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Phase semantics is a standard semantics for linear logic that captures provability [Gir95]. Corresponding to
two forms of linear logic, i.e. classical linear logic (LL) and intuitionistic linear logic (ILL), there are two forms
of phase semantics: classical and intuitionistic phase semantics (see [Abr90, Tro92, Oka99]).

Theaim of thiswork is to study the relationship between these two. Our main results are as follows:

(i) every intuitionistic phase spaceis a subspace of aclassical phase space.

(ii) every intuitionistic phase spaceis phase isomorphic to a quasi-classical phase space. Here, aquasi-classical
phase space is a phase space having a double-negation-like closure operator.

(iii) thereisasyntactic embedding of propositional ILL intoLL.

The result (i) on one hand establishes a relationship between classical and intuitionistic phase spaces, and on the

other hand gives a new definition of intuitionistic closure operator Cl(X) = X LLAm. A nicefact is that the
definition is entirely first-order and it does not involve any “big” (second-order, impredicative) quantification, in
contrast to [Abr90, Tro92, Oka99]). Theresult (ii) yields a completeness theorem for | L L with respect to arather
special class of phase models. quasi-classical phase modes. Hence intuitionistic phase spaces may be considered
“amost classical.” Theresult (iii) is an application of our semantic considerations to a syntactic issue.

L et us begin with several definitions. The formulasof ILL are built from propositiona variables and constants
1,0, T, L bylogical connectives®, —o, &, @ and!.

Definition 1 An intuitionistic phase space (M, -, €,Cl) consists of a commutative monoid (M, -, €) and a closure
operator Cl, that is a mapping from the subsets of M to themselves such that for all X,Y C M:

(ClI1) X C CI(X) (CI2) CI(CI(X)) € CI(X)
(CI3) X CY = CI(X) CCI(Y) (CI4CI(X)-CI(Y)CCI(X-Y)

A set XCM issaidto beclosed if X = CI(X).
We also define the following operations over sets X, Y C M:

X®Y = CI(X-Y) 1 = Cl({g})
X&Y = XnY T =M
XaY = CI(XUY) 0 = CI(0)
X—=oY = {zeM|WxeX(x-z€Y)}
IX = CI(XNl), wherel :={xe 1|x-x=x}.

Anintuitionistic phasemodd (M, -, ,Cl,v) isan intuitionistic phase space (M, -, £,Cl ) with avaluation v that maps
each propositional variable to a closed subset of M, and, in addition, assigns a closed subset of M to constant L.

Thevaluation v is naturally extended to all formulasof ILL. A formulaAis satisfied in model (M, -, €,Cl,v) if
and only if ecv(A).



We have the following completeness theorem: aformulaof ILL is satisfied in every intuitionistic phase model
if and only if itisprovableinILL.

Asto classical linear logic LL, the formulas are defined to be those of ILL as well as formulas of the form
AR B, ?A.

A classical phase space (M, -, &, L) consists of a commutative monoid (M, -, €) and a distinguished subset L
of M. A set XCM iscaled aclosed set (or afact) if X = x+d Here, x 1 standsfor X —o L.

Every classical phase space (M, -, &, L) may be viewed as an intuitionistic phase space. Indeed, it is easily
verified that the double negation operator Cl (X) := X L L satisfiesthe conditions (Cl)—(Cl4).

Formulas of LL are again interpreted by closed sets, and we have a commpleteness result for L L with respect
to classical phase models as before.

Definition 2 Let .#1 = (My, -, €,Cl1) be an intuitionistic phase space. Then .#> = (M, -, £,Cl>) is called a sub-
space of . if

e (My,-, €) isasubmonoid of (My,-,€), and
e Cly(X) =Cl1(X) N My forany X C My.

With this notion of subspace, it is straightforward to observe that every subspace of a classical phase space is
an intuitionistic phase space. Namely, if (Mc, -, €, L¢) isaclassica phase space and M is a submonoid of M, then
(M, -, &,Cl) with CI(X) := XLeleqM isan intuitionistic phase space. The converse also holds. It is a corollary
to our main theorem below.

We now consider a subclass of the intuitionistic phase spaces which are of special interest.

Definition 3 An intuitionistic phase space (M, -, £,Cl) iscalled a quasi-classical phase spaceif it is a subspace of
aclassical phase space (Mg, -, €, L¢) and Cl(X) = XLede for every X C M.

The closure operator Cl of a quasi-classical phase space (M, -,&,Cl) looks almost like a classical double-
negation operator, the only difference being that L isnot necessarily asubset of M. It is not known whether every
intuitionistic phase space is quasi-classical or not. It is an open question. On the other hand, we know that every
intuitionistic phase space is phase isomorphic to a quasi-classical one, with anatural notion of phase isomorphism.
Roughly speaking, two phase spaces are phase isomorphic if they are equivaent as residuated lattice (enriched
with amodal operator). Thisis also acoradllary to our main theorem below.

L et us now state the main theorem, the three-layered representation theorem, that gives a good summary of the
relationship between intuitionistic and classical phase semantics:

Theorem 4 (Three-Layered Representation) Let .# = (M, -, &,Cl) be an intuitionistic phase space. Then there
exist a quasi-classical phase space .#q = (Mg, -, €,Clq) and a classical phase space
M= (Mg, -, €, L) satisfying the following;
(i) .# isasubspaceof .#q, and .#q is a subspace of .#; specifically,
e forany XCM: CI(X) =x1elenm, and
e for any XqCMq: Clg(Xq) = XqJ-CJ-C.
(ii) Thereisa phaseisomorphismfrom.#qto .Z .
From this theorem, the following corollaries follow immediately:

Corollary 5 Every intuitionistic phase space is a subspace of a classical phase space.

Corollary 6 Every intuitionistic phase space is phase isomorphic to a quasi-classical phase space. As a conse-
guence, aformula AisprovableinILL if and onlyif Ais satisfied in every quasi-classical phase model.

Let us now move on to syntax. Our aim is to give a a syntactic embedding of ILL into LL based on the
semantic insight above. First of all, note that LL is already conservative over ILL as far as the propositional
formulas without O nor L are concerned:



Theorem 7 (|Sch9l]) Let A be a formula of ILL which does not contain O nor L. Then Ais provablein ILL if
and only if itisprovablein LL.

Therefore, there is no need of trandlation for this fragment. On the other hand, in the presence of 0 or L (or
second order quantifiers), LL is not conservative over I L L, as witnessed by the following:

(p—ol)—ol)—op; (T—ol)—o((p—<0)—0)—op.

TheselLL formulasareprovablein LL but notinlLL. Our embedding isintended to cover the full propositional
logicILL includingOand L.

Definition 8 Let pg be a distinguished propositional variable. we define

¢ (Po) := ('Po)@!(Po® Po—© Po)

(Theformula ¢ (po) says, roughly, that “the interpretation of pg isamonoid.”)
To each formula A of ILL, we associate another formula A° of ILL asfollows;

g° = 0&po, for apropositional variable g
c© = C&Ppo, force{T, L}
d° = d, ford e {1,0}
(A—B)° = (A°—B°)& po
(AxB)°> = A°xB°, forx € {®,&,®}
(1A = 1A

Inthe presence of the assumption ¢ (po), the suffix & pg behaves like an S4-modality OI. In view of thisanal ogy,
the above trandation can be considered as a linear analogue of Godel’s famous embedding of intuitionistic logic
into modal logic $S4. As a matter of fact, we have:

Theorem 9 AformulaAof ILL isprovableinILL iff ¢(pg) —oA°isprovableinLL.

To prove this theorem, we exploit phase semantics and the relationship between intuitionistic and classical
phase models established above.
The details are given in [KOTO04].
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