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Hamilton-Jacobi equation

1
(H)  H(x,p) =p'f(0) = 3p"R@p +q(x) = 0

X1, ,X,: independent variables
--- state space X

pj=0z/0x;, j=1,---,n

z: unknown function

Summary
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Hamilton-Jacobi equation
T l

H))  H(G,p)=p'flx) - 7P R(x)p +q(x) =0

X1, ,X,: independent variables
--- state space X
pj= (9z/axj7 j= 1,---.,n
z: unknown function
f : R" valued function f(0)=0
R : R valued function R = R(x) call c®
d

g : scalar function q(0)=0,%£(0) =0
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Hamilton-Jacobi equation

1
(H)  H(x,p) =p'f(0) = 3p"R@p +q(x) = 0

X1, ,X,: independent variables
--- state space X

pj=0z/0x;, j=1,---,n

z: unknown function

f : R" valued function f(0)=0

R : R™" valued function R = R(x) call c®
P

g : scalar function q(0)=0,%£(0) =0

(RIC) x"PAx + xTATPx — X" PROO)Px + xTQx = 0

1
f) = Ax+ O, qx) = ExTQx +O(xP)
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Theory of 1st order PDEs
FACT1
An n-dimensional invariant manifold of
OH
X=—=f(x) - Rx)p
Sy dp . ,
' OH 0 o(p' R(x
po OH O r 0WTRGD)

S ox | Ox ox

is a Lagrangian submanifold of 7*X.

Applications

_9q’

ox

Summary
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Theory of 1st order PDEs

FACT2
A c T*X : L-submanifold, ¢ € A. n|s : A — X(natural projection) is

submersion, then, locally around g,
0z
A= {(x,p)lp = —(X)}
J an

for a function z(x) locally defined around ¢. (Graph of the derivative
0z/0x)
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Theory of 1st order PDEs

FACT2
A c T*X : L-submanifold, ¢ € A. n|s : A — X(natural projection) is

submersion, then, locally around g,
0z
A= {(x,p)lp = —(X)}
J an

for a function z(x) locally defined around ¢. (Graph of the derivative
0z/0x)

FACT1+FACT2 = z(x) is a solution of

1
H(x,p) = p"f(x) - §pTR(x)p +q(x) = 0.
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Stable Lagrangian manifold and stabilizing solution

Theorem 1 (van der Schaft 91)
A hyperbolic stable manifold of a Hamiltonian system is a
Lagrangian submanifold and a generating function (solution of HJ

eq.) exists.

Summary
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Stable Lagrangian manifold and stabilizing solution

Theorem 1 (van der Schaft 91)

A hyperbolic stable manifold of a Hamiltonian system is a
Lagrangian submanifold and a generating function (solution of HJ
eq.) exists.

Theorem 2 (van der Schaft 91)
If (RIC) has a stabilizing solution P, the original HJ equation has a
stabilizing solution

How to compute it?
Modification of stable manifold theory
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Approximation of stable manifold

X =Ax+f(t,x,y)

DRI T
y=-Ay+g(tx,y)

A:nxn,Reldj(A) <0;f(t,x,y), g(t,x,y): smooth higher order terms

9/38
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Approximation of stable manifold

5. X=Ax+f(t,x,y)
|y =-ATy + g x,y)
A:nxn,Reldj(A) <0;f(t,x,y), g(t,x,y): smooth higher order terms

Define sequences:

X = €ME+ f I (s, x1(5), yi(s)) ds
0
Viel = — f e 9 g5, x.(5), y(s)) dis

fork=0,1,2,...,and

X()ZeAtf
Yo=0

where £ € R” is arbitrary parameters.
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Xk+1

t ! ()]
ME+ fo Af (N ds (= g

_f e 9 g5, xi.(5), ya(s)) ds Yo=0
t

YVie+1

Theorem:
o xi(1,8), yi(t,&) > 0ast - oo forallk =0,1,2,... for |¢ < 1.

10/38
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X1 = eAfé: +j(; eA(t_5)f(S, xk(s),yk(s)) ds {xO — eAtf
Vil = — f e g (s, x (), yi(s)) ds Yo=0
Theorem:

o xi(1,8), yi(t,&) > 0ast - oo forallk =0,1,2,... for |¢ < 1.

o xi(t,&) and yi(t, &) are uniformly convergent to a solution of
on [0, 00) as k — .

10

Summary

38
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xm=wzi£fwwmmwmmh {m:wg

ym=—fe#“%@mnmmw Yo =0
t
Theorem:
o xi(1,8), yi(t,&) > 0ast - oo forallk =0,1,2,... for |¢ < 1.

o xi(t,&) and yi(t, &) are uniformly convergent to a solution of
on [0, 00) as k — .

® x(t’ éj) = lirnk—)oo Xk(t, f), y(t’ g) = limk—>c>o )’k(f, g) SatiSfy x(t’ éj):

¥(t,&) — 0 as t — oo and the solution on the stable manifold of
2.

10/38
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Xie+1

t ! ()]
ffﬂﬁf Fexon O ds (1 _ e

OO_T_ -
YM=—f€AU%@MﬂmmM Yo=0
t

{(x(t,8),y(t, &) ||€) < 1,1 € R} : parametrization of the stable manifold!
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tet = e+ fo M DN s (o

{oe) B T _ _
Viel = —f e g5, xi.(5), yi(s)) ds Yo=0
t

{1, 6), (2, 6) | |€] < 1, € R} : approximation of the stable manifold!

11/38
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Contraction mapping

f@=W&J?WWWMow

f@=ife*“%wmmes

Integral equation

Summary
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Contraction mapping

X1 =M+ f A (1), y* (1) ds
e = T ("))
V() = - f A g0 (1), 5" (1) ds

7" is a contraction mapping on a complete metric space of
continuous functions.

(x*,y") is a fixed point of 7~

Summary
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oH
§= 2> =f() ~ R@p
ZH . P

OH __f 1, JW'Rop _dq’

ox  Ox ox ox



Stable manifold approximation

OH
f= = = () - ROp
/4

oH  of , Op'Rwp) aq"
o= = -

Oox Ox Ox Ox
Assumption: The algebraic Riccati equation

ZHI

PA+ATP-PROP+Q =0

that approximates the HJ equation has a stabilizing solution P =T..



Stable manifold approximation

oH
x= s = f(x) = R(x)p
P

oH  of , Op'Rwp) aq"
o= = -

Oox Ox Ox Ox
Assumption: The algebraic Riccati equation

ZHI

PA+ATP-PROP+Q =0

that approximates the HJ equation has a stabilizing solution P =T..

Using a suitable coordinate transformation,

, (¥ _[A-ROI 0 x .
Xy (p') = ( 0 —(A- R(O)F)T) (p') + higher order terms

Now, the stable manifold approximation theorem can be applied.
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Numerical example

; 3 92 T >
=x—x +u, J = It de
X=X—X u = fo‘ X u
'he Hamilton-Jacobi equation for this probleln:

1 q av
H=px-x)——p*+28*=0, p=—
plx—x7) TP S

14/38
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Numerical example

; 3 92 T >
=x—x +u, J = It de
X=X—X u = fo‘ X u
'he Hamilton-Jacobi equation for this probleln:

1 q av
Hep-x)-—p2+ 120, p=
plx =) = 5p"+ 3% P =

Hamilton’s canonical equations:

. ; 1
X=X—X ——
ZHZ I"p

p=—(1-3)p-qx.

14

Summary

38
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Stable manifold approximation

Numerical example

, (X (=1 +q/rX
"] = \/TCI/’”P’

) s ( —x(x’,p')3
3x(x', p'Y’p(xX', p’)

Applications

)

Summary



Outline of talk 1st order PDEs/ Stabilizing solution/ Stable manifold Stable manifold approximation Applications

Numerical example

N AT R A T Y0
H o\ gy V1+4q/rp 3x(x', p)px' . p))’

14 T T T T T T T T

1r n=4

06 optimal

041
n=3

0.2f

0 0.2 04 0.6 0.8 1 12 14 16 18

Summary
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Properties of the algorithm

Xk+1

At ! (t—s)
€ €+£ eA f(saxk(s)ayk(s)) ds Xo = eAté‘:

_f e ) o5, x(5), Vi (s)) ds Yo=0
t

Yie+1

e Recursive computation — Suitable for computer
implementation

16/38
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Properties of the algorithm

Xes1 = €E+ fo AU (5, 2(9), yi(s)) ds o = e
Yirl = — f e_AT(t_S)g(s, X (8), yi(s)) ds yo=0

e Recursive computation — Suitable for computer
implementation

e Analytic expression — Analytic and numeric approaches
f t* exp(—At) sin wt dt (for polynomial nonlinearities)

16/38



Stable manifold approximation

Properties of the algorithm

a1 = ME+ fo I (5, x1(9), yils)) ds {xO oy

S f 709 o5, x4 (5), yi(s) ds Yo =0
t

e Recursive computation — Suitable for computer
implementation

e Analytic expression — Analytic and numeric approaches
f t* exp(—At) sin wt dt (for polynomial nonlinearities)

e 0V /0x is obtained — No need to differentiate approximated
solutions

16/38



Stable manifold approximation

Properties of the algorithm

a1 = ME+ fo I (5, x1(9), yils)) ds {xO oy

S f 709 o5, x4 (5), yi(s) ds Yo =0
t

Recursive computation — Suitable for computer
implementation

Analytic expression — Analytic and numeric approaches

f t* exp(—At) sin wt dt (for polynomial nonlinearities)

0V /ox is obtained — No need to differentiate approximated
solutions

Coincide with Riccati solutions around the origin — Linear
performance is guaranteed

16

38
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Numerical approach

Construction of p(x):
e MATLAB commands griddatan and interpn
e Polynomial fitting — better for higher dimensional systems

17/38
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Important parameters
Radius of convergence:
o Taking small |£] is essential for the convergence
o ¢ determines the initial point (¢ = 0) of the solution curve on
the stable manifold
Use of negative time:
e The constructed surface is generally small if r > 0 is employed
e By using the invariance property of the stable manifold, the
surface is enlarged by the negative time operation
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Important parameters
Hamiltonian check
The number of iteration k£ and the maximum 7,., determine the size
of effective domain for control and the computational time

t
-1.0 -0.75 -0.5 -0.25 0.0
Lt ddebedeeted L L T 11

k=0 (Linear)
............ k=1
k=2

19

38



Applications

Applications

e Swing-up and stabilization of a 2-dimensional inverted
pendulum

o Optimal control of systems with input saturations (magnitude,
rate)

e Optimal servo system design for a magnetic levitation system
(with experiment)
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Swing-up and stabilization of an inverted pendulum

Introduce state variables x = [x,x2]" = [6,§]"

X =f(x) +gx)u

X2
f(x) = | mglsinx; —mlzx% sinxj cosxj |» g(X) = ( —[cos x| ) .
J+ml? sin® x| J+mi? sin? x|

J=f xTOx+u'Rudt; Q =050, R=2
0

Summary

21/38
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Swing-up and stabilization of an inverted pendulum

Introduce state variables x = [x,x2]" = [6,§]"

X =f(x) +gx)u

X2 0
f(x) = | mglsinx; mlzx2 s1nx1 cosxy | g(X) :( —[cos x; )

—
J+ml2 sin? x; J+mi? sin” x|

J=f xTOx+u'Rudt; Q =050, R=2
0

The problem of stability region enhancement with optimality

Summary

21/38
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15

10

theta dot[rad/s]
wt

ending position

-3 -2 -1 0
thetalrad]

Trajectories of xi(z, &) with & = [-0.0046, 0.0569] for k = 5, 15, 40.
The trajectory with k& = 40 passes through the pending position.

o)

38
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10
k=5
= k=15
5
= k=40
— -
T 0 hd
Pénging position
-5
-10
-200 -100 0

thetaldeg]

Trajectories with k£ = 40 and different values of £ will construct the
right stabilizing feedback

The feedback function is constructed using 10th order polynomial
fitting

)
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15
thetalrad]
theta dot[rad/s]
10
— input[N]
5
0
P 1 2 3 4 5
timel[secl

Simulation result

24/38
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Input magnitude saturations(1/3)

X = f(x) + g(x) sat(u)

J= f x'Ox + u’ Rudr with R diagonal
0

25/38
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Input magnitude saturations(1/3)

X = f(x) + g(x) sat(u)

J= f x'Ox + u’ Rudr with R diagonal
0

The function sat is an m-channel saturation function defined by

saty(up) gj (z< gj)
sat(u) = : , sat@) =4z (g; <z2<0y)
sat,, (up) 6_]' (5']- <2)

withgj<0<5-jforj=1,...,m.

25/38
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Input magnitude saturations(2/3)
The dynamic programming:
i(x, p) =argmin {pT(f (x) + g(x) sat(u)) + xTQx + uTRu}

=sat (— %R_lg(x)Tp) .

26/38
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Input magnitude saturations(2/3)
The dynamic programming:
i(x, p) =argmin {pT(f (x) + g(x) sat(u)) + xTQx + uTRu}
=sat (— %R‘lg(x)Tp) .

Hamilton-Jacobi equation

T
(av){ﬂx) +8(x) sat(—— lelx >T( ) ]}
. t_lR_1()T a_V)TTR ( 1R ()T(aV)
sa 3 g(x o sa 3 g(x o

+x Qx:O
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Input magnitude saturations(3/3)

X1 _ -1 0\(x; + 1 0\ (saty(u;)
X 1o 1 X2 0 1)\saty(up)/’

where o, = -1, =1, o, = —100 and 6 = 100.

Linear control

27/38
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Input magnitude saturations(3/3)

X1 _ -1 0\(x; + 1 0\ (saty(u;)
X 1o 1 X2 0 1)\saty(up)/’

where o, = -1, =1, o, = —100 and 6 = 100.

Linear control Nonlinear control

27/38
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Input rate saturation (1/4) — PI1O

From NASA website

28/38
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Input rate saturation (2/4)

X = f(x) + g(x) RL(u)

sz x'Ox + u' Ru dt
0



Applications

Input rate saturation (2/4)

X = f(x) + g(x) RL(w)

sz xTQx+uTRudt
0

ity = sat(V(u — uy))

System

Approximation of rate limiter
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Input rate saturation (3/4)

Augmented system

(?'C ) - (f @+ g(’“)“S) + (0) SaU(Vuy, Vi), S, ) = satln — &) + &

Us —Vug I,

The dynamic programming is applied to get a HJ equation.



Applications

Input rate saturation (3/4)

Augmented system

(."C ) _ (f @+ g(x)“S) v (0) S (Vi Vi), SaE, 1) 1= sat( — ) + &

U — Vi, I,

The dynamic programming is applied to get a HJ equation.
A numerical example:

Xl _ 0 1 X1 0

()= (6 o))+ (e
J:fooxTQx+uTRudt, Q:((l) (1)) R=0.1
0

2-dimensinal system — 3-dimensional augmented system
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Input rate saturation (4/4) —Simulations

x1,x2,us,u

Linear, 2-dimensional

Stable manifold approximation

Applications

Summary
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Applications

Input rate saturation (4/4) —Simulations

x1,x2,us,u

x1,x2,us, u

—x1
x2
—us

Linear, 2-dimensional

1 2 3 4

5

Linear, 3-dimensional

Summary

31/38
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Jus,u

x1,x2,us,u

x1,x2

1st order PDEs/ Stabilizing solution/ Stable manifold

Stable manifold approximation

Input rate saturation (4/4) —Simulations

0.6

x1,x2,us,u

Linear, 2-dimensional

—xl1
—x2
—us

“Cu

1 2 3 4 5
t

Nonlinear, 3-dimensional

Linear, 3-dimensional

Applications

Summary

31/38
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Magnetic levitation system (1/6)

Coil

X

F

Magnet

y* [m]

The equation of motion of the magnet is given by

my + cy = —mgo(y)u + mg

32/38
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Magnetic levitation system (2/6)

X =F(x)+ Gx)u

— *2 = ()
Fo = —gi(p(x1) — qs) — sz/m) > 0= (—g¢(x1))

x =[x, 0] =y’

Summary

33/38
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Magnetic levitation system (2/6)

X =F(x)+ Gx)u
_ X2 _ 0
Foo = (—gu(qs(xl) —qs) - cxz/m)’ o) = (—g¢(x1))
x=[x,x]" ="

Output regulation problem: the magnet plate tracks a sinusoidal
signal generated by

(Wl) = (0 _w) (Wl) =: s(w) (exosystem)

W2 w 0 wy
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Magnetic levitation system (3/6)

Regulator equation:

g_”s(w) = F(r(w)) + G(n(w))c(w)
w

—miw)+wy =0

34/38
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Magnetic levitation system (3/6)

Regulator equation:

Z_” s(w) = F(n(w)) + G(rr(w))c(w)
w

—miw)+wy =0

The solution:

n(w) = (afijl)

_ —(gu(@(w2) — gs) + cwwi/m — ww))

) = 20 (w2)

Applications

Summary

34/38
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Magnetic levitation system (4/6)
Optimal stabilizing law:

J= f xTQx + Ru? dt,
0

10° 0
o=(18 ). #=

35/38
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Magnetic levitation system (4/6)
Optimal stabilizing law:

J= f xTQx + Ru? dt,
0

10° 0
o[t ). w1

The HJ equation for this problem:

T
(aV) {F(x) - —G(x)G( )T( V) } +x'0x=0
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Magnetic levitation system (4/6)
Optimal stabilizing law:

J= f xTQx + Ru? dt,
0

10° 0
o[t ). w1

The HJ equation for this problem:

T
(aV) {F(x) - —G(x)G( )T(av) } +x'0x=0
ox ox

Applying 5 iterations of the stable manifold algorithm, a stabilizing

control is
ov
k(x) = ——G( ) ( )

The overall output regulation control is

u=cw)+ k(x —n(w))
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Magnetic levitation system (5/6)

position y* [m]

-0.005
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0015

time [sec]

Simulation
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Magnetic levitation system (5/6)

o 1 2 3 4 5 0 1 2 a3 4

Simulation Experiment

The performance of the nonlinear controller is closer to the
simulation
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