Halldén Completeness of Substructural Logics

Hitoshi Kihara h-kihara@jaist.ac.jp School of Information Science, JAIST

In this paper, we discuss necessary and sufficient conditions for a substructural logic to be Halldén complete. We show that to substructural logics over $\mathbf{FL_{ew}}$ we can extend most of results on Halldén-completeness of intermediate logics. On the other hand, the lack of weakening will cause some difficulties in extending them to logics over $\mathbf{FL_{e}}$. We will give a partial result on a modified Halldén-completeness for logics over $\mathbf{FL_{e}}$.

1 Halldén completeness of FL_{ew}

We say that a logic \mathcal{L} is $Halld\acute{e}n\ complete$ if and only if for every formulas ϕ and ψ which have no variables in common, $\phi \lor \psi \in \mathcal{L}$ implies that $\phi \in \mathcal{L}$ or $\psi \in \mathcal{L}$. The following results are well-known.

PROPOSITION 1 (see e.g. [1, Theorem 15.22]) For every intermediate logic \mathcal{L} the following are equivalent:

- (i) L is Halldén complete,
- (ii) for any logics $\mathcal{L}_1, \mathcal{L}_2 \supseteq \mathcal{L}$,

if
$$\mathcal{L} = \mathcal{L}_1 \cap \mathcal{L}_2$$
 then $\mathcal{L}_1 \subseteq \mathcal{L}_2$ or $\mathcal{L}_2 \subseteq \mathcal{L}_1$

PROPOSITION 2 ([2]) For every intermediate logic \mathcal{L} the following are equivalent:

- (i) L is Halldén complete,
- (iii) $\mathcal{L} = L(\mathbf{A})$ for some well-connected Heyting algebra \mathbf{A} , i.e. for all $x, y \in \mathbf{A}$,

if
$$x \lor y = 1$$
 then $x = 1$ or $y = 1$,

(iv) $\mathcal{L} = L(\mathbf{A})$ for some subdirectly irreducible Heyting algebra \mathbf{A} .

Here, $L(\mathbf{A})$ denotes the set of all formulas which are valid in a Heyting algebra \mathbf{A} .

One can show the following theorem in the same way as above propositions.

THEOREM 3 For every logic $\mathcal L$ over $\mathbf{FL_{ew}}$ the following are equivalent:

- (i) L is Halldén complete,
- (ii) for any logics $\mathcal{L}_1, \mathcal{L}_2 \supseteq \mathcal{L}$,

if
$$\mathcal{L} = \mathcal{L}_1 \cap \mathcal{L}_2$$
 then $\mathcal{L}_1 \subseteq \mathcal{L}_2$ or $\mathcal{L}_2 \subseteq \mathcal{L}_1$

(iii) $\mathcal{L} = L(\mathbf{A})$ for some well-connected commutative integral residuated lattice (CIRL) \mathbf{A} .

It will be interesting to see whether

(iv) $\mathcal{L} = L(\mathbf{A})$ for some subdirectly irreducible CIRL **A** is equivalent to Halldén completeness or not.

2 Halldén completeness of FL_e

Theorem 3 doesn't hold always, if we replace $\mathbf{FL_{ew}}$ by $\mathbf{FL_{e}}$, and CIRLs by commutative residuated lattices (CRLs). In other words, we need to modify definitions of Halldén completeness and well-connectedness so as to make Theorem 3 true.

Let **A** be an CRL and \mathcal{F} a subset of A. Then \mathcal{F} is called an *filter* of A iff

- 1. if $1 \leq x$ then $x \in \mathcal{F}$,
- 2. if $x, x \to y \in \mathcal{F}$ then $y \in \mathcal{F}$,
- 3. if $x, y \in \mathcal{F}$ then $x \wedge y \in \mathcal{F}$.

LEMMA 4 Let G be a proper filter of CRL \mathbf{A} and $a \notin G$. Then there exists a filter \mathcal{F}_a which is maximal in the set

$$\Sigma = \{ \mathcal{F} : filter | \mathcal{G} \subseteq \mathcal{F}, a \notin \mathcal{F} \}.$$

Moreover, \mathcal{F}_a satisfies the following condition:

if
$$(x \wedge 1) \vee (y \wedge 1) \in \mathcal{F}_a$$
 then $x \in \mathcal{F}_a$ or $y \in \mathcal{F}_a$.

(proof) By Zorn's lemma, Σ has a maximal element. So let \mathcal{F}_a be a maximal element of Σ . We will show that \mathcal{F}_a satisfies the above condition.

Assume $x \notin \mathcal{F}_a$ and $y \notin \mathcal{F}_a$. Define \mathcal{H}_x as follows.

$$\mathcal{H}_x = \{ z \in A | (x \wedge 1)^k \cdot (u \wedge 1) \le z, \ \exists k \in \mathbb{N}, \exists u \in \mathcal{F}_a \}$$

Then \mathcal{H}_x is the filter generated by $\mathcal{F}_a \cup \{x\}$. Since \mathcal{F}_a is maximal in Σ and $x \notin \mathcal{F}_a$, $a \in \mathcal{H}_x$. So there exists some $l \in N$ and $u \in \mathcal{F}_a$ such that

$$(x \wedge 1)^l \cdot (u \wedge 1) \leq a$$
.

Similarly there exists some $m \in N$ and $v \in F_a$ such that

$$(y \wedge 1)^m \cdot (v \wedge 1) \leq a$$
.

Let t = l + m - 1. Then, by the distributivity of \cdot with \vee

$$((x \wedge 1) \vee (y \wedge 1))^t \cdot (u \wedge 1) \cdot (v \wedge 1)$$

$$= \bigvee_{i=0}^t (x\wedge 1)^i \cdot (y\wedge 1)^{t-i} \cdot (u\wedge 1) \cdot (v\wedge 1).$$

Since $i \geq l$ or $t - i \geq m$, either of the following holds:

$$(1) \qquad (x \wedge 1)^{i} \cdot (y \wedge 1)^{t-i} \cdot (u \wedge 1) \cdot (v \wedge 1)$$

$$\leq (x \wedge 1)^{l} \cdot (u \wedge 1)$$

$$\leq a$$

$$\begin{array}{ll} (2) & (x \wedge 1)^{i} \cdot (y \wedge 1)^{t-i} \cdot (u \wedge 1) \cdot (v \wedge 1) \\ \leq & (y \wedge 1)^{m} \cdot (v \wedge 1) \\ \leq & a. \end{array}$$

So if $(x \wedge 1) \vee (y \wedge 1) \in \mathcal{F}_a$ then $a \in \mathcal{F}_a$. But this is a contradiction. Hence, $(x \wedge 1) \vee (y \wedge 1) \notin \mathcal{F}_a$. \square

Note that the above condition is equal to the following condition:

if
$$(x \wedge 1) \vee (y \wedge 1) \in \mathcal{F}_a$$
 then $x \wedge 1 \in \mathcal{F}_a$ or $y \wedge 1 \in \mathcal{F}_a$.

Therefore, when **A** is a commutative integral residuated lattice, i.e., 1 is the greatest element of **A**, the above condition is equal to the condition which says that the filter \mathcal{F}_a is prime, i.e., \mathcal{F}_a satisfies the condition

if
$$x \lor y \in \mathcal{F}_a$$
 then $x \in \mathcal{F}_a$ or $y \in \mathcal{F}_a$.

As the above lemma shows, it seems to be necessary to modify the notion of Halldén completeness and well-connectedness. The following conditions (i) and (*) seem to be strictly weaker than Halldén completeness and well-connectedness, respectively.

THEOREM 5 Let \mathcal{L} be a logic over FL_e . Then the following are equivalent:

(i) for every formulas ϕ and ψ which have no variables in common

if
$$(\phi \wedge 1) \vee (\psi \wedge 1) \in \mathcal{L}$$
 then $\phi \in \mathcal{L}$ or $\psi \in \mathcal{L}$,

(ii) for any logics $\mathcal{L}_1, \mathcal{L}_2 \supseteq \mathcal{L}$,

if
$$\mathcal{L} = \mathcal{L}_1 \cap \mathcal{L}_2$$
 then $\mathcal{L}_1 \subseteq \mathcal{L}_2$ or $\mathcal{L}_2 \subseteq \mathcal{L}_1$

(iii) $\mathcal{L} = L(\mathbf{A})$ for some CRL \mathbf{A} satisfying the following.

(*) for any
$$x, y \in A^- = \{a \in A | a \le 1\},\$$

if
$$x \lor y = 1$$
 then $x = 1$ or $y = 1$.

References

- [1] A.Chagrov and M.Zakharyaschev, Modal Logic, Clarendon Press, Oxford, 1997, pp.482.
- [2] A.Wroński, Remarks on Hallden-completeness of modal and intermediate logics, Bulletin of the Section of Logic 5, No.4(1976), pp.126-129.