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As is well known, standard modal propositional logic cannot define all the natural assumptions related to
ordered set: irreflexivity, antisymmetry and etc. In order to overcome this lack of expressive power, various
additional tools have been proposed, e.g., difference operator D [6, 7], nominals and satisfaction operator @ i [1,
ch. 7.3]. In this paper, we propose a new extension of standard modal logic. Our extension consists in adding
an operator � whose semantics is based on the intersection of inequality � and accessibility relation R. In our
language, �p ⊃ ��p corresponds to transitivity and antisymmetry of R and �p ⊃ ��p to strict partial order
(SPO). As space is limited, however, we are not concerned with frame definability in this paper. Here we will
concentrate on proving our two results in our new extension. First, we propose a formal system K �� and prove
Kripke completeness for K �� plus Lemmon-Scott Axioms: ♦m�nA ⊃ �j♦kA. Second, we show that some logics of
K�� + ♦m�nA ⊃ �j♦kA enjoy the finite model property.

1 Preliminaries

The language L(�,�) is defined using (i) the set of propositional variables: Prop = { p i | i ∈ ω }, (ii) the propo-
sitional connectives: ∼, ⊃ and (iii) the unary modal operators: �,�. The well-formed formulas of L(�,�) are
defined as usual.

A bimodal frame is a triple F = 〈W,R, S 〉, where W is a non-empty set and R, S are binary relations on W. A
bimodal model is a pair M = 〈F,V 〉, where F is a bimodal frame and V a function V : Prop → P(W). For any
bimodal modelM = 〈W,R, S,V 〉, any w ∈ W and any formula A of L(�,�), the relation � is defined indectively:

M,w � p iff w ∈ V(p).
M,w �∼ A iff M,w � A.
M,w � A ⊃ B iff M,w � A orM,w � B.
M,w � �A iff (∀w′ ∈ W) [wRw′ impliesM,w′ � A].
M,w � �A iff (∀w′ ∈ W) [wSw′ impliesM,w′ � A].

A bimodal frame satisfying S = (R∩ �) is called L(�,�)-frame, where w(R∩ �)w ′ means that wRw′ and w � w′.
L(�,�)-model is defined similarly. In L(�,�)-model,

M,w � �A iff (∀w′ ∈ W) [w(R∩ �)w′ impliesM,w′ � A].

Remark that L(�,�)-frame (or model) can be regarded as unimodal frame (or model, respectively).
A formula A is valid in a modelM (notation: M � A) ifM,w � A, for any w ∈ W. A formula A is satisfiable in

a modelM if M �∼ A. A formula A is valid in a frame F (notation: F � A) if 〈F,V 〉,w � A, for any w ∈ F and
any valuation V.

Definition 1 (Bimodal p-morphism). Let F = 〈W,R, S 〉, F′ = 〈W′,R′, S′ 〉 be bimodal frames. A mapping
f : W → W′ is a bimodal p-morphism if it satisfies the following conditions:

(i) (∀w1,w2 ∈ W) [w1Rw2 implies f (w1)R′f (w2)],

(ii) (∀w1 ∈ W) (∀ v′ ∈ W′) [f (w1)R′v′ implies (∃w2 ∈ W) (w1Rw2 and f (w2) = v′)],

and the similar conditions about S, S ′.

Fact 2. Let F, F′ be bimodal frame and f : F → F′ be surjective bimodal p-morphism. For any formula A of
L(�,�), F � A implies F′ � A.



2 Kripke Completeness

Definition 3. Hilbert Calculus K�� consists of the following axiom schemata and rules:

(A1) A ⊃ (B ⊃ A) (�1) �(A ⊃ B) ⊃ (�A ⊃ �B)
(A2) (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)) (M1) A ∧ �A ⊃ �A
(A3) (∼ A ⊃∼ B) ⊃ (B ⊃ A) (M2) �A ⊃ �A
(MP) From A ⊃ B and A, we may infer B
(�1) �(A ⊃ B) ⊃ (�A ⊃ �B)

(�-rule) From A, we may infer �A

Hilbert Calculus K �� + G′(m,n,j,k) consists of the above all schemata, rules and the Lemmon-Scott Axioms G ′(m,n,j,k):

♦m�nA ⊃ �j♦kA. � is defined as usual.

Theorem 4. Let F be the class of all L(�,�)-frames. For any formula A, F � A for any F ∈ F, implies � K�� A.

Proof. Suppose that ∼ A is consistent. It follows from Lindenbaum’s Lemma [1, p.197] that there is a maximal
consistent set ∆ such that ∼ A ∈ ∆. Let M = 〈F,V 〉 be the canonical model of K ��. Note that this canonical
model is a bimodal model. From Truth Lemma [1, p.199], we may infer thatM,∆ �∼ A. Thus, F � A. It is to be
noted thatM satisfies (R∩ �) ⊂ S due to (M1) and S ⊂ R to (M2).

We have to eliminate each S-reflexive point from M. Remark that it follows from S ⊂ R that each S-reflexive
point is also R-reflexive point. Thus we replace each subframe 〈 { c }, { 〈 c, c 〉 }, { 〈 c, c 〉 } 〉 of F with the new sub-
frame consisting of two points c1, c2 where S is symmetric and R is symmetric and reflexive. By construction as
this, we can obtain ‘bulldozed model’M ′ = 〈F′,V ′ 〉. Then we can prove that S ′ = (R′∩ �), whenceM′ is L(�,�)-
model. Finally, we can claim that f is surjective bimodal p- morphism. From Fact 2 this means that F ′ � A implies
F � A. Thus, it follows from F � A that F′ � A. We have thus proved the theorem. QED

Definition 5 (Lemmon-Scott Properties). Rn is defined inductively as follows: wR0w′ iff w = w′, Rn+1 = Rn ◦R,
where ◦ is composition. The Lemmon-Scott Axioms G ′(m,n,j,k): ♦

m�nA ⊃ �j♦kA corresponds to the following
properties:

(Cm,n,j,k) (∀ x, y, z) [[xRmy and xRjz] imply (∃w) [yRnw and zRkw]],

where m, j, n, k ∈ ω. Note that (Cm,n,j,k) contains equality in the case n = k = 0.

In general, a bimodal model M = 〈W,R, S,V 〉 can be regarded as the first-order structure with signature
〈R, S, {Pi | i ∈ ω } 〉 by the following identification: |M | =W, RM = R, SM = S and Pi

M = V(pi), for any i ∈ ω.
In the Proof of Theorem 4, consider reduct structures 〈W,R 〉 of the canonical model M and 〈W ′,R′ 〉 of the

transformed model M′. By construction, we can show that wR′v iff f (w)Rf (v). Thus, f is surjective homomor-
phism [2, p.94] of 〈W ′,R′ 〉 onto 〈W,R 〉.
Lemma 6. For any sentence σ not containing the equality symbol in the language with signature 〈R 〉, 〈W ′,R′ 〉 |=
σ iff 〈W,R 〉 |= σ, where |= is the first-order satisfaction relation.

Proof. For any formula in the language with signature 〈R 〉, See [2, p.96, Homomorphism Theorem]. QED

From Theorem 4 and Lemma 6, we can deduce that:

Theorem 7. Except the case n = k = 0, K �� + G′(m,n,j,k) are sound and complete with the class of L(�,�)-frames
satisfying (Cm,n,j,k).

3 Finite Model Property

Definition 8. L(�,�) has the finite model property (with respect to the class of any models) if the following holds:
for any formula A, A is satisfiable in some model, then it is satisfiable in a finite model.

Definition 9. A set Σ of L(�,�)-formulas is subformula closed if for all formulas A, B: if ∼ A ∈ Σ then so is A; if
A ⊃ B ∈ Σ then so are A,B; if �A ∈ Σ then so is A; if �A ∈ Σ then so is A.



Definition 10 (Filtrations). Let M = 〈W,R,V 〉 be L(�,�)-model and Σ be subformula closed set of formulas.
For any w ∈ W, let Σw = {A ∈ Σ |M,w � A }. Define the equivalence relation w ∼Σ w′ by Σw = Σw′ . We denote the
equivalence class of a state w ofM with respect to ∼Σ by [w].

Let WΣ = { [w] |w ∈ W }. SupposeMf
Σ

is any model 〈Wf ,Rf ,Vf 〉 such that:

(i) Wf = WΣ.

(ii) If wRw′ then [w]Rf [w′].

(iii) If [w]Rf [w′] then [M,w � �B impliesM,w′ � B] for any �B ∈ Σ.

(iv) Vf (p) = { [w] |M,w � p } for any p ∈ Σ.

ThenMf
Σ

is called a filtration of M through Σ.
The Finest filtration Rs is defined as follows: [w]Rs[w′] iff (∃ x ∈ [w]) (∃ y ∈ [w′]) xRy.

Theorem 11. L(�,�) has the finite model property.

Proof. Suppose thatM,w � A, whereM = 〈W,R,V 〉. Let Σ be the set of all subformulas of A. An element of W Σ =

{ [w] |w ∈ W } satisfies either (a) (∃ u ∈ [w]) (∃ v ∈ [w]) u(R∩ �)v or (b) (∀ u ∈ [w]) (∀ v ∈ [w]) [uRv implies u =
v]. In the case (a), we choose the state v[w] ∈ [w] such that u(R∩ �)v[w]. In the case (b), we choose an arbitrary
state v[w] ∈ [w]. Let D =

{
v[w] | [w] ∈ WΣ

}
. Fix one propositional variable d � Σ and consider d-variant valuation

V ′ such that V ′(d) = D and V ′(p) = V(p) for any p � d. WriteM ′ = 〈W,R,V ′ 〉. Obviously, for any formula B ∈ Σ
and any w ∈ W,M,w � B iff M′,w � B. FromM,w � A we may infer thatM′,w � A.

Take the finest filtration M′f
Σ∪{ d }. Then, by induction, we can show that for any B ∈ Σ ∪ { d } and any w ∈ W,

M′,w � B iff M′f
Σ∪{ d }, |w| � B, where |w| is the equivalence class of a state w with respect to ∼Σ∪{ d } (As for

formulas of the form �C, we need the finest filtration). It follows fromM ′,w � A thatM′f
Σ∪{ d }, |w| � A. Thus, we

can conclude that A is satisfiable in the finite modelM ′f
Σ∪{ d }. QED

Fact 12. The finest filtration Rs preserves the Lemmon-Scott Properties (Cm,n,j,k), where m, j ≤ 1 and (m, j) � (1, 1).

From Theorem 7, 11 and Fact 12, we can conclude that:

Corollary 13. With the case m, j ≤ 1, (m, j) � (1, 1) and except the case n = k = 0, K �� + G′(m,n,,j,k) are sound and
complete with the class of finite L(�,�)-frames satisfying (Cm,n,j,k).

Corollary 14. With the case m, j ≤ 1, (m, j) � (1, 1) and except the case n = k = 0, K �� + G′(m,n,,j,k) are decidable.
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