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Hamilton-Jacobi equation

(HJ) H(x, p) = pT f (x) − 1
2

pT R(x)p + q(x) = 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1, · · · , xn: independent variables

· · · state space X

pj = ∂z/∂xj, j = 1, · · · , n
z: unknown function



Outline of talk 1st order PDEs/ Stabilizing solution/ Stable manifold Stable manifold approximation Applications Summary

Hamilton-Jacobi equation

(HJ) H(x, p) = pT f (x) − 1
2

pT R(x)p + q(x) = 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1, · · · , xn: independent variables

· · · state space X

pj = ∂z/∂xj, j = 1, · · · , n
z: unknown function⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
f : Rn valued function

R : Rn×n valued function

q : scalar function

f (0) = 0
R(x)T = R(x)
q(0) = 0, ∂q∂x (0) = 0

: all C∞

3 / 38



Outline of talk 1st order PDEs/ Stabilizing solution/ Stable manifold Stable manifold approximation Applications Summary

Hamilton-Jacobi equation

(HJ) H(x, p) = pT f (x) − 1
2

pT R(x)p + q(x) = 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1, · · · , xn: independent variables

· · · state space X

pj = ∂z/∂xj, j = 1, · · · , n
z: unknown function⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
f : Rn valued function

R : Rn×n valued function

q : scalar function

f (0) = 0
R(x)T = R(x)
q(0) = 0, ∂q∂x (0) = 0

: all C∞

(RIC) xTPAx + xT ATPx − xT PR(0)Px + xTQx = 0

f (x) = Ax + O(|x|2), q(x) =
1
2

xTQx + O(|x|3)
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Theory of 1st order PDEs

FACT1
An n-dimensional invariant manifold of

ΣH :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ẋ =
∂H
∂p
= f (x) − R(x)p

ṗ = −∂H
∂x
= −∂f
∂x

(x)T p +
∂(pTR(x)p)
∂x

T

− ∂q
∂x

T
,

is a Lagrangian submanifold of T∗X.
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Theory of 1st order PDEs

FACT2
Λ ⊂ T∗X : L-submanifold, q ∈ Λ. π|Λ : Λ→ X(natural projection) is
submersion, then, locally around q,

Λ =

{
(x, p) | pj =

∂z
∂xj

(x)
}

for a function z(x) locally defined around q. (Graph of the derivative
∂z/∂x)
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Λ ⊂ T∗X : L-submanifold, q ∈ Λ. π|Λ : Λ→ X(natural projection) is
submersion, then, locally around q,

Λ =

{
(x, p) | pj =

∂z
∂xj

(x)
}

for a function z(x) locally defined around q. (Graph of the derivative
∂z/∂x)

FACT1+FACT2 =⇒ z(x) is a solution of

H(x, p) = pT f (x) − 1
2

pT R(x)p + q(x) = 0.
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Example: Hamiltonian flow for H = p(x − x3) − 1
2

p2 +
1
2

x2.
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Stabilizing solution and stable manifold

(HJ) H(p, x) = pTf (x) − 1
2

pTR(x)p + q(x) = 0,

f (x) − R(x)p(x) : asymp. stable

(RIC) PA + ATP − PR(0)P + Q = 0, A − R(0)P : stable
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Stable Lagrangian manifold and stabilizing solution

Theorem 1 (van der Schaft 91)
A hyperbolic stable manifold of a Hamiltonian system is a
Lagrangian submanifold and a generating function (solution of HJ
eq.) exists.
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Stable Lagrangian manifold and stabilizing solution

Theorem 1 (van der Schaft 91)
A hyperbolic stable manifold of a Hamiltonian system is a
Lagrangian submanifold and a generating function (solution of HJ
eq.) exists.

Theorem 2 (van der Schaft 91)
If (RIC) has a stabilizing solution P, the original HJ equation has a
stabilizing solution

How to compute it?
Modification of stable manifold theory
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Approximation of stable manifold

Σ :

⎧⎪⎪⎨⎪⎪⎩
ẋ = Ax + f (t, x, y)
ẏ = −ATy + g(t, x, y)

A: n × n, Reλj(A) < 0; f (t, x, y), g(t, x, y): smooth higher order terms
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Σ :

⎧⎪⎪⎨⎪⎪⎩
ẋ = Ax + f (t, x, y)
ẏ = −ATy + g(t, x, y)

A: n × n, Reλj(A) < 0; f (t, x, y), g(t, x, y): smooth higher order terms

Define sequences:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
xk+1 = eAtξ +

∫ t

0
eA(t−s)f (s, xk(s), yk(s)) ds

yk+1 = −
∫ ∞

t
e−AT (t−s)g(s, xk(s), yk(s)) ds

for k = 0, 1, 2, . . . , and ⎧⎪⎪⎨⎪⎪⎩
x0 = eAtξ

y0 = 0

where ξ ∈ Rn is arbitrary parameters.
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0
eA(t−s)f (s, xk(s), yk(s)) ds
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t
e−AT (t−s)g(s, xk(s), yk(s)) ds

⎧⎪⎪⎨⎪⎪⎩
x0 = eAtξ

y0 = 0

Theorem:

• xk(t, ξ), yk(t, ξ)→ 0 as t → ∞ for all k = 0, 1, 2, . . . for |ξ| � 1.
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• xk(t, ξ) and yk(t, ξ) are uniformly convergent to a solution of Σ
on [0,∞) as k → ∞.
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• xk(t, ξ), yk(t, ξ)→ 0 as t → ∞ for all k = 0, 1, 2, . . . for |ξ| � 1.

• xk(t, ξ) and yk(t, ξ) are uniformly convergent to a solution of Σ
on [0,∞) as k → ∞.

• x(t, ξ) := limk→∞ xk(t, ξ), y(t, ξ) := limk→∞ yk(t, ξ) satisfy x(t, ξ),
y(t, ξ)→ 0 as t → ∞ and the solution on the stable manifold of
Σ.
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{(x(t, ξ), y(t, ξ) | |ξ| � 1, t ∈ R} : parametrization of the stable manifold!
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Contraction mapping

x∗(t) = eAtξ +

∫
eA(t−s)f (x∗(t), y∗(t)) ds

y∗(t) = −
∫ ∞

t
e−AT (t−s)g(x∗(t), y∗(t)) ds

Integral equation
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Contraction mapping

x∗(t) = eAtξ +

∫ t

0
eA(t−s)f (x∗(t), y∗(t)) ds

y∗(t) = −
∫ ∞

t
e−AT (t−s)g(x∗(t), y∗(t)) ds

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=: T (x∗, y∗)(t)

T is a contraction mapping on a complete metric space of
continuous functions.

(x∗, y∗) is a fixed point of T
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ΣH :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ẋ =
∂H
∂p
= f (x) − R(x)p

ṗ = −∂H
∂x
= −∂f
∂x

(x)Tp +
∂(pT R(x)p)
∂x

T

− ∂q
∂x

T
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ṗ = −∂H
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= −∂f
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(x)Tp +
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T

Assumption: The algebraic Riccati equation

PA + ATP − PR(0)P + Q = 0

that approximates the HJ equation has a stabilizing solution P = Γ.
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= f (x) − R(x)p

ṗ = −∂H
∂x
= −∂f
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(x)Tp +
∂(pT R(x)p)
∂x

T

− ∂q
∂x

T

Assumption: The algebraic Riccati equation

PA + ATP − PR(0)P + Q = 0

that approximates the HJ equation has a stabilizing solution P = Γ.

Using a suitable coordinate transformation,

Σ′H :
(
ẋ′

ṗ′

)
=

(
A − R(0)Γ 0

0 −(A − R(0)Γ)T

) (
x′

p′

)
+ higher order terms

Now, the stable manifold approximation theorem can be applied.
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Numerical example

ẋ = x − x3 + u, J =
∫ ∞

0

q
2

x2 +
r
2

u2 dt

The Hamilton-Jacobi equation for this problem:

H = p(x − x3) − 1
2r

p2 +
q
2

x2 = 0, p =
dV
dx
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∫ ∞

0

q
2

x2 +
r
2

u2 dt

The Hamilton-Jacobi equation for this problem:

H = p(x − x3) − 1
2r

p2 +
q
2

x2 = 0, p =
dV
dx

Hamilton’s canonical equations:

ΣH :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ = x − x3 − 1

r
p

ṗ = −(1 − 3x2)p − qx.
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Numerical example

Σ′H :
(
ẋ′

ṗ′

)
=

(
−

√
1 + q/r x′√

1 + q/r p′

)
+

(
−x(x′, p′)3

3x(x′, p′)2p(x′, p′)

)
,
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Properties of the algorithm

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
xk+1 = eAtξ +

∫ t

0
eA(t−s)f (s, xk(s), yk(s)) ds

yk+1 = −
∫ ∞

t
e−AT (t−s)g(s, xk(s), yk(s)) ds

⎧⎪⎪⎨⎪⎪⎩
x0 = eAtξ

y0 = 0

• Recursive computation — Suitable for computer
implementation
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Properties of the algorithm
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x0 = eAtξ

y0 = 0

• Recursive computation — Suitable for computer
implementation

• Analytic expression — Analytic and numeric approaches∫
tk exp(−λt) sinωt dt (for polynomial nonlinearities)

• ∂V/∂x is obtained — No need to differentiate approximated
solutions

• Coincide with Riccati solutions around the origin — Linear
performance is guaranteed
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Numerical approach
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Construction of p(x):
• MATLAB commands griddatan and interpn

• Polynomial fitting — better for higher dimensional systems
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Important parameters
Radius of convergence:

• Taking small |ξ| is essential for the convergence
• ξ determines the initial point (t = 0) of the solution curve on

the stable manifold

Use of negative time:
• The constructed surface is generally small if t � 0 is employed
• By using the invariance property of the stable manifold, the

surface is enlarged by the negative time operation
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Important parameters
Hamiltonian check
The number of iteration k and the maximum tneg determine the size
of effective domain for control and the computational time
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Applications

• Swing-up and stabilization of a 2-dimensional inverted
pendulum

• Optimal control of systems with input saturations (magnitude,
rate)

• Optimal servo system design for a magnetic levitation system
(with experiment)
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Swing-up and stabilization of an inverted pendulum

θ

mg

u

Introduce state variables x = [x1, x2]T = [θ, θ̇]T

ẋ = f (x) + g(x)u

f (x) =

⎛⎜⎜⎜⎜⎜⎜⎝
x2

mgl sin x1−ml2x2
2 sin x1 cos x1

J+ml2 sin2 x1

⎞⎟⎟⎟⎟⎟⎟⎠ , g(x) =
⎛⎜⎜⎜⎜⎝ 0
−l cos x1

J+ml2 sin2 x1

⎞⎟⎟⎟⎟⎠ .

J =
∫ ∞

0
xT Qx + uT Ru dt; Q = 02×2, R = 2
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θ

mg

u

Introduce state variables x = [x1, x2]T = [θ, θ̇]T

ẋ = f (x) + g(x)u

f (x) =

⎛⎜⎜⎜⎜⎜⎜⎝
x2

mgl sin x1−ml2x2
2 sin x1 cos x1

J+ml2 sin2 x1

⎞⎟⎟⎟⎟⎟⎟⎠ , g(x) =
⎛⎜⎜⎜⎜⎝ 0
−l cos x1

J+ml2 sin2 x1

⎞⎟⎟⎟⎟⎠ .

J =
∫ ∞

0
xT Qx + uT Ru dt; Q = 02×2, R = 2

The problem of stability region enhancement with optimality
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k=5

k=15

k=40

Pending position

Trajectories of xk(t, ξ) with ξ = [−0.0046, 0.0569] for k = 5, 15, 40.
The trajectory with k = 40 passes through the pending position.
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k=5

k=15

k=40

Pending position

Trajectories with k = 40 and different values of ξ will construct the
right stabilizing feedback
The feedback function is constructed using 10th order polynomial
fitting
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Simulation result
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Input magnitude saturations(1/3)

ẋ = f (x) + g(x) sat(u)

J =
∫ ∞

0
xT Qx + uT Ru dt with R diagonal
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Input magnitude saturations(1/3)

ẋ = f (x) + g(x) sat(u)

J =
∫ ∞

0
xT Qx + uT Ru dt with R diagonal

The function sat is an m-channel saturation function defined by

sat(u) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
sat1(u1)
...

satm(um)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , satj(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
σj (z < σj)

z (σj � z � σ̄j)

σ̄j (σ̄j < z)

with σj < 0 < σ̄j for j = 1, . . . ,m.
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Input magnitude saturations(2/3)

The dynamic programming:

ū(x, p) =argmin
{
pT (f (x) + g(x) sat(u)) + xT Qx + uTRu

}

=sat
(
−1

2
R−1g(x)Tp

)
.
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Input magnitude saturations(2/3)

The dynamic programming:

ū(x, p) =argmin
{
pT (f (x) + g(x) sat(u)) + xT Qx + uTRu

}

=sat
(
−1

2
R−1g(x)Tp

)
.

Hamilton-Jacobi equation

(
∂V
∂x

) ⎧⎪⎪⎨⎪⎪⎩f (x) + g(x) sat
⎛⎜⎜⎜⎜⎝−1

2
R−1g(x)T

(
∂V
∂x

)T⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

+ sat
⎛⎜⎜⎜⎜⎝−1

2
R−1g(x)T

(
∂V
∂x

)T⎞⎟⎟⎟⎟⎠
T

R sat
⎛⎜⎜⎜⎜⎝−1

2
R−1g(x)T

(
∂V
∂x

)T⎞⎟⎟⎟⎟⎠
+ xTQx = 0
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Input magnitude saturations(3/3)

(
ẋ1
ẋ2

)
=

(
−1 0
0 1

) (
x1
x2

)
+

(
1 0
0 1

) (
sat1(u1)
sat2(u2)

)
,

where σ1 = −1, σ̄1 = 1, σ2 = −100 and σ̄2 = 100.
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Linear control
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Input magnitude saturations(3/3)

(
ẋ1
ẋ2

)
=

(
−1 0
0 1

) (
x1
x2

)
+

(
1 0
0 1

) (
sat1(u1)
sat2(u2)

)
,

where σ1 = −1, σ̄1 = 1, σ2 = −100 and σ̄2 = 100.
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Input rate saturation (1/4) — PIO

From NASA website

28 / 38



Outline of talk 1st order PDEs/ Stabilizing solution/ Stable manifold Stable manifold approximation Applications Summary

Input rate saturation (2/4)

ẋ = f (x) + g(x) RL(u)

J =
∫ ∞

0
xT Qx + uT Ru dt
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Input rate saturation (2/4)

ẋ = f (x) + g(x) RL(u)

J =
∫ ∞

0
xT Qx + uT Ru dt

u̇s = sat(V(u − us))

RL

� � � V � sat � 1
s

�System
�

u us+

−

Approximation of rate limiter
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Input rate saturation (3/4)

Augmented system

(
ẋ
u̇s

)
=

(
f (x) + g(x)us
−Vus

)
+

(
0
Im

)
sat(Vus,Vu), sat(ξ, η) := sat(η − ξ) + ξ

The dynamic programming is applied to get a HJ equation.

30 / 38



Outline of talk 1st order PDEs/ Stabilizing solution/ Stable manifold Stable manifold approximation Applications Summary

Input rate saturation (3/4)

Augmented system

(
ẋ
u̇s

)
=

(
f (x) + g(x)us
−Vus

)
+

(
0
Im

)
sat(Vus,Vu), sat(ξ, η) := sat(η − ξ) + ξ

The dynamic programming is applied to get a HJ equation.
A numerical example:

(
ẋ1
ẋ2

)
=

(
0 1
−16 0

) (
x1
x2

)
+

(
0
1

)
RL(u)

J =
∫ ∞

0
xT Qx + uT Ru dt, Q =

(
1 0
0 1

)
, R = 0.1

2-dimensinal system −→ 3-dimensional augmented system
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Input rate saturation (4/4) —Simulations
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Input rate saturation (4/4) —Simulations
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Input rate saturation (4/4) —Simulations
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Magnetic levitation system (1/6)

Coil

Magnet
F cẏ y

mg
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2

2.5

3

3.5

y* [m]

ph
i*

 [1
/V

]

 

 

Experimental data
Polynomial

The equation of motion of the magnet is given by

mÿ + cẏ = −mgφ(y)u + mg
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Magnetic levitation system (2/6)

ẋ = F(x) + G(x)u

F(x) =
(

x2
−gū(φ(x1) − q5) − cx2/m

)
, G(x) =

(
0

−gφ(x1)

)

x = [x1, x2]T = [y, ẏ]T
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Magnetic levitation system (2/6)

ẋ = F(x) + G(x)u

F(x) =
(

x2
−gū(φ(x1) − q5) − cx2/m

)
, G(x) =

(
0

−gφ(x1)

)

x = [x1, x2]T = [y, ẏ]T

Output regulation problem: the magnet plate tracks a sinusoidal
signal generated by

(
ẇ1
ẇ2

)
=

(
0 −ω
ω 0

) (
w1
w2

)
=: s(w) (exosystem)
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Magnetic levitation system (3/6)

Regulator equation:

∂π

∂w
s(w) = F(π(w)) + G(π(w))c(w)

−π1(w) + w2 = 0
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Magnetic levitation system (3/6)

Regulator equation:

∂π

∂w
s(w) = F(π(w)) + G(π(w))c(w)

−π1(w) + w2 = 0

The solution:

π(w) =
(

w2
ωw1

)
,

c(w) =
−(gu(φ(w2) − q5) + cωw1/m − ω2w2)

gφ(w2)
.
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Magnetic levitation system (4/6)
Optimal stabilizing law:

J =
∫ ∞

0
xT Qx + Ru2 dt,

Q =
(
105 0
0 1

)
, R = 1
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Magnetic levitation system (4/6)
Optimal stabilizing law:

J =
∫ ∞

0
xT Qx + Ru2 dt,

Q =
(
105 0
0 1

)
, R = 1

The HJ equation for this problem:(
∂V
∂x

) ⎧⎪⎪⎨⎪⎪⎩F(x) − 1
4

G(x)G(x)T
(
∂V
∂x

)T⎫⎪⎪⎬⎪⎪⎭ + xT Qx = 0
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Magnetic levitation system (4/6)
Optimal stabilizing law:

J =
∫ ∞

0
xT Qx + Ru2 dt,

Q =
(
105 0
0 1

)
, R = 1

The HJ equation for this problem:(
∂V
∂x

) ⎧⎪⎪⎨⎪⎪⎩F(x) − 1
4

G(x)G(x)T
(
∂V
∂x

)T⎫⎪⎪⎬⎪⎪⎭ + xT Qx = 0

Applying 5 iterations of the stable manifold algorithm, a stabilizing
control is

k(x) = −1
2

G(x)T
(
∂V
∂x

)T
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Magnetic levitation system (4/6)
Optimal stabilizing law:

J =
∫ ∞

0
xT Qx + Ru2 dt,

Q =
(
105 0
0 1

)
, R = 1

The HJ equation for this problem:(
∂V
∂x

) ⎧⎪⎪⎨⎪⎪⎩F(x) − 1
4

G(x)G(x)T
(
∂V
∂x

)T⎫⎪⎪⎬⎪⎪⎭ + xT Qx = 0

Applying 5 iterations of the stable manifold algorithm, a stabilizing
control is

k(x) = −1
2

G(x)T
(
∂V
∂x

)T

The overall output regulation control is

u = c(w) + k(x − π(w))
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Magnetic levitation system (5/6)
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Magnetic levitation system (5/6)
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Simulation Experiment

The performance of the nonlinear controller is closer to the
simulation
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Robustness test

Robustness test
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Summary and future works

• Hamilton-Jacobi equation in nonlinear control theory (optimal,
H∞,...)
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