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1 Introduction

The space D(R) of test functions (infinitely differentiable functions with compact support) is an important
example of a non-metrizable (LF)-space, and the domain of distributions (generalized functions). E.
Bishop suggested in [1, Appendix A] and [2, Chapter 7, Notes] that the completeness of D(R) and the
weak completeness of its dual space would not hold in Bishop’s constructive mathematics. This matter had
not be solved since Bishop referred it, and we first obtained the following consequence in [8, Theorem 4]:
the completeness of D(R) is equivalent to a principle BD-N, which can be proved in classical mathematics,
intuitionistic mathematics of L. E. J. Brouwer and constructive recursive mathematics of A. A. Markov’s
school but cannot be in Bishop’s framework (see [4] and [6] for more details). Therefore, in Bishop’s
framework, the completeness of a D(R) cannot be proved, and neither can that of a (LF)-space. On the
other hand, we can prove the following version of the Banach-Steinhaus theorem for D(R) in Bishop’s
constructive mathematics, and therefore can in the others, since theorems in Bishop’s framework belong
to the others (see [3, Chapter 1]):

[11, Theorem 4.10] Let {uk} be a sequence of sequentially continuous linear functionals on
D(R) such that 〈u, φ〉 := limk〈uk, φ〉 exists for all φ in D(R). Then u is a sequentially
continuous linear functionals on D(R).

This theorem implies the weak completeness of the dual space D∗(R) which consists of sequentially
continuous linear functionals on D(R). Thus the completeness of D(R) is not necessary for proving the
weak completeness of D∗(R), although many classical proofs require the completeness for proving the
weak completeness. In this paper, we discuss to generalize the theorem above to (LF)-spaces within
Bishop’s constructive mathematics. Although it is formulated in the setting of informal Bishop-style
constructive mathematics, the proofs could easily be formalised in a system based on intuitionistic finite-
type arithmetics HAω (see [9, Chapter 9] for more details).

2 (F)-spaces

Let X be a vector space over R. A mapping p : X → R0+ is said to be a seminorm on X if it satisfies
that for x, y ∈ X and λ ∈ R, (1) p(x + y) ≤ p(x) + p(y) and (2) p(λx) = |λ|p(x). Let {pi} be a class
of seminorms on X. A pair (X, {pi}) is said to be a locally convex space over R if for each x in X,
whenever pi(x) = 0 for all index i, then x = 0. Given a locally convex space (X, {pn}) with countably
many seminorms, we may assume that the seminorms {pn} is increasing. Note that a locally convex
space X with countably many seminorms is metrizable. A sequence {xn} is said to converge to x in a
locally convex space X if for each k in N and index i, there exists N in N such that pi(x− xn) < 2−k for
all n ≥ N . A sequence {xn} in X is said to be a Cauchy sequence if for each k in N and index i, there
exists N in N such that pi(xm − xn) < 2−k for all m,n ≥ N . A locally convex space is complete if every
Cauchy sequence converges. We call a complete locally convex space with countably many seminorms a
(F)-space. For each k in N, we let Dk(R) denote the space of test functions φ such that supp φ is contained



in the closed interval [−k, k], with the seminorms ‖φ‖m := maxl≤m sup|x|≤n |φ(l)(x)| (φ ∈ Dk(R)), where
supp φ, which is called support of φ, is the closure of the set {x ∈ R : |φ(x)| > 0}. It is easy to show that
(Dk(R), {‖ · ‖m}) is a (F)-space.

Let f be a mapping of a locally convex space X into a locally convex space Y . f is said to be
sequentially continuous if for each sequence {xn} in X and x in X, if {xn} converges to x in X, then
the sequence {f(xn)} converges to f(x) in Y . f is also said to be sequentially nondiscontinuous if for
each sequence {xn} converging to x, seminorm p′j of Y and ε in R, whenever p′j(f(xn) − f(x)) ≥ ε for
all n, then ε ≤ 0. Clearly, a sequentially continuous mapping on a locally convex space is sequentially
nondiscontinuous. The converse for (F)-spaces can be proved in classical mathematics, intuitionistic
mathematics and constructive recursive mathematics (see [6, Theorem 2 and Proposition 3] for details).
We show the converse for linear mappings on a (F)-space in Bishop’s framework. The following lemma
can be now proved in a way similar to [7, Lemma 2] (see [10, Lemma 3.2.2] for details).

Lemma 1. Let f be a linear mapping of a (F)-space X into a locally convex space Y , {xn} a sequence
converging to 0 in X. a seminorm p′j of Y , and a and b in R with 0 < a < b. Then either p′j(f(xn)) > a
for infinitely many n or else p′j(f(xn)) < b for all sufficiently large n.

The above lemma immediately implies the conclusion.

Theorem 2. A linear mapping of a (F)-space into a locally convex space is sequentially continuous if
and only if it is sequentially nondiscontinuous.

We then have the following version of the Banach-Steinhaus theorem for (F)-spaces.

Theorem 3. Let {fn} be a sequence of sequentially continuous linear mappings of a (F)-space X into
a locally convex space Y such that f(x) := limn fn(x) exists for all x in X. Then f is a sequentially
continuous linear mapping of X into Y .

Proof. In view of Theorem 2, it is sufficient to show that f is sequentially nondiscontinuous. Then we
can use the method of [5, Appendix A]; see [10, Theorem 3.2.4] for details.

3 (LF )-spaces

Let X be a locally convex space, {Xk} a sequence of (F)-spaces, B0 a class of open balls for 0 in X,
and Bk

0 a class of open balls for 0 in Xk. Suppose that X = ∪kXk, Xk ⊂ Xk+1 for all k and that Bk
0

is equivalent to the class {U ∩Xk : U ∈ Bk+1
0 } for all k. Let B′0 be the class of all subsets U of X such

that (1) for each s and t in R, s, t ≥ 0 and s + t = 1 imply sU + tU ⊂ U (convexity), (2) for each r in
R with |r| ≤ 1, rU ⊂ U (circledness), (3) for each x in X there exists a > 0 such that for each r in R,
if |r| ≤ a then rx ∈ U . (absorbingness), (4) for each k, U ∩Xk is a neighbourhood of 0 in Xk; that is,
there exists Uk in Bk

0 such that Uk ⊂ U ∩Xk. Then X is said to be a (LF)-space with sequence {Xk}
if B0 is equivalent to B′0. For instance, the space D(R) is a (LF)-space with the sequence {Dk(R)} (see
[10, Section 4.5]). Note that for each k, Bk

0 is equivalent to the class {U ∩Xk : U ∈ B0}.
Let {xn} be a sequence in a (LF)-space X with sequence {Xk} of (F)-spaces, and x in X. We write

xn −→ x if {xn} converges to x in some Xk. Note that xn −→ x implies that {xn} converges to x in
X. On the other hand, the converse can be proved in classical mathematics, but cannot be in Bishop’s
framework. In fact, the case of D(R) is equivalent to BD-N (see [10, Corollary 4.3.9]). We say in this
paper that a mapping f of a (LF)-space X into a locally convex space Y is quasi-sequentially continuous
if for each sequence {xn} and x in X, whenever xn −→ x, then the sequence {f(xn)} converges to f(x) in
Y . Clearly, a sequentially continuous mapping on a (LF)-space is quasi-sequentially continuous. It has
not been known whether the converse can be proved constructively or not. However, the case of D(R) can
be proved in Bishop’s framework (see [12, Theorem 5.4]). We now obtain the following Banach-Steinhaus
theorem with respect to quasi-sequentially continuous mappings on a (LF)-space, by Theorem 3.

Theorem 4. Let X be a (LF )-space, Y a locally convex space, and {fn} a sequence of quasi-sequentially
continuous linear mappings of X into Y such that f(x) := limn fn(x) exists for all x in X. Then f is a
quasi-sequentially continuous linear mappings of X into Y .



We here have the problem whether the Banach-Steinhaus theorem with respect to sequentially con-
tinuous linear mappings on a (LF)-space holds in Bishop’s framework or not. The one for D(R), which
is [11, Theorem 4.10] above, holds in this sense. The important point is to represent the convergence of
a sequence in a (LF)-space, within the (F)-spaces. As noted above, the convergence in a (LF)-space is
classically equivalent to that in some (F)-space. Also, the convergence of a sequence {φn} in D(R) is
equivalent to the following conditions in Bishop’s framework (see [11, Theorem 2.9]): (i) for each l, the
sequence {φ(l)

n } of l-th derivatives converges uniformly on R (or converges with respect to sup-norm), and
(ii) ∪nsuppNφn is pseudobounded. Here we write suppNf := {0}∪{n ∈ N : ∃q ∈ Q(|q| ≥ n∧ |f(q)| > 0)},
and a subset A of N is pseudobounded if for each sequence {an} in A, limn→∞ an/n = 0. A bounded
subset of N is pseudobounded. On the other hand, the converse for countable sets is called BD-N; that
is, the converse cannot be proved in Bishop’s framework (see [4] and [6]). Thus the condition (ii) above
means a boundedness property of the union of support of each φn, and implies classically that the set
{k ∈ N : ∃n[φn 6∈ Dk(R)]} is bounded. It seems constructively difficult to derive such a property from
the conditions of (LF)-spaces above. So, although detailed studies are needed, we would require to add
such conditions as imply constructively that, letting (X, {pi}) be a (LF)-space with sequence {Xk}, for
each x in X and index i, pi(xn − Xk) := inf{pi(xn − x) : x ∈ X} exists and that, given a convergent
sequence {xn} in X, the set A := {k ∈ N : ∃n∃i[pi(xn − Xk) > 0} is pseudobounded, to the definition
of a (LF)-space. Here we note that a subset S of R is located if for all r in R, inf{|r − s| : s ∈ R} exists
and that it cannot be proved in the three frameworks of constructive mathematics that every subset of
R is located (see [2, Chapter 4, Problem 8]). Then we also have to show that D(R) is located. Moreover,
we would need such countable seminorms as are extensions of those of (F)-spaces {Xk}k∈A and as give
a locally convex structure weaker than that of X in the space ∪k∈AXk.
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