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Abstract. When the observations may be contaminated in the linear model
with the intercept, a certain large class of robust regression estimates including S-
estimates, τ -estimates and CM -estimates is considered. The (c, γ)-contamination
neighborhood, which is a generalization of the neighborhoods defined in terms of
ε-contamination and total variation, is used for describing the contamination of
the observations. Lower and upper bounds for the maximum asymptotic bias of
the regression estimates over (c, γ)-contamination neighborhoods are derived with-
out imposing elliptical regressors. As important special cases, the lower and upper
bounds for S-estimates, τ -estimates and CM -estimates under the Gaussian model
are obtained.
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1. Introduction

In the case where the observations may be contaminated in the location model, Huber
(1964) introduced the maximum asymptotic bias BT (ε) of a location estimate T over the ε-
contamination neighborhood. The BT (ε) is one of the most informative global quantitative
measures to assess robustness of T , because BT (ε) shows the whole performance of T from
ε = 0 (the central model distribution) to the breakdown point and its derivative B′T (0) equals
the gross error sensitivity under some regularity conditions. Huber (1964) established that the
median minimizes BT (ε) among translation equivariant location estimates. Martin and Zamer
(1989, 1993) obtained minimax bias robust scale estimates.

As for the linear regression model, in the case of the zero-intercept and elliptical regressors,
Martin, Yohai and Zamer (1989) obtained the minimax bias estimates in the respective classes
of M -estimates with general scale and GM - estimates of regression. In particular, they showed
that the least median of square estimate (LMS) introduced by Rousseeuw (1984) is nearly min-
imax. Yohai and Zamer (1993) extended this result to the larger class of residual admissible
estimates. Berrendero and Zamer (2001) obtained maximum asymptotic bias of robust regres-
sion estimates in a broad class, which includes S-estimates and, τ -estimates, without requiring
zero-intercept and/or elliptical regressors. Berrendero, Mendes and Tyler (2007) derived the
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maximum asymptotic bias of MM -estimates and constrained M -estimates (CM -estimates) of
regression, and compared their estimates with S-estimates and τ -estimates in detail. All the
authors mentioned above adopt the ε-contamination neighborhood to describe deviation from
the central model.

On the other hand, in order to describe deviation from the central model Ando and Kimura
(2003) introduced the (c, γ) - contamination neighborhood (the (c, γ) - neighborhood, for short)
, which is a generalization of Rieder’s (ε, δ) -neighborhood and includes the neighborhoods de-
fined in terms of ε - contamination and total variation. They gave a characterization of the (c, γ)
- neighborhood and applied it to bias-robustness study of estimates. Among their achievements,
there are the extensions of Huber’s (1964) and He and Simpson’s (1993) results. The former
states that the median minimizes the maximum asymptotic bias BT (c, γ) over (c, γ) - neighbor-
hoods among translation equivariant location estimates. Ando and Kimura (2004) derived the
lower and upper bounds for BS(c, γ) of regression S-estimates over (c, γ) - neighborhoods in the
zero-intercept linear model with elliptical regressors, and showed that in the case of Rieder’s
(ε, δ) - neighborhood the lower and upper bounds coincide and is equal to BS(c, γ). Ando, Kak-
iuchi and Kimura (2009) gave the applications of the (c, γ) - neighborhoods to nonparametric
confidence intervals and tests for the median.

In this paper, following Berrendero and Zamer (2001), without imposing the zero-intercept
and/or elliptical regressors , we derive the lower and upper bounds for BT (c, γ) of estimates T
in the large class. In the case of ε-contamination neighborhoods, the lower and upper bounds
coincide and the results are reduced to Theorems 1 and 2 of Berrendero and Zamar (2001). As
important special cases, we obtain the lower and upper bounds for the maximum asymptotic
bias BS(c, γ), Bτ (c, γ) and BCM (c, γ) of S-estimates, τ -estimates and CM -estimates under the
Gaussian model. We give some tables of the lower and upper bounds for Bτ (c, γ) of τ -estimates
and BCM (c, γ) of CM -estimates based on Tukey’s biweight function and also show two selective
graphs to visualize the difference between the two bounds. We should emphasize that the
characterization (Proposition 2.1) of the (c, γ)-neighborhoods is indispensable to the derivation
of our results in the paper. The proofs of the results are collected in section 5.

2. Preliminaries

We consider the linear regression model

y = α0 + θ′0x+ u, (2.1)

where x = (x1, . . . , xp)
′ is a random vector in Rp, θ0 = (θ10, . . . , θp0)′ is the vector in Rp of the

true regression parameters, α0 is the true intercept parameter in R and the error u is a random
variable independent of x. Let F0 be the nominal distribution function of u and G0 the nominal
distribution function of x. Then the nominal distribution function H0 of (y,x) is

H0(y,x) =

∫ x1

−∞
· · ·
∫ xp

−∞
F0(y − α0 − θ′0s)dG0(s). (2.2)

LetM be the set of all distribution functions H on (Rp+1,Bp+1), where Bp+1 is the Borel σ-field
on Rp+1. As in Berrendero and Zamar (2001), we focus on the estimation of the slope parameter
θ0. Let T be a Rp-valued functional defined onM. Given a sample of independent observations
(y1,x1), · · · , (yn,xn) of size n from H, we define the corresponding estimate of θ0 as T (Hn),
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where Hn is the empirical distribution of the sample. We assume that T is weakly continuous
at H0 and T (H0) = 0. Since we consider only regression and affine equivariant functionals T , a
natural invariant measure of the asymptotic bias of T at H is defined by

bΣ0(T , H) = [(T (H)− θ0)′Σ0(T (H)− θ0)]
1
2 ,

where Σ0 is an affine equivariant scatter matrix of x under G0. In view of the equivariance of T
and the invariance of bΣ0(T , H), we can assume without loss of generality that α0 = 0, θ0 = 0
and Σ0 = Ip (the identity matrix). Therefore the asymptotic bias of T at H is given by

b(T , H) = ‖T (H)‖, (2.3)

where ‖ · ‖ denotes the Euclidean norm.
In order to describe deviation from the nominal distribution H0 we adopt the following

neighborhood of H0, which was introduced by Ando and Kimura (2003):

PH0(c, γ) = {H ∈M : H(B) ≤ cH0(B) + γ, ∀B ∈ Bp+1}, (2.4)

where 0 ≤ γ < 1 and 1− γ ≤ c < ∞. Note that H0(H) is used as both a distribution function
and a probability measure for convenience. The neighborhood PH0(c, γ), which is called a (c, γ)
-contamination neighborhood ((c, γ)-neighborhood, for short), is a generalization of Rieder’s
(1977) (ε, δ)-neighborhood and includes ε-contamination and total variation neighborhoods: Let
ε and δ be some given constants such that ε ≥ 0, δ ≥ 0 and ε + δ < 1. Then we have
the ε-contamination neighborhood PH0(1 − ε, ε) for c = 1 − ε and γ = ε, the total variation
neighborhood PH0(1, δ) for c = 1 and γ = δ, and Rieder’s (1977) (ε, δ)-neighborhood PH0(1 −
ε, ε+δ) for c = 1−ε and γ = ε+δ. We can see that PH0(c, γ) is generated by a special capacity
v defined as

v(B) =

{
min{cH0(B) + γ, 1} if B 6= φ, B ∈ Bp+1,
0, if B = φ,

that is,
PH0(c, γ) = {H ∈M : H(B) ≤ v(B), ∀B ∈ Bp+1}. (2.5)

This means that the (c, γ)-neighborhood PH0(c, γ) has nice properties for developing minimax
theory in robust inference (see Bednarski, 1981, Buja, 1986). Ando and Kimura (2003) gave the
following useful characterization of PH0(c, γ).

Proposition 2.1. For 0 ≤ γ < 1 and 1− γ ≤ c <∞ it holds that

PH0(c, γ) = {H = c (H0 −W ) + γ K : W ∈ WH0,λ, K ∈M},

where WH0,λ is the set of all measures W such that W (B) ≤ H0(B) holds for ∀B ∈ Bp+1 and
W (Rp+1) = λ = (c+ γ − 1)/c.

The maximum asymptotic bias of T over PH0(c, γ) is defined as

BT (c, γ) = sup{‖T (H)‖ : H ∈ PH0(c, γ)}. (2.6)

We consider the following class of robust estimates defined as

(T0(H),T (H)) = arg min
α,θ

J(FH,α,θ), (2.7)
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where J(·) is a robust loss functional defined on the set of all distributions on the real line and
FH,α,θ is the distribution of the absolute residual |y−α− θ′x| under H. This class of estimates
includes the well-known robust estimates such as S-estimates, τ -estimates, CM -estimates and R-
estimates. We assume that J , F0 and G0 satisfy the same conditions A1 and A2 as in Berrendero
and Zamar (2001).

A1. (a) If F and G are two distribution functions on [0,∞) such that F (u) ≤ G(u) for every
u ≥ 0, then J(F ) ≥ J(G).

(b) Given two sequences of distribution functions on [0,∞), Fn and Gn, which are con-
tinuous on (0,∞) and such that Fn(u) → F (u) and Gn → G(u), where F and G
are possibly sub-stochastic and continuous on (0,∞), with G(∞) ≥ 1− ε and

G(u) ≥ F (u) for every u > 0, (2.8)

then
lim
n→∞

J(Fn) ≥ lim
n→∞

J(Gn). (2.9)

Moreover, if (2.8) holds strictly, then (2.9) also holds strictly.

(c) If F and G are two distribution functions on [0,∞) with F continuous, then

J((1− γ)F + γδ∞) = lim
n→∞

J((1− γ)F + γUn) ≥ J((1− γ),F + γG),

where Un stands for the uniform distribution function on [n− 1
n , n+ 1

n ].

A2. F0 has an even and strictly unimodal density f0 with f0(u) > 0 for every u ∈ R, and
PG0(θ′x = a) < 1, for each θ ∈ Rp (θ 6= 0) and a ∈ R.

3. Lower and upper bounds for maximum asymptotic bias

Let ξ = {Wα,θ : α ∈ R,θ ∈ Rp} be any subset ofWH0,λ , whereWH0,λ is given in Proposition
2.1, and let

F ξ
α,θ

(u) = (H0 −Wα,θ)(|y − α− θ′x| ≤ u), ∀u ≥ 0. (3.1)

We use F ξ
α,θ

as both a function on [0,∞) and a measure on (R,B) such that F ξ
α,θ

(R) =

1− λ (= (1− γ)/c) . Let

dξ = J(c F ξ
0,0 + γδ∞) (3.2)

and
mξ(t) = inf

‖θ‖=t
inf
α∈R

J(c F ξ
α,θ

+ γδ0), (3.3)

where δ0 and δ∞ are the point mass distributions at 0 and ∞, respectively.

Let Fλ be the set of all ξ = {Wα,θ : α ∈ R,θ ∈ Rp} ⊂ WH0,λ satisfying the following
condition A3:
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A3. (a) F ξ
α,θ

(u) is continuous in α and θ.

(b) F ξ
kα,kθ

(u) is strictly decreasing in k > 0 for 0 < F ξ
kα,kθ

(k) < (1− γ)/c.

We obtain the following two lemmas which correspond to Lemmas 4 and 6 in Berrendero and
Zamar (2001).

Lemma 3.1. Under A1(b) and A2, for any ξ = {Wα,θ} ∈ Fλ there exists α(θ) ∈ R such that

J(c F ξ
α(θ),θ

+ γδ0) = inf
α∈R

J(c F ξ
α,θ

+ γδ0).

Moreover, for any t > 0 there exists Kt > 0 such that |α(θ)| ≤ Kt for every θ ∈ {θ : ‖θ‖ = t}.

Lemma 3.2. Let mξ(t) be as in (3.3). Then, under A1(b) and A2, for any ξ = {Wα,θ} ∈ Fλ
the following results hold:

(a) There exist θt ∈ Rp and α(θt) ∈ R such that ‖θt‖ = t and

mξ(t) = J(c F ξ
α(θt),θt

+ γδ0).

(b) mξ(t) is strictly increasing.

We consider two special ξ’s which play important roles. Let ξ̂ = {Ŵα,θ} and ξ∗ = {W ∗
α,θ} be

defined as follows:

Ŵα,θ(B) = H0

(
B ∩

{∣∣y − α− θ′x∣∣ ≥ aα,θ ( c+γ−1
c

)})
, ∀B ∈ Bp+1 (3.4)

W ∗
α,θ(B) = H0

(
B ∩

{∣∣y − α− θ′x∣∣ ≤ aα,θ (1−γ
c

)})
, ∀B ∈ Bp+1, (3.5)

where aα,θ(η) (0 ≤ η < 1) denotes the upper 100η% point of the distribution of |y − α − θ′x|
under H0, that is,

FH0,α,θ(aα,θ(η)) = 1− η.

We note that ξ̂ and ξ∗ belong to Fλ. Then we obtain the following lemma which correspond to
Lemma 5 in Berrendero and Zamar (2001).

Lemma 3.3. Under A2, F ξ̂
kα,kθ

(u) and F ξ
∗

kα,kθ
(u) are strictly decreasing in k > 0 for 0 <

F ξ̂
kα,kθ

(u) < (1− γ)/c and 0 < F ξ
∗

kα,kθ
(u) < (1− γ)/c, respectively.

Using these lemmas, we can derive the following theorem which gives lower and upper bounds
for the maximum asymptotic bias BT (c, γ) of T .
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Theorem 3.1. Let T be a regression estimate defined by (2.7). Assume that A1 and A2 hold.
Then it holds that

BT (c, γ) ≤ BT (c, γ) ≤ BT (c, γ), (3.6)

where

BT (c, γ) = sup
ξ∈Fλ

m−1
ξ (dξ) and BT (c, γ) = m−1

ξ̂
(dξ∗).

Remark 3.1 When c = 1−ε and γ = ε (i.e., the ε-contamination case) , Theorems 3.1 reduces
to Theorem 1 of Berrendero and Zamar (2001), respectively. In this case, we have λ = 0 and
ξ̂ = ξ∗, and hence BT (c, γ) = BT (c, γ).

4. S-, τ-and CM-estimates under the Gaussian model

As important special cases, we consider S-estimates, τ -estimates and CM -estimates in the
case that H0 is the multivariate normal distribution N(0, Ip+1), where Ip+1 is the (p+1)×(p+1)
identity matrix. We denote by φ the density of the standard normal distributionN(0, 1). For any

ξ = {Wα,θ} ∈ Fλ let ϕξ
α,θ

denote the density of F ξ
α,θ

. Let F◦λ be the set of all ξ = {Wα,θ} ∈ Fλ
satisfying the following condition A4:

A4. (a) ϕξ
0,θ

is expressed in the form of

ϕξ
0,θ

(u) =
1√

1 + ‖θ‖2
φξ

(
u√

1 + ‖θ‖2

)
, ∀u ≥ 0, (4.1)

where φξ (0 ≤ φξ ≤ 2φ) is some measurable function defined on [0,∞) such that∫ ∞
0

φξ(u)du =
1− γ
c

.

(b) F ξ
α,θ

(u) ≤ F ξ
0,θ

(u), ∀u > 0

Then, for any ξ = {Wα,θ} ∈ F
◦
λ we have

inf
α∈R

J(c F ξ
α,θ

+ γδ0) = J(c F ξ
0,θ

+ γδ0) = mξ(‖θ‖). (4.2)

We can easily see that ξ̂ = {Ŵα,θ} and ξ∗ = {W ∗
α,θ} belong to F◦λ.

Let ρ1 and ρ2 be functions satisfying the following conditions A5:
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A5. (a) The functions ρ1 and ρ2 are even, bounded, monotone on [0,∞), continuous at 0 with
0 = ρi(0) < ρi(∞) = 1, i = 1, 2 and with at most a finite number of discontinuities.

(b) The function ρ2 is differentiable with 2ρ2(u)− ρ′2(u)u ≥ 0.

The S-estimate (Rousseeuw and Yohai,1984) is defined with J(F ) = S(F ), where

S(F ) = inf
{
s > 0 : EF

[
ρ1

(u
s

)]
≤ b
}
, 0 < b < 1. (4.3)

For any ξ = {Wα,θ} ∈ Fλ let

gξ,i(s) = E
F ξ0,0

[
ρi

(u
s

)]
=

∫ ∞
0

ρi

(u
s

)
ϕξ0,0(u)du, i = 1, 2.

The following theorem gives the lower and upper bounds for the maximum asymptotic bias
BS(c, γ) of S-estimates based on ρ1.

Theorem 4.1. Assume that H0 is the multivariate normal distribution N(0, Ip+1). Then

BS(c, γ) ≤ BS(c, γ) ≤ BS(c, γ), if γ < min(b, 1− b),

BS(c, γ) =∞, if γ ≥ min(b, 1− b),

where

BS(c, γ) = sup
ξ∈F◦λ

({
g−1
ξ,1

(
b− γ
c

)/
g−1
ξ,1

(
b

c

)}2

− 1

)1/2

(4.4)

and

BS(c, γ) =

({
g−1
ξ∗,1

(
b− γ
c

)/
g−1

ξ̂,1

(
b

c

)}2

− 1

)1/2

. (4.5)

The τ -estimate (Yohai and Zamar, 1988) is defined with J(F ) = τ2(F ), where

τ2(F ) = S2(F )EF

[
ρ2

(
u

S(F )

)]
. (4.6)

As shown in Yohai and Zamar (1988), τ -estimates inherit the breakdown point of the initial
S-estimate defined by ρ1 and their efficiencies are mainly determined by ρ2. The following
theorem gives the lower and upper bounds for the maximum asymptotic bias Bτ (c, γ) of τ -
estimates, which shows how Bτ (c, γ) relates to BS(c, γ) of the initial S-estimates based on ρ1.
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Theorem 4.2. Assume that H0 is the multivariate normal distribution N(0, Ip+1). Then

Bτ (c, γ) ≤ Bτ (c, γ) ≤ Bτ (c, γ),

where

Bτ (c, γ) = sup
ξ∈F◦λ


g−1

ξ,1

(
b−γ
c

)
g−1
ξ,1

(
b
c

)
2

Hξ,ξ(c, γ)− 1


1/2

, (4.7)

Bτ (c, γ) = {[1 +B
2
S(c, γ)]Hξ∗,ξ̂(c, γ)− 1}1/2, (4.8)

Hξ1,ξ2(c, γ) =

[
gξ1

(
b− γ
c

)
+
γ

c

]
/gξ2

(
b

c

)
and gξ(t) = gξ,2[g−1

ξ,1(t)].

The CM estimate (Mendes and Tyler, 1996) is defined by J(F ) = CM(F ), where

CM(F ) = inf
s≥S(F )

{
aEF

[
ρ1

(u
s

)]
+ log s

}
, (4.9)

a is a tuning constant, and S(F ) is given by (4.3). We let

κξ,c,γ = g−1
ξ,1

(
b− γ
c

)
, ηξ,c,γ = g−1

ξ,1

(
b

c

)
.

and
Aξa,c,γ(s) = acgξ,1(s) + log s. (4.10)

The following theorem gives the lower and upper bounds for the maximum asymptotic bias
BCM (c, γ) of CM -estimates based on ρ1.

Theorem 4.3. Assume that H0 is the multivariate normal distribution N(0, Ip+1). Then

BCM (c, γ) ≤ BCM (c, γ) ≤ BCM (c, γ),

where

BCM (c, γ) = sup
ξ∈F◦λ

{exp[2aγ + 2Dξ,ξ,a(c, γ)]− 1}1/2 , (4.11)

BCM (c, γ) = {exp[2aγ + 2Dξ∗,ξ̂,a(c, γ)]− 1}1/2, (4.12)

Dξ1,ξ2,a(c, γ) = inf
s≥κξ1,c,γ

Aξ1a,c,γ(s) − inf
s≥ηξ2,c,γ

Aξ2a,c,γ(s).
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Remark 4.1. When c = 1 − ε and γ = ε, Theorems 4.1, 4.2 and 4.3 are reduced to (3.24)
of Martin et al. (1989), Theorem 3 of Berrendero and Zamar (2001) and Theorem 4.1 of
Bererendero et al. (2007), respectively.

Remark 4.2. The upper bound BS(c, γ) in (4.5) is the same as (4.7) in Ando and Kimura
(2004). Note that hξ(τ) in the equality (4.7) satisfies the relation hξ(τ) = gξ,1( 1

τ ). We also
notice that when ρ1 is a jump function, BS(c, γ) = BS(c, γ) holds for c ≤ 1 (see Theorem 4.1 of
Ando and Kimura, 2004).

Remark 4.3. The arguments concerning the intercept estimates can be seen in Section 7 of
Berrendero and Zamar (2001). Here, we should point out that the same arguments also hold
for our (c, γ)-neighborhood case.

We consider the lower and upper bounds of BS(c, γ), Bτ (c, γ), and BCM (c, γ) based on
Tukey’s biweight ρ-function, which is defined as

ρ(u) =

{
3u2 − 3u4 + u6 if 0 ≤ |u| ≤ 1

1 if |u| > 1.
(4.13)

We let

ρ1(u) = ρ

(
u

k1

)
and ρ2(u) = ρ

(
u

k2

)
. (4.14)

Tables 1, 3 and 5 exhibit the upper bounds BS(c, γ), Bτ (c, γ) and BCM (c, γ), respec-
tively. The constants k1, k2 and a are chosen so that the three estimates have 0.5 breakdown
point (i.e., b=0.5), and that τ - and CM -estimates have 95% efficiency. In this case we have
k1 = 1.548, k2 = 6.039, and a = 4.835, and the S-estimate is 28.7% efficiency. We note
Bτ (1 − γ, γ) = Bτ (1 − γ, γ) for γ -contamination case. When ρ1 = ρ2, τ -estimates reduce to
S-estimates. On the other hand, it is difficult to find the exact values of the lower bounds
BS(c, γ), Bτ (c, γ)and BCM (c, γ). In order to obtain their good approximate values we need to
find ξ ∈ F◦λ which makes the inside of the supremum in (4.4), (4.7) and (4.11) as large as pos-
sible. Such ξ depends on c and γ. Tables 2, 4, 6 present lower bounds of BS(c, γ), Bτ (c, γ) and
BCM (c, γ), respectively. We obtained their bounds using the set {ξ0, ξ1, · · · , ξ22} which consists
of various types of ξ. Acoording to (4.1), we define φξ0 , φξ1 , · · · , φξ22 as follows: Let

φξi(u) =


2φ(u) if 0 ≤ u < ai

0 if ai ≤ u < bi

2φ(u) if bi ≤ u <∞
(4.15)

where

ai = id, bi = Φ−1

(
Φ(id) +

c+ γ − 1

2c

)
, i = 0, 1, · · · , 20,

and

d =
1

20
Φ−1

(
c− γ + 1

2c

)
. (4.16)
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and Φ denotes the distribution function of N(0, 1). Let

φξ21(u) =

{
2φ(a) if 0 ≤ u < k

2φ(u) if k ≤ u <∞,
(4.17)

where k is the constant such that

Φ(k)− φ(k) =
2c+ γ − 1

2c
, (4.18)

and let φξ22(u) =
2(1− γ)

c
φ(u), u ≥ 0. The lower bounds in Tables 2, 4 and 6 were obtained by

max
0≤i≤22


g−1

ξi,1

(
b−γ
c

)
g−1
ξi,1

(
b
c

)
2

− 1


1/2

, (4.19)

max
0≤i≤22


g−1

ξi,1

(
b−γ
c

)
g−1
ξi,1

(
b
c

)
2

Hξi,ξi(c, γ)− 1


1/2

(4.20)

max
0≤i≤22

{exp[2aγ + 2Dξi,ξi,a(c, γ)]− 1}1/2 , (4.21)

where a = 4.835 and b = 0.5. We note that ξ0 = ξ∗ and ξ20 = ξ̂. For the purpose of getting
good approximated values, we included different types of ξ as candidates in taking the maximum
values. Figures 1, 2 and 3 give graphs of BS(c, γ), Bτ (c, γ) and B̄CM (c, γ), and the maximum
values of (4.19) , (4.20) and (4.21) for c=1.2. The graphs show that the derived lower and upper
bounds are useful. In particular, the difference of two bounds is small in the range between 0
and 0.1, which corresponds to a realistic situation.
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Table 1: BS(c, γ) (Tukey’s biweight ρ-function)

c\γ 0.00 0.01 0.02 0.03 0.05 0.10 0.15 0.20 0.25 0.35 0.45

0.55 — — — — — — — — — — 21.83

0.65 — — — — — — — — — 4.69 28.06

0.75 — — — — — — — — 2.23 5.81 34.63

0.80 — — — — — — — 1.65 2.43 6.38 38.01

0.85 — — — — — — 1.23 1.78 2.66 6.97 41.43

0.90 — — — — — 0.88 1.31 1.93 2.89 7.58 44.89

0.95 — — — — 0.56 0.93 1.4 2.09 3.12 8.19 48.39

0.97 — — — 0.42 0.57 0.95 1.44 2.15 3.22 8.44 49.81

0.98 — — 0.33 0.42 0.57 0.96 1.46 2.18 3.27 8.56 50.52

0.99 — 0.23 0.34 0.42 0.58 0.97 1.48 2.22 3.32 8.69 51.23

1.00 0.00 0.23 0.34 0.43 0.58 0.98 1.50 2.25 3.37 8.81 51.94

1.10 0.00 0.25 0.37 0.47 0.65 1.12 1.73 2.58 3.88 10.07 59.14

1.20 0.00 0.28 0.41 0.52 0.72 1.27 1.97 2.92 4.40 11.35 66.48

1.50 0.00 0.36 0.54 0.69 0.99 1.78 2.74 4.03 5.99 15.29 89.23

2.00 0.00 0.55 0.84 1.08 1.53 2.67 4.08 5.98 8.75 22.17 129.07

3.00 0.00 1.02 1.48 1.88 2.62 4.55 6.92 10.08 14.61 36.77 213.81

Table 2: BS(c, γ) (Tukey’s biweight ρ-function)

c\γ 0.00 0.01 0.02 0.03 0.05 0.10 0.15 0.20 0.25 0.35 0.45

0.55 — — — — — — — — — — 21.83

0.65 — — — — — — — — — 4.69 28.29

0.75 — — — — — — — — 2.23 6.04 35.13

0.80 — — — — — — — 1.65 2.58 6.74 38.67

0.85 — — — — — — 1.23 1.94 2.94 7.45 42.26

0.90 — — — — — 0.88 1.48 2.23 3.29 8.17 45.92

0.95 — — — — 0.56 1.13 1.73 2.52 3.65 8.91 49.63

0.97 — — — 0.42 0.67 1.22 1.83 2.63 3.80 9.20 51.13

0.98 — — 0.33 0.48 0.72 1.26 1.88 2.69 3.87 9.35 51.88

0.99 — 0.23 0.41 0.54 0.77 1.31 1.93 2.75 3.94 9.50 52.64

1.00 0.00 0.33 0.48 0.60 0.82 1.35 1.98 2.80 4.01 9.65 53.39

1.10 0.77 0.87 0.96 1.06 1.25 1.79 2.46 3.38 4.74 11.16 61.05

1.20 1.16 1.25 1.34 1.44 1.63 2.20 2.94 3.96 5.49 12.70 68.87

1.50 2.16 2.26 2.36 2.48 2.72 3.43 4.39 5.74 7.78 17.49 93.18

2.00 3.73 3.87 4.01 4.17 4.50 5.51 6.89 8.84 11.79 25.90 135.86

3.00 6.95 7.18 7.43 7.68 8.23 9.90 12.18 15.43 20.35 43.88 226.89

5 Proofs

Lemmas 3.1 and 3.2 are verified in the same way as the proofs of Lemmas 4 and 6 in Berrendero

and Zamar (2001), respectively ( replace (1− ε)FH0,α,θ + εδ0 with cF ξ̂
α,θ

+ γδ0 ).

Proof of Lemma 3.3. We note that F ξ̂
kα,kθ

and F ξ
∗

kα,kθ
are expressed in the form of

F ξ̂
kα,kθ

(u) = min

(
FH0,kα,kθ(u),

1− γ
c

)
, ∀u ≥ 0,

11



Table 3: Bτ (c, γ) (Tukey’s biweight ρ-function)

c\γ 0.00 0.01 0.02 0.03 0.05 0.10 0.15 0.20 0.25 0.35 0.45

0.55 — — — — — — — — — — 24.38

0.65 — — — — — — — — — 6.41 31.69

0.75 — — — — — — — — 3.42 8.71 39.44

0.80 — — — — — — — 2.61 4.14 .9.87 43.44

0.85 — — — — — — 1.97 3.19 4.81 11.04 47.51

0.90 — — — — — 1.43 2.45 3.72 5.46 12.22 51.65

0.95 — — — — 0.91 1.82 2.86 4.22 6.11 13.41 55.86

0.97 — — — 0.68 1.06 1.95 3.02 4.43 6.38 13.89 57.55

0.98 — — 0.54 0.76 1.13 2.02 3.10 4.53 6.51 14.13 58.40

0.99 — 0.38 0.63 0.83 1.19 2.08 3.18 4.63 6.64 14.37 59.26

1.00 0.00 0.48 0.71 0.89 1.24 2.15 3.26 4.73 6.77 14.61 60.11

1.10 0.82 1.02 1.20 1.38 1.75 2.77 4.05 5.74 8.08 17.05 68.78

1.20 1.19 1.39 1.59 1.79 2.20 3.37 4.83 6.75 9.41 19.54 77.63

1.50 2.08 2.37 2.65 2.93 3.52 5.16 7.20 9.86 13.5 27.22 105.13

2.00 3.48 3.92 4.37 4.81 5.72 8.23 11.31 15.27 20.64 40.67 153.40

3.00 6.33 7.14 7.93 8.73 10.34 14.74 20.03 26.77 35.83 69.32 256.32

Table 4: Bτ (c, γ) (Tukey’s biweight ρ-function)

c\γ 0.00 0.01 0.02 0.03 0.05 0.10 0.15 0.20 0.25 0.35 0.45

0.55 — — — — — — — — — — 24.38

0.65 — — — — — — — — — 6.41 30.18

0.75 — — — — — — — — 3.42 6.99 36.56

0.80 — — — — — — — 2.61 3.49 7.32 39.88

0.85 — — — — — — 1.97 2.70 3.54 7.68 43.25

0.90 — — — — — 1.43 2.06 2.73 3.62 8.07 46.69

0.95 — — — — 0.91 1.50 2.09 2.75 3.71 8.50 50.17

0.97 — — — 0.68 0.93 1.51 2.10 2.75 3.74 8.69 51.57

0.98 — — 0.54 0.69 0.94 1.52 2.10 2.75 3.76 8.78 52.28

0.99 — 0.38 0.55 0.70 0.95 1.52 2.11 2.76 3.78 8.87 52.99

1.00 0.00 0.38 0.56 0.70 0.96 1.53 2.11 2.76 3.80 8.97 53.69

1.10 0.00 0.41 0.59 0.74 0.99 1.56 2.13 2.83 4.02 10.00 60.87

1.20 0.00 0.42 0.60 0.75 1.01 1.58 2.15 2.95 4.27 11.14 68.18

1.50 0.00 0.44 0.63 0.79 1.06 1.63 2.30 3.43 5.24 14.81 90.89

2.00 0.00 0.46 0.66 0.83 1.10 1.78 2.88 4.62 7.43 21.28 130.72

3.00 0.00 0.48 0.69 0.89 1.30 2.71 4.80 7.77 12.38 35.09 215.21

and

F ξ
∗

kα,kθ
(u) = max

(
FH0,kα,kθ(u)− c+ γ − 1

c
, 0

)
, ∀u ≥ 0,

where FH0,kα,kθ(u) is the distribution function of |y − kα − kθ′x| under H0. By Lemma 5 of

Berrendero and Zamar (2001), FH0,kα,kθ(u) is strictly decreasing in k > 0. Therefore, F ξ̂
α,θ

(u)

and F ξ
∗

α,θ
(u) are strictly decreasing in k > 0. 2

Proof of Theorem 3.1. Let t∗ be such that dξ∗ = mξ̂(t
∗). First, we show BT (c, γ) ≤ t∗. Let

θ̃ ∈ Rp be such that ‖θ̃‖ = t > t∗. It is enough to show that for any H ∈ PH0(c, γ) and any

12



Table 5: BCM (c, γ) (Tukey’s biweight ρ-function)

c\γ 0.00 0.01 0.02 0.03 0.05 0.10 0.15 0.20 0.25 0.35 0.45

0.55 — — — — — — — — — — 21.83

0.65 — — — — — — — — — 5.34 28.29

0.75 — — — — — — — — 3.20 7.63 35.13

0.80 — — — — — — — 2.43 3.88 8.71 38.67

0.85 — — — — — — 1.81 2.96 4.48 9.77 42.26

0.90 — — — — — 1.28 2.22 3.41 5.06 10.85 45.92

0.95 — — — — 0.79 1.61 2.57 3.84 5.64 11.93 49.63

0.97 — — — 0.58 0.93 1.73 2.70 4.02 5.86 12.36 51.13

0.98 — — 0.46 0.66 0.99 1.78 2.77 4.10 5.98 12.58 51.88

0.99 — 0.32 0.55 0.73 1.04 1.84 2.83 4.19 6.09 12.79 52.64

1.00 0.00 0.43 0.63 0.79 1.09 1.89 2.90 4.27 6.21 13.01 53.39

1.10 0.82 0.96 1.10 1.24 1.54 2.40 3.54 5.12 7.36 15.21 61.05

1.20 1.18 1.32 1.46 1.61 1.93 2.88 4.18 5.98 8.53 17.44 68.87

1.50 2.08 2.25 2.43 2.62 3.03 4.32 6.10 8.59 12.11 24.32 93.18

2.00 3.48 3.72 3.99 4.26 4.87 6.78 9.43 13.13 18.35 36.35 135.86

3.00 17.28 17.75 18.25 18.76 19.86 23.04 16.5 22.80 31.64 61.94 226.89

Table 6: BCM (c, γ) (Tukey’s biweight ρ-function)

c\γ 0.00 0.01 0.02 0.03 0.05 0.10 0.15 0.20 0.25 0.35 0.45

0.55 — — — — — — — — — — 21.83

0.65 — — — — — — — — — 5.34 28.06

0.75 — — — — — — — — 3.20 5.80 34.63

0.80 — — — — — — — 2.43 3.20 6.36 38.01

0.85 — — — — — — 1.81 2.43 3.20 6.95 41.43

0.90 — — — — — 1.28 1.81 2.43 3.20 7.55 44.89

0.95 — — — — 0.79 1.28 1.81 2.43 3.20 8.15 48.39

0.97 — — — 0.58 0.79 1.28 1.81 2.43 3.20 8.40 49.81

0.98 — — 0.46 0.58 0.79 1.28 1.81 2.43 3.20 8.52 50.52

0.99 — 0.32 0.46 0.58 0.79 1.28 1.81 2.43 3.21 8.64 51.23

1.00 0.00 0.32 0.46 0.58 0.79 1.28 1.81 2.43 3.22 8.76 51.94

1.10 0.00 0.32 0.46 0.58 0.79 1.28 1.81 2.43 3.55 10.00 59.14

1.20 0.00 0.32 0.46 0.58 0.79 1.28 1.81 2.60 3.92 11.26 66.48

1.50 0.00 0.32 0.46 0.58 0.79 1.28 2.15 3.39 5.27 15.14 89.23

2.00 0.00 0.32 0.46 0.63 0.98 1.89 3.10 4.92 7.68 21.91 129.07

3.00 0.00 0.44 0.66 0.86 1.36 3.33 5.24 8.15 12.75 36.28 213.81

α ∈ R we have
J(F

H,α,
˜θ
) > J(FH,0,0). (5.1)

It is clear that for any H = c (H0 −W ) + γK ∈ PH0(c, γ), α ∈ R and u > 0,

F
H,α,

˜θ
(u) = c F ξ

α,
˜θ
(u) + γF

K,α,
˜θ
(u) ≤ c F ξ̂

α,
˜θ
(u) + γδ0(u), (5.2)

where ξ = {Wα,θ} ∈ Fλ is defined as Wα,θ = W for any α ∈ R and θ ∈ Rp. From (5.2), A1(a),

the definition of mξ(t) and Lemma 3.2(b) it follows that for any H ∈ PH0(c, γ)

J(F
H,α,

˜θ
) ≥ J(c F ξ̂

α,
˜θ

+ γδ0) ≥ mξ̂(t) > mξ̂(t
∗). (5.3)
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Figure 1: Lower and upper bounds of BS(c, γ) for c=1.2 (Tukey’s biweight ρ-function)

The condition dξ∗ = mξ̂(t
∗) and A1(c) imply

mξ̂(t
∗) = lim

n→∞
J(c F ξ

∗

0,0 + γUn) ≥ lim
n→∞

J(c F ξ
0,0 + γUn) ≥ J(FH,0,0). (5.4)

Noting t∗ = m−1

ξ̂
(dξ∗), we obtain BT (c, γ) ≤ BT (c, γ) from (5.3) and (5.4).

Next, we show BT (c, γ) ≥ m−1
ξ (dξ),

∀ξ ∈ Fλ. Let t1 = m−1
ξ (dξ) and let t < t1. We find

a distribution H ∈ PH0(c, γ) such that ‖T (H)‖ ≥ t. By Lemma 3.2(a), there exist θt and

αt = α(θt) such that mξ(t) = J(c F ξ
αt,θt

+ γδ0). Define H̃n = δ(yn,xn), where xn = nθt and

yn is uniformly distributed on the interval [αt + nt2 − 1
n , αt + nt2 + 1

n ]. If Fn is the uniform
distribution function on [− 1

n ,
1
n ], then for any β ∈ Rp, v > 0 and α ∈ R

FH̃n,α,β(u) = Fn(u+ α− αt − n(t2 − β′θt)) (5.5)

−Fn(−u+ α− αt − n(t2 − β′θt)). (5.6)

For any ξ = {Wα,θ} ∈ Fλ let Hξ
n(α,θ) = c (H0 − Wα,θ) + γH̃n ∈ PH0(c, γ). Suppose that

supn,α,θ ‖T (Hξ
n(α,θ))‖ < t to find a contradiction. Then, for any α ∈ R and θ ∈ Rp there

exists a convergent subsequence, {T (Hξ
n(α,θ))}, such that

lim
n→∞

T (Hξ
n(α,θ)) = lim

n→∞
θξn(α,θ) = θ̃

ξ
(α,θ), where ‖θ̃ξ(α,θ)‖ = t̃ξ(α,θ) < t.

Since t2 − θ′tθt = 0, it follows from (5.6) that

lim
n→∞

FH̃n,αt,θt(u) = 1, ∀u > 0. (5.7)
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Figure 2: Lower and upper bounds of Bτ (c, γ) for c=1.2 (Tukey’s biweight ρ-function)

We show that for any α ∈ R and θ ∈ Rp the subsequence of intercepts corresponding to
θξn(α,θ), denoted by {T0(Hξ

n(α,θ))} = {αξn(α,θ)} converges to a finite α̃ξ(α,θ). To do this,

assume limn→∞ |αξn(α∗,θ∗)| =∞ for some α∗ ∈ R and θ∗ ∈ Rp. Then, it follows from (5.7) that
limn→∞ FHξ

n(α∗,θ∗),αξn(α∗,θ∗),θξn(α∗,θ∗)
(u)

= γ lim
n→∞

F
H̃n,α

ξ
n(α∗,θ∗),θξn(α∗,θ∗)

(u) (5.8)

< cF(H0−W
α∗,θ∗ ),αt,θt(u) + γδ0(u) (5.9)

= lim
n→∞

F
Hξ
n(α∗,θ∗),αt,θt(u), ∀u > 0.

Hence, by A1(b) we have

J(F
Hξ
n(α∗,θ∗),αξn(α∗,θ∗),θξn(α∗,θ∗)

) > J(F
Hξ
n(α∗,θ∗),αt,θt)

for large enough n. This fact contradicts the definition of (αξn(α∗,θ∗),θξn(α∗,θ∗)). Therefore, for

any α and θ we have limn→∞ |αξn(α,θ)| = α̃ξ(α,θ) <∞. Since t2−|θ′tθ̃
ξ
(α,θ)| = t2−tt̃ξ(α,θ) >

0, it follows from (5.6) that

lim
n→∞

F
H̃n,α

ξ
n(α,θ),θξn(α,θ)

(u) = 0, ∀u > 0. (5.10)
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Figure 3: Lower and upper bounds of BCM (c, γ) for c=1.2 (Tukey’s biweight ρ-function)

Hence, by (5.10) and ξ ∈ Fλ we have

lim
n→∞

F
Hξ
n(α,θ),αξn(α,θ),θξn(α,θ)

(u) = c F ξ

α̃ξ(α,θ),
˜θ
ξ
(α,θ)

(u)

≤ c F ξ0,0(u) (5.11)

= lim
n→∞

[c F ξ0,0(u) + γUn(u)], ∀u > 0.

By A1(b) and A1(c) we have

lim
n→∞

J(F
Hξ
n(α,θ),αξn(α,θ),θξn(α,θ)

) ≥ lim
n→∞

J(c F ξ0,0 + γUn) (5.12)

= dξ = mξ(t1).

From (5.7) it follows that

lim
n→∞

F
Hξ
n(α,θ),αt,θt(u) = c F ξ

αt,θt
(u) + γδ0(u) (5.13)

The equation (5.13) and Lemma 3.2(b) imply

lim
n→∞

J(F
Hξ
n(α,θ),αt,θt) = J(c F ξ

αt,θt
+ γδ0) = mξ(t) < mξ(t1). (5.14)

By (5.12) and (5.14), we have

J(F
Hξ
n(α,θ),αξn(α,θ),θξn(α,θ)

) > J(F
Hξ
n(α,θ),αt,θt)
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for large enough n. This inequality is a contradiction because of

(αξn(α,θ),θξn(α,θ)) = arg min
η,β

J(F
Hξ
n(α,θ),η,β).

Thus, for any t < t1 we obtain supn,α,θ ‖T (Hξ
n(α,θ))‖ ≥ t. This completes the proof. 2

Proof of Theorem 4.1. It follows from (4.3) that

dξ∗ = S(c F ξ
∗

0,0 + γδ∞) = g−1
ξ∗,1

(
b− γ
c

)
and

mξ̂,S(‖θ‖) = S(c F ξ̂
0,θ

+ γδ0) =
√

1 + ‖θ‖2g−1

ξ̂,1

(
b

c

)
.

Hence, solving mξ̂,S(‖θ‖) = dξ∗ in ‖θ‖, we obtain (4.5). Similarly, we can obtain (4.4). Assume

b ≤ 0.5. Then we have min(b, 1− b) = b,

lim
γ ↑ b

g−1
ξ∗,1

(
b− γ
c

)
=∞ and lim

γ ↑ b
g−1
ξ◦,1

(
b− γ
c

)
=∞,

where ξ◦ = {W ◦
α,θ}, W

◦
α,θ = [(c+ γ − 1)/c]H0. Therefore

lim
γ ↑ b

BS(c, γ) = lim
γ ↑ b

BS(c, γ) =∞.

This completes the proof. 2

Proof of Theorem 4.2. It is seen from (4.6) that

dξ∗ = τ2(c F ξ
∗

0,0 + γδ∞)

=

[
g−1
ξ∗,1

(
b− γ
c

)]2 [
c gξ∗

(
b− γ
c

)
+ γ

]
and that

mξ̂,τ (‖θ‖) = τ2(c F ξ̂
0,θ

+ γδ0)

= m2
ξ̂,S

(‖θ‖) · cE
F ξ̂

0,θ

[
ρ2

(
y − θ′x
mξ̂,S(‖θ‖)

)]

= (1 + ‖θ‖2)

[
g−1

ξ̂,1

(
b

c

)]2

c gξ̂

(
b

c

)
.

Solving mξ̂,τ (‖θ‖) = dξ∗ , we obtain.

‖θ‖ = m−1

ξ̂,τ
(dξ∗) = {(1 +BS(c, γ)2)Hξ∗,ξ̂(c, γ)− 1}1/2.
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which implies (4.8). Similarly, we can obtain (4.7). 2

Proof of Theorem 4.3. It is easily seen from (4.9) that

dξ∗ = CM(c F ξ
∗

0,0 + γδ∞)

= inf
s≥σ(cF ξ

∗
0,0+γδ∞)

{
aE

cF ξ
∗

0,0+γδ∞

[
ρ1

(u
s

)]
+ log s

}
= inf

s≥σξ
∗
b,c,γ

Aξ
∗
a,c,γ(s) + aγ.

We also see that

mξ̂,CM (‖θ‖) = CM(c F ξ̂
0,θ

+ γδ0)

= inf
s≥(1+‖θ‖2)1/2ηξ̂b,c,γ

{
acgξ̂,1

(
s

(1 + ‖θ‖2)1/2

)
+ log s

}
= inf

s≥ηξ̂b,c,γ

Aξ̂a,c,γ(s) +
1

2
log(1 + ‖θ‖2).

Therefore, it follows from mξ̂,CM (‖θ‖) = dξ∗ that

‖θ‖ = {exp[2aγ + 2Dξ∗,ξ̂,a(c, γ)]− 1}1/2.

which is (4.12).

Similarly, we obtain (4.11). 2
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