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Phase semantics is a standard semantics for linear logic that captures provability [Gir95]. Corresponding to
two forms of linear logic, i.e. classical linear logic (LL) and intuitionistic linear logic (ILL), there are two forms
of phase semantics: classical and intuitionistic phase semantics (see [Abr90, Tro92, Oka99]).

The aim of this work is to study the relationship between these two. Our main results are as follows:

(i) every intuitionistic phase space is a subspace of a classical phase space.

(ii) every intuitionistic phase space is phase isomorphic to a quasi-classical phase space. Here, a quasi-classical
phase space is a phase space having a double-negation-like closure operator.

(iii) there is a syntactic embedding of propositional ILL into LL.

The result (i) on one hand establishes a relationship between classical and intuitionistic phase spaces, and on the

other hand gives a new definition of intuitionistic closure operator Cl(X) = X ∩M. A nice fact is that the
definition is entirely first-order and it does not involve any “big” (second-order, impredicative) quantification, in
contrast to [Abr90, Tro92, Oka99]). The result (ii) yields a completeness theorem for ILL with respect to a rather
special class of phase models: quasi-classical phase models. Hence intuitionistic phase spaces may be considered
“almost classical.” The result (iii) is an application of our semantic considerations to a syntactic issue.

Let us begin with several definitions. The formulas of ILL are built from propositional variables and constants
1, 0, �, ⊥ by logical connectives ⊗, −◦, &, ⊕ and !.

Definition 1 An intuitionistic phase space (M, ·,ε ,Cl) consists of a commutative monoid (M, ·,ε) and a closure
operator Cl, that is a mapping from the subsets of M to themselves such that for all X ,Y ⊆ M:

(Cl1) X ⊆Cl(X) (Cl2) Cl(Cl(X)) ⊆Cl(X)
(Cl3) X ⊆ Y =⇒Cl(X) ⊆Cl(Y ) (Cl4) Cl(X) ·Cl(Y ) ⊆Cl(X ·Y )

A set X ⊆M is said to be closed if X = Cl(X).
We also define the following operations over sets X ,Y ⊆ M:

X ⊗Y := Cl(X ·Y ) 1 := Cl({ε})
X &Y := X ∩Y T := M
X ⊕Y := Cl(X ∪Y ) 0 := Cl( /0)

X −◦Y := {z∈M | ∀x∈X(x · z ∈ Y )}
!X := Cl(X ∩ I), where I := {x ∈ 1 |x · x = x}.

An intuitionistic phase model (M, ·,ε ,Cl,v) is an intuitionistic phase space (M, ·,ε ,Cl) with a valuation v that maps
each propositional variable to a closed subset of M, and, in addition, assigns a closed subset of M to constant ⊥.

The valuation v is naturally extended to all formulas of ILL. A formula A is satisfied in model (M, ·,ε ,Cl,v) if
and only if ε∈v(A).



We have the following completeness theorem: a formula of ILL is satisfied in every intuitionistic phase model
if and only if it is provable in ILL.

As to classical linear logic LL, the formulas are defined to be those of ILL as well as formulas of the form
A

.................................................
............
.................................. B, ?A.
A classical phase space (M, ·,ε , ) consists of a commutative monoid (M, ·,ε) and a distinguished subset

of M. A set X ⊆M is called a closed set (or a fact) if X = X . Here, X stands for X −◦ .
Every classical phase space (M, ·,ε , ) may be viewed as an intuitionistic phase space. Indeed, it is easily

verified that the double negation operator Cl(X) := X satisfies the conditions (Cl1)—(Cl4).
Formulas of LL are again interpreted by closed sets, and we have a commpleteness result for LL with respect

to classical phase models as before.

Definition 2 Let M1 = (M1, ·,ε ,Cl1) be an intuitionistic phase space. Then M2 = (M2, ·,ε ,Cl2) is called a sub-
space of M1 if

• (M2, ·,ε) is a submonoid of (M1, ·,ε), and

• Cl2(X) = Cl1(X)∩M2 for any X ⊆ M2.

With this notion of subspace, it is straightforward to observe that every subspace of a classical phase space is
an intuitionistic phase space. Namely, if (Mc, ·,ε , c) is a classical phase space and M is a submonoid of Mc, then

(M, ·,ε ,Cl) with Cl(X) := X c c ∩M is an intuitionistic phase space. The converse also holds. It is a corollary
to our main theorem below.

We now consider a subclass of the intuitionistic phase spaces which are of special interest.

Definition 3 An intuitionistic phase space (M, ·,ε ,Cl) is called a quasi-classical phase space if it is a subspace of

a classical phase space (Mc, ·,ε , c) and Cl(X) = X c c for every X ⊆ M.

The closure operator Cl of a quasi-classical phase space (M, ·,ε ,Cl) looks almost like a classical double-
negation operator, the only difference being that c is not necessarily a subset of M. It is not known whether every
intuitionistic phase space is quasi-classical or not. It is an open question. On the other hand, we know that every
intuitionistic phase space is phase isomorphic to a quasi-classical one, with a natural notion of phase isomorphism.
Roughly speaking, two phase spaces are phase isomorphic if they are equivalent as residuated lattice (enriched
with a modal operator). This is also a corollary to our main theorem below.

Let us now state the main theorem, the three-layered representation theorem, that gives a good summary of the
relationship between intuitionistic and classical phase semantics:

Theorem 4 (Three-Layered Representation) Let M = (M, ·,ε ,Cl) be an intuitionistic phase space. Then there
exist a quasi-classical phase space Mq = (Mq, ·,ε,Clq) and a classical phase space
Mc = (Mc, ·,ε , c) satisfying the following;

(i) M is a subspace of Mq, and Mq is a subspace of Mc; specifically,

• for any X ⊆M: Cl(X) = X c c ∩M, and

• for any Xq⊆Mq: Clq(Xq) = X c c
q .

(ii) There is a phase isomorphism from Mq to M .

From this theorem, the following corollaries follow immediately:

Corollary 5 Every intuitionistic phase space is a subspace of a classical phase space.

Corollary 6 Every intuitionistic phase space is phase isomorphic to a quasi-classical phase space. As a conse-
quence, a formula A is provable in ILL if and only if A is satisfied in every quasi-classical phase model.

Let us now move on to syntax. Our aim is to give a a syntactic embedding of ILL into LL based on the
semantic insight above. First of all, note that LL is already conservative over ILL as far as the propositional
formulas without 0 nor ⊥ are concerned:



Theorem 7 ([Sch91]) Let A be a formula of ILL which does not contain 0 nor ⊥. Then A is provable in ILL if
and only if it is provable in LL.

Therefore, there is no need of translation for this fragment. On the other hand, in the presence of 0 or ⊥ (or
second order quantifiers), LL is not conservative over ILL, as witnessed by the following:

((p−◦⊥)−◦⊥)−◦ p; (�−◦1)−◦ ((p−◦0)−◦0)−◦ p.

These ILL formulas are provable in LL but not in ILL. Our embedding is intended to cover the full propositional
logic ILL including 0 and ⊥.

Definition 8 Let p0 be a distinguished propositional variable. we define

ϕ (p0) := (!p0)⊗!(p0 ⊗ p0 −◦ p0)

(The formula ϕ (p0) says, roughly, that “the interpretation of p0 is a monoid.”)
To each formula A of ILL, we associate another formula A◦ of ILL as follows;

q◦ := q&p0, for a propositional variable q
c◦ := c&p0, for c ∈ {�,⊥}
d◦ := d, for d ∈ {1,0}

(A−◦B)◦ := (A◦ −◦B◦)& p0

(A� B)◦ := A◦ � B◦, for � ∈ {⊗,&,⊕}
(!A)◦ := !A◦.

In the presence of the assumption ϕ (p0), the suffix &p0 behaves like an S4-modality �. In view of this analogy,
the above translation can be considered as a linear analogue of Gödel’s famous embedding of intuitionistic logic
into modal logic S4. As a matter of fact, we have:

Theorem 9 A formula A of ILL is provable in ILL iff ϕ (p0)−◦A◦ is provable in LL.

To prove this theorem, we exploit phase semantics and the relationship between intuitionistic and classical
phase models established above.

The details are given in [KOT04].
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