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1 Introduction

The algebraic completeness is quite cheap (in many cases), because we can obtain it by Lindenbaum con-
struction, which seems nothing more than syntactical operation. On the other hand, to obtain the 2-valued
completeness (for classical logic), something more than syntactical methods is needed, non-deterministic
principle, e.g., Weak Konig’s Lemma, Principle of ultrafilter, Axiom of Choice. Similarly, for intuitionistic
logic, while completeness with Heyting algebras is cheap, completeness with prime filters or, equivalently,
with topological spaces, is properly semantical, from this point of view.

Stone’s representation shows how the logic (or syntax, cheap semantics) is embedded into the family
(precisely, product) of proper semantics. The completeness of 2-valued semantics essentially says that any
Boolean algebra B is embedded into the product HueStone(B) 2 of the simplest non-trivial Boolean algebra 2.
Stone’s representation theorem claims more: the image of this embedding is the set of continuous functions
Stone(B) — 2, where 2 is equipped with the discrete topology. In other words, the “cheap semantics” is the
“continuous patching” of “proper semantics”. In terms of sheaf theory, B is represented as the global sections
of the sheaf consisting of continuous functions from Stone(B) to 2 and this sheaf has value B/(a 1) on a basic
open set (a) = {u € Stone(B) | & € u} and has the stalk B/u(% 2) at a point u, where aT={b € B|b > a}.

Stone duality has a more content, duality: any Boolean algebra is the set of all global sections of the
sheaf of continuous functions from some O-dimensional compact Hausdorff space to 2; any 0-dimensional
compact Hausdorff space is the Stone space of some Boolean algebra, and this correspondence is natural (in
the category theoretical sense). In other words, Stone(-) and Cont(-, 2) provide the equivalence Bool-alg ~
(0-CH)°P. However beautiful mathematically this duality is, the duality might conceal the essence of the
schema “logic is the continuous patching of proper semantics”. It is best that this schema provides also the
duality as in the classical logic, but this is not the case for general substructural logics as shown below.

This survey overviews several generalizations of Stone’s representation from the viewpoint that it has
two contents, “sheaf representation” (or “continuous patching”) and “duality”, and overviews how we can
retrieve the unity of these two contents in the cases of the 4-valued logic Str4Val and variants of it.
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2 Generalizations to Predicate Logics

2.1 Makkai’s Works on the Duality for Classical First Order Logic

In [9] Makkai gave a kind of duality, for classical first order predicate logic. Because his definitions and
theorems are too complicated to express here, we only see the correspondence between the propositional
and predicate cases. First we note that Stone(B) = B-Hom(B, 2), the set of all Boolean homomorphisms
from B to 2, equipped with the topology, and that B-Hom(-, 2) : Bool-alg — (0-CH)°P and Cont(-,2) :
(0-CH)°? — Bool-alg provide the equivalence, where 2 has the two role: a topological space and a Boolean
algebra. He replaced 2, Bool-alg and 0-CH in this schema by Sets and the categories of pretopoi and of
ultracategories respectively, as he mentioned in [8], while it is known that pretopos provides the semantics
for first order predicate logics. The notion of ultracategory is what he introduced and it is related to
ultraproducts, whereas ultraproducts can be seen as stalks of suitable sheaves [4].
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2.2 Sheaf and Intuitionistic Predicate Logic

As is well known (e.g. [7]), intuitionistic predicate logics are complete with sheaf semantics and this result
can be seen as a generalization of topological completeness of intuitionistic propositional logics. The space
(called spectrum) consists of prime theories (theories with disjunction and existence property) equipped with
the topology whose basic open sets are (p) = {I'| ¢ € T'} and the sheaf consists of constants with relations for
atomic formulae. The relations (which themselves are sheaves) for atomic formulae determine interpretations
(which are also sheaves) of all formulae, in particular, of sentences, and each of these interpretations of
sentences forms a sheaf with value in Heyting algebra. Note that this sheaf-representation works well (even
better) for higher order (typed) logics [7], not only for first order logics.

3 Generalizing “Duality” to Substructural Logics

Urquhart showed the duality between relevance algebras and relevance spaces [12], where a relevance space
is a Priestley space with a ternary relation. A Priestley space is a ordered topological space (X, O, <) which
has the largest and smallest elements w.r.t. < and which is compact and order-disconnected, i.e., if z £ y
then there is a downward-closed clopen set X with x ¢ X and y € X.

This result is based on Priestley’s duality (originally from [10]): for a distributive lattice L, S(L) =
(P(L),Op(ry, C) is Priestley a space where P(L) is the set of all prime filters of L and where Opy is the
topology generated by (a) = {p € P(L)|a € p}’s and their compliments; for a Priestley space S = (X, O, <),
L(S) = (DCO(S),N,U) is a distributive lattice, where DCO(S) is the set of all downward-closed clopen
subsets of X; and So L and L o S are naturally equivalent to the identity.

Although this is of course a “duality” content, it has also a “sheaf-representation”, L = ContMon(S(L), 2),
where 2 is the lattice {0 < 1} and ContMon(S1, S2) is the set of all continuous monotone maps ordered by
the point-wise order. Notice that ContMon(-, 2) forms a sheaf on S(L) and that ContMon({a),2) = L/(a1).

However, this “sheaf-representation” works only for (distributive) lattices, not for algebras for substruc-
tural logics. The reason is that the relation by which the quotient L/(a1) is defined is not congruent w.r.t.
operations associated with the connectives. (Note that a 7= ﬂp e(a) p.) This means that the ternary relation,
which is introduced in order to deal with such operations, cannot be expressed in terms of sheaves.

In spite of that, this presentation of algebra (by the ternary relation) reduces the meanings of connectives
to quite elementary definitions, as Kripke frame reduces the meaning of modality. As one might notice,
the duality provides also the completeness of Routley-Meyer semantics for substructural logics with the
distributive law, and so it might be possible to say that proper semantics for such substructural logics is
Routley-Meyer semantics (note that for the proof of this duality we need some non-deterministic principle),
although it lacks “continuous patching” content.

There have been several attempts to obtain the duality and complete Kripke-like elementary semantics for
the logics without the distributive law (or non-distributive lattices), based on Urquhart’s representation from
[11] or on Dunn’s gaggle theory from [3]. As done by Hartonas [6], however, such representations no longer
require non-deterministic principles, e.g., the axiom of choice. Although the duality and complete Kripke-
like elementary semantics are obtained there, they are cheap from the viewpoint mentioned in Introduction.
Moreover, it lacks “continuous patching” content for the same reason as the distributive substructural logics.

4 Generalizing “Sheaf Representation” to Substructural Logics

As we have seen in the last section, we need filters with congruency w.r.t. operators associated with con-
nectives. The notion of filter with such congruency has been investigated in [5], called deductive filter there.
The author of the present survey has defined primeness [SS] for such filters, called FL-filters, and obtained
several results corresponding to those for classical logic and for intuitionistic logic which are well known:
sheaf-representation (on the space, called spectrum, of prime FL-filters) of the algebras for substructural
logics, the stalk of the sheaf at a prime FL-filter is the quotient by the prime FL-filter, the compactness of
the spectrum, the completeness of substructural logics w.r.t. prime FL-filters, etc.

Thus, by deductive filters (or FL-filters), we can convey the difficulty for “continuous patching”. However,
we cannot obtain a Kripke-like elementary semantics in this line. Indeed, it is impossible to characterize the



truth of ¢ — 1 in a stalk in terms of the truth of ¢ and 1 there, because the truth of ¢ is equivalent to that
of ¢ A1 and ¢ * ¢, which means that such a characterization for — yields weakening and contraction. Note
that A/p = ¢ (under the canonical valuation) iff ¢ € p i.e., ¢ is true in the stalk at p iff ¢ € p.

Besides —, we cannot, in general, obtain characterizations for other connectives, *,V, (-)* (see [SS]).
This means we cannot expect “duality” content along this line. Thus, we have “duality” with the spaces of
prime filters and “continuous patching” with those of prime deductive (or FL-) filters, which are separated.

Game semantics from [1],[2] belongs to a family of semantics by prime FL-filters, while Routley-Meyer
semantics is by prime filters. In other words, true formulae under a game-assignment form a prime FL-filter.
Thus, investigations on prime FL-filters give us new insights into these semantics as shown in [SS].

5 Duality for the 4-valued Logic and Variants

The author has axiomatized the 4-valued logic Str4Val, an extension of Belnap’s 4-valued logic to the
=, A, V, —-fragment (i.e. additive and multiplicative fragment), in terms of substructural logic in [SF] so
that, with weakening, it becomes Lukasiewicz’ 3-valued logic (which means that Kleene'’s 3-valued logic is
also embedded into the additive fragment), and that, with contraction, it becomes Priest-style paraconsistent
logic (with —). It is also proved there that 4-valued assignments are exactly prime FL-filters in these logics.
This means that we have Kripke-like elementary semantics for these logics and so we could expect “duality”
theorem in terms of prime FL-filters (for which we have “continuous patching”), not in terms of prime filters.

The trick used here must be mentioned. As shown in the last section, it is true that the truth of ¢ — ¥
at a prime FL-filter p cannot be characterized by the truth of ¢ and v at p. Nevertheless, in the cases of
4-valued logic and variants, the truth of ¢ — 1) at p is characterized by the truth of ¢, and ¢+, ¢ at p.

Indeed, “duality” and “continuous patching” hold at the same time for prime FL-filters, in a quite similar
way to classical logic [SF]: for any StrdVal-algebra A, A = Cont(Spec,(A), (4\{H},4))xCont(Spec;(A4), (2, 3)),
where Spec, and Specj are pairs of O-dimensional compact Hausdorff spaces of all prime FL-filters includ-
ing T — 1 and avoiding it, respectively, and closed subspaces (), 4(¢ — a ® a) of them, and where
Cont((X1,Y2), (X2,Y2)) are continuous maps f : Y1 — Y5 with f“X; C Xo; obviously Cont(-, (4\{H},4)) x
Cont(-, (2, 3)) forms a sheaf; (Spec,, Specs) : StrdVal-alg — ((0-CH™")?)°P provides an equivalence.

If A satisfies weakening, Spec,(A) disappears; and if A satisfies contraction, the specified closed subsets
coincide with the whole spaces. Thus we can see that Spec, is the properly contradictory part; the specified
closed subset of Spec, is the part of Priest-style paraconsistent logic; Spec, is the 3-valued part; the specified
closed subset of Spec, is the part of classical logic; and the complement of it is the properly 3-valued part. We
thus also have duality results: Str4Val+(Weak)-alg ~ (0-CH)°P, Str4Val+4(Contr)-alg ~ (0-CH?)°P
and Bool = Str4Val+(Weak)+(Contr)-alg ~ 0-CH®P.

Note that, even in the case of the 4-valued logic, the notions of (prime) filter and (prime) FL-filter differ.
(This means that, in the cases of these logics, Routley-Meyer semantics differs from 4-valued semantics.)
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