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Abstract

We prove that all finitely axiomatizable tense logics with temporal operators for ‘always in the
future’ and ‘always in the past’ and determined by linear flows time are coNP-complete. It follows, for
example, that all tense logics containing a density axiom of the form EI%'Hp — O%p, for some n > 0,
are coNP-complete. Additionally, we prove coNP-completeness of all [)-irreducible tense logics. As
these classes of tense logics contain many Kripke incomplete bimodal logics, we obtain many natural
examples of Kripke incomplete normal bimodal logics which are nevertheless coNP-complete. This
distinguishes our result for other general coNP-completeness results obtained before, as they usually
were heavily based on polynomial finite model property of the logics involved.

1 Preliminaries

This work is an extended abstract of [1]. Consult [3] or [2] for more information, details of notation and
discussion of notions introduced below. Formulas of propositional tense logic are built from propositional
variables py, pa, ... using the boolean connectives A, V, —, and — and the temporal operators Op (‘always
in the future’), Or (‘eventually’), Op (‘always in the past’), and ¢p (‘at some moment in the past’). We
interpret this language in general tense frames § = (W, R, P), where (W, R) is a linear ordering (i.e., R
is transitive and connected

VaVy(zRy VyRx V x = y))

and P is a set of subsets of W closed under intersection, complement, and the operators Dl@? and EI?_—,
defined by
X ={zecW |Vy€W(@Ry —»ycX}

and
X ={zecW |VyeW(ER 'y »yec X}

A valuation U in § maps propositional variables to elements of P. The satisfaction of a formula ¢ in a
point w € W in the model M = (F, V), in symbols (M, w) [= ¢, is defined as usual. @ is called valid in
§ if it is true in every point of F under every valuation. If P = 2", then we say that § is a tense frame
and set § = (W, R).

By Lin we denote the set of all formulas which are valid in all tense frames. A tense logic is a set
of formulas containing Lin which is closed under modus ponens, substitution, and necessitation (from ¢
derive Opy and Opp). A tense logic L is called finitely aziomatizable if there exists a formula ¢ such
that L is the smallest tense logic containing ¢; in this case we set L = Lin & ¢.

All tense logics are determined by some class of general tense frames and, conversely, every class
of general tense frames determines a tense logic. Well-known examples of tense logics are the logics
determined by (N, <), (Q, <) and (R, <). Call a tense logic L [-irreducible if, for any sequence Lo, L1 . . .
of tense logics it follows from L =) L; that L = L; for some ¢ < w. Now we can formulate our main
result:

i<w

Theorem 1 (i) All finitely axiomatizable tense logics are coNP-complete.
(11) All N-irreducible tense logics are coNP-complete.



Notice that there exist non-finitely aziomatizable tense logics of very high complexity: just consider,
for any M C N, the logic Ly; determined by the class of frames

{({1,...,m},<) | m e M}.
Set L =pA—-pand T =pV —p. Then the formula
Om =0pL AOPT LAOR

is satisfiable in a frame validating Ly, if m+1 € M.

2 The proof in a nutshell

We begin by defining quasi-models for Lin — finite frames with types. Fix two symbols m and j. A cluster
assignment is a mapping t = (t1,t2) from the set of clusters of a finite tense frame into {m,j} x {m,j}.
Irreflexive points are mapped onto (m,m). A frame with types is just a frame with cluster assignments.
The idea: if a cluster is assigned j in the first coordinate, it cannot contain a maximal point of any
subformula of a formula we are trying to refute (or satisfy) under a given valuation. If j is in the second
coordinate, the cluster cannot contain a minimal point. Thus, a valuation in a frame with types (§,t)
will be called good for ¢ if this condition is satisfied.

Fact 2 For every formula ¢ there ezists a finite family of frames with types M (p) s.t. every countermodel
for ¢ can be filtrated (via minimal/mazimal point technique) to a —p-good model based on a frame from
M(p). Moreover, the size of all elements of M () is polynomially bounded by l(p) — the cardinality of
the closure of the set of all subformulas of p under single negations.

Thus, we can devise an apparatus of canonical formulas for frames with types — a(§,t). They can
axiomatize every extension of Lin.

The second ingredient of our proof is a family of effective general frames needed for a general com-
pleteness result. The family B defined below provides building blocks of these frames:

e o o (v — finite clusters;

e ¢(0,®), €(®,0) — the descriptive frames corresponding to natural numbers with strict/reverse

strict order where admissible sets are generated by singletons and sets of the form {m | m =
k(modi)}, i < k;

e &(n,®), €(@®,n) — as above, but now every nth point is reflexive;

e €(0,(®,0) — the descriptive frame corresponding to natural numbers with strict order followed by
natural numbers with strict reverse order where admissible sets are finite or cofinite.

By =B — {€(0,®,0)}. For a given class €, € is the family of all finite sequences of elements from
¢. For a finite sequence of frames §, [§] denotes the directed union of §. [B*] is the family of directed

unions of elements of B*. [Bf] is the family of directed unions of elements of B§. Our completeness

result is

Fact 3 FEvery extension of Lin is complete with respect to some family of elements of [B*]. In conse-
quence, every (-irreducible extension of Lin is determined by some element of [B*].

For finitely axiomatizable logics, we can even prove more:

Fact 4 For every non-theorem ¢ of a finitely aziomatizable extension of Lin L, there exists & € B* st
— is satisfied in [®], [B] is a frame for L and

o the length of the sequence &,

o the upper bound on the cardinality of clusters,



e and the distance between reflexive points in those &;’s which are not finite clusters
are polynomial in 1(p).
Now, we just have bring those two ingredients together. For § € B, define m-reduct of § as follows:

e for ¥ a cluster, r,,,(F) = (§,t), where t assigns (m, m) to the cluster,
o mm(€(0,®)) = [(e, (m,m))]"*! 9 (®, (m,})),

€(n, ®)) = [(o, (m,m)) < [(e, (m,m))]" "1™ < (®, (M, ),
¢(®,n)) = (®, [, m) <[[(s, (m,m))]""! < (o, (m,m))]"*,
* 7m(€(0,®,0)) = [(o, (m,m)]"*1 < (o, (G,§)) < [(e, (m,m))]™ .

For S: <3’17 v agn> € B*a Tm(g) = rm(gl) SURRERN Tm(gm)

Fact 5 For every i, & € B* and m suitably (but polynomially) larger than I(p), ¢ is satisfiable in (@]
iff ¥ is satisfiable in ., () under a valuation which is good for 1 and the type assignment of 7, (®)

Proof of Theorem 1 (ii). Given a & determining a prime logic and ¢, take r,,(®) for m given by
(). The size of the reduct will be polynomial in I(¢). Then, generate non-deterministically a valuation
in r,,(®), check if it is p-good and whether it satisfies (refutes) ¢. By standard arguments, everything
may be done in polynomial time. =

For finitely axiomatizable logics more work is necessary. Let us just formulate the missing ingredient:

Fact 6 If a finite aziomatization for L is given in its canonical form (i.e. as conjunction of a(gF,t)’s),
then it may be checked in polynomial time whether it holds under all good valuations in a given frame
with types.

Proof of Theorem 1 (i). Given ¢, generate a & € B}, whose length, size of clusters and distance
between reflexive points are suitably bounded by ¢. Take its m-reduct, for m suitable both for ¢
and the axioms of L. Check whether the axioms hold under all good valuations, then generate non-
deterministically a valuation for ¢. =

The results above shows that for modal logics of linear orderings, adding the past modality does
not, in general, increase the computational complexity. In both cases, we have that the ones corre-
sponding to reflexive or dense orders are finitely axiomatizable and finitely axiomatizable ones are always
coNP-complete. And among non-finitely axiomatizable ones, in both cases we have logics of arbitrary
complexity; the task of adapting for K4.3 the counterexample given at the beginning is left as an exercise.
An interesting open problem is whether one can obtain a general coNP- (PSPACE- ?) complexity result
analogous to Theorem 1 for modal/tense logic of transitive frames of finite width.
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