

The stable manifold approach for optimal swing up and stabilization of an inverted pendulum with input saturation

Ryu Fujimoto and Noboru Sakamoto Nagoya University

IFAC World Congress 2011 August 31

Outline

- Background and problem formulation
- Nonlinear optimal control
- ✓ Approximation methods for HJ equations
- ✓ Stable manifold approach
- Simulation / Experiment results
- ✓ Non-uniqueness of solution in HJ equations
- Concluding remarks

Background/problem statement

Inverted pendulum

- ✓ Strong nonlinearity
- ✓ Under actuated system
- ✓ Benchmark problem of nonlinear controller design

Swing up and stabilization of inverted pendulum

- ✓ Switching of swing up and stabilization controllers (Astrom & Furua '00)
- ✓ Topological issues / (Angeli '01, Astrom et.al '08)

This talk:

- ✓ Single optimal state feedback control
- ✓ Enhancement of valid approximation range for HJ eq.

Approximate solutions for HJ eq

- Taylor approximation method:
 - (×) Cannot handle non-analytic nonlinearities
 - (×) Computationally inefficient
 - (×) Small domain of convergence

• Stable manifold approach : (N.Sakamoto and A.J.van der Schaft, IEEE TAC, 2008)

NAGOYA

Univ

(\bigcirc) $\left(\frac{\partial V}{\partial x}\right)$ is directly computed (\bigcirc) iterative method suitable for computer implementation (\bigcirc) Larger domain of convergence etc...

NAGOYA Stable manifold method for HJ eq.

Univ.

Stable manifold method for HJ eq.[№]

Computational result

Closed loop trajectories for different iteration number

NAGOYA

Univ

$$H = p(x)^{T} \left\{ f(x) + g(x) \cdot \operatorname{sat} \left(-\frac{1}{2} R^{-1} g(x)^{T} p(x) \right) \right\} + x^{T} Q x$$
(HJ eq.)
+ $\operatorname{sat} \left(-\frac{1}{2} R^{-1} g(x)^{T} p(x) \right)^{T} \cdot R \cdot \operatorname{sat} \left(-\frac{1}{2} R^{-1} g(x)^{T} p(x) \right) = 0$

Simulation/Experiment results

Responses (simulation)

- ✓ Input voltage is under the limitation 18[V]
 ✓ Swing up with 2 swings
- ✓ Robustness for parameter variations 20% \rightarrow

Effect of saturation function

⊖[rad]

x[m]

2

d⊖/dt[rad/s]

dx/dt[m/s]

input[V]

2.5

3

What do saturation functions do?

Simulation by HJ eq without saturation function

- Swing up control with 1 swing

- Input voltage is far beyond 18[V]

h 1 swing eyond 18[V] 0 0.5 1 1.5 time[s]

40

30

20

Hamilton-Jacobi eq with saturations

Responses (simulation)

$$\left(\frac{\partial V}{\partial x}\right)\left\{f(x) + g(x) \cdot \operatorname{sat}\left(-\frac{1}{2}R^{-1}g(x)^{T}\left(\frac{\partial V}{\partial x}\right)^{T}\right)\right\} + x^{T}Qx$$
$$+ \operatorname{sat}\left(-\frac{1}{2}R^{-1}g(x)^{T}\left(\frac{\partial V}{\partial x}\right)^{T}\right)^{T} \cdot R \cdot \operatorname{sat}\left(-\frac{1}{2}R^{-1}g(x)^{T}\left(\frac{\partial V}{\partial x}\right)^{T}\right) = 0$$

The solution solves the original HJ eq as well?? Saturation is an identity function inside of limitation

Uniqueness of solution

Analysis for a 2-dimensional model

Uniqueness of solution

Analysis for a 2-dimensional model

NAGOYA

$$u_{\max} = 18[V]$$
 $u_{\max} = 12[V]$
 $u_{\min} = -18[V]$ $u_{\min} = -12[V]$

Apply 40 iterations of the stable manifold algorithm

Feedback function is expressed with polynomials

✓ Swing up with 3 swings

- ✓ Efficient strategy with low voltage
- \checkmark Third stable manifold \rightarrow infinite layers

Concluding remarks

NAGOYA Univ.

- Optimal swing up and stabilization of inverted pendulum
- Single feedback by solving a Hamilton-Jacobi equation
- Large domain of validity to include the pending position
- Explicitly include saturation functions in the HJ equation
- 1 swing, 2 swing and 3 swing controllers by changing the value of input limitation
- An example of non-unique solutions to HJ equation

Thank you for your attention

Stable manifold algorithm

N.Sakamoto and A.J.van der Schaft, 2008

A Hamiltoinan system

$$\begin{cases} \dot{x}' = Fx' + \phi(x', p') \\ \dot{p}' = -F^T p' + \phi(x', p') \end{cases} \cdots (\aleph)$$

Stable *F*, smooth nonlinearities $\phi(x', p'), \phi(x', p')$

$$x_{0}'(t,\xi) = e^{At}\xi \qquad p_{0}'(t,\xi) = 0$$

$$\begin{cases} x_{k+1}'(t,\xi) = e^{Ft}\xi + \int_{0}^{t} e^{F(t-s)}\phi(x_{k}'(s), p_{k}'(s))ds \quad (k = 0,1,2,\cdots) \\ p_{k+1}'(t,\xi) = -\int_{t}^{\infty} e^{-F^{T}(t-s)}\phi(x_{k}'(s), p_{k}'(s))ds \quad (k = 0,1,2,\cdots) \end{cases}$$

 $x'_k(t,\xi), p'_k(t,\xi)$ converge to a solution on $[0,\infty), k \to \infty$

Limitation of the Taylor method

NAGOYA Univ.

 $(z^2 - 1)^2 + 1$ has complex zeros at |z| = 1.19

Inverted pendulum setup

