Note that $\overrightarrow{a_{i}} \in D(w)$. By induction hypothesis, we have $\mathfrak{M}, w \nvDash C[\overrightarrow{a_{i}}/\overrightarrow{a_{i}}]$. It follows from $\{B \text{ of } \mathcal{L}_{w} | \Box B \in w\} \subseteq w$ that $w\mathbf{R}w$. Therefore, from I.H., we have $\mathfrak{M}, w \nvDash \Box C[\overrightarrow{a_{i}}/\overrightarrow{a_{i}}]$.

Theorem 14. For any formula A of \mathcal{L} , $K_1 \Vdash A$ implies $Ks \vdash A$.

Proof. Suppose that **Ks** $\nvDash A$. There exists a MCS w of $\mathcal{L}_w \supseteq \mathcal{L}$ such that w has \forall -property and $\sim A \in w$. Construct the modified canonical frame \mathfrak{F} of **Ks**. $S \subset \mathbf{R}$ and $(\mathbf{R} \cap \neq) \subset S$ hold trivially. Transform \mathfrak{F} into $\mathfrak{G} \in \mathsf{K}_1$ by Proposition 6. we have $\mathfrak{G} \twoheadrightarrow \mathfrak{F}$ and $\mathfrak{F} \nvDash A$ (by Truth Lemma and $\sim A \in w$). Thus, we conclude that $\mathfrak{G} \nvDash A$ by Proposition 4. QED

Acknowledgements

Discussions with Ryo KASHIMA and Tohru SUZUKI are invaluable for the author. He would like to thank them. The author also thanks Hiroakira ONO and Nobu-Yuki SUZUKI for their helpful comments at this meeting.

References

- [1] Blackburn, P., de Rijke, M. and Venema, Y., *Modal Logic*, Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, 2001.
- [2] Hughes, G. H. and Cresswell, M. J., *A New Introduction to Modal Logic*, Routledge, London and New York, 1996.
- [3] Ono, H., Joho Kagaku ni Okeru Ronri (in Japanese), Nihon-Hyoron Sya, Tokyo, 1996.
- [4] Kashima, R., 'Completeness via labelled sequent calculi for bimodal logics with irreflexive modality', Proceedings of the 38th MLG meeting, pp.53–5, 2004.
- [5] Sano, K., 'Bimodal Logics with Irreflexive Modality', Proceedings of the 38th MLG meeting, pp.50–2, 2004.
- [6] Suzuki, T., 'Completeness of Bimodal Predicate Logics with Irreflexive Modality', Graduate Thesis of Tokyo Institute of Technology, 2005.