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Abstract. When the observations may be contaminated in the linear model
with the intercept, a certain large class of robust regression estimates includ-
ing S-estimates, τ -estimates and CM -estimates is considered. The (c, γ)-
contamination neighborhood, which is a generalization of the neighborhoods
defined in terms of ε-contamination and total variation, is used for describing
the contamination of the observations. Lower and upper bounds for the max-
imum asymptotic bias of the regression estimates over (c, γ)-contamination
neighborhoods are derived without imposing elliptical regressors. As impor-
tant special cases, the lower and upper bounds for S-estimates, τ -estimates
and CM -estimates under the Gaussian model are obtained.
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1. Introduction

In the case where the observations may be contaminated in the location model,
Huber (1964) introduced the maximum asymptotic bias BT (ε) of a location estimate
T over the ε-contamination neighborhood. The BT (ε) is one of the most informative
global quantitative measures to assess robustness of T , because BT (ε) shows the whole
performance of T from ε = 0 (the central model distribution) to the breakdown point and
its derivative B′

T (0) equals the gross error sensitivity under some regularity conditions.
Huber (1964) established that the median minimizes BT (ε) among translation equivariant
location estimates. Martin and Zamer (1989, 1993) obtained minimax bias robust scale
estimates. Adrover (1998) derived minimax bias robust dispersion matrix estimates.

As for the linear regression model, in the case of the zero-intercept and elliptical re-
gressors, Martin, Yohai and Zamer (1989) obtained the minimax bias estimates in the
respective classes of M -estimates with general scale and GM - estimates of regression. In
particular, they showed that the least median of square estimate (LMS) introduced by
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Rousseeuw (1984) is nearly minimax. Yohai and Zamer (1993) extended this result to
the larger class of residual admissible estimates. Berrendero and Zamer (2001) obtained
maximum asymptotic bias of robust regression estimates in a broad class, which includes
S-estimates, τ -estimates and R-estimates, without requiring zero-intercept and/or ellip-
tical regressors. Berrendero, Mendes and Tyler (2007) derived the maximum asymptotic
bias of MM -estimates and the constrained M -estimates (CM -estimates) of regression,
and compared them to those of S-estimates and τ -estimates in detail. All the authors
mentioned above adopt the ε-contamination neighborhood to describe deviation from the
central model.

On the other hand, in order to describe deviation from the central model Ando and
Kimura (2003) introduced the (c, γ) - contamination neighborhood (the (c, γ) - neighbor-
hood, for short) , which is a generalization of Rieder’s (ε, δ) -neighborhood and includes
the neighborhoods defined in terms of ε - contamination and total variation. They gave
a characterization of the (c, γ) - neighborhood and applied it to bias-robustness study of
estimates. Among their achievements, there are the extensions of Huber’s (1964) and He
and Simpson’s (1993) results. The former states that the median minimizes the maximum
asymptotic bias BT (c, γ) over (c, γ) - neighborhoods among translation equivariant loca-
tion estimates. Ando and Kimura (2004) derived the lower and upper bounds for BS(c, γ)
of regression S-estimates over (c, γ) - neighborhoods in the zero-intercept linear model
with elliptical regressors, and showed that in the case of Rieder’s (ε, δ) - neighborhood
the lower and upper bounds coincide and become BS(c, γ). Ando, Kakiuchi and Kimura
(2009) gave the applications of the (c, γ) - neighborhoods to nonparametric confidence
intervals and tests for the median.

In this paper, following Berrendero and Zamer (2001), without imposing the zero-
intercept and/or elliptical regressors , we derive the lower and upper bounds for BT (c, γ)
of estimates T in the large class. In the case of ε-contamination neighborhoods, the lower
and upper bounds coincide and the results are reduced to Theorems 1 and 2 of Berrendero
and Zamar (2001). As important special cases, we obtain the lower and upper bounds
for the maximum asymptotic bias BS(c, γ), Bτ (c, γ) and BCM(c, γ) of S-estimates, τ -
estimates and CM -estimates under the Gaussian model. We give some tables of the lower
and upper bounds for Bτ (c, γ) of τ -estimates based on Huber score function and show a
selective graph to visualize the difference between the two bounds. We should emphasize
that the characterization (Proposition 2.1) of the (c, γ)-neighborhoods is indispensable to
the derivation of our results in the paper.

The paper is organized as follows. Section 2 presents basic definitions and preliminary
results. Section 3 gives the lower and upper bounds for BT (c, γ) which are our main
results. Section 4 shows the lower and upper bounds for BS(c, γ), Bτ (c, γ) and BCM(c, γ)
of under the Gaussian model. The tables and a graph of the lower and upper bounds
for Bτ (c, γ) of the τ -estimate based on Huber score functions are also exhibited. All the
proofs of lemmas and theorems are collected in section 5.
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2. Preliminaries

We consider the linear regression model

y = α0 + θ′
0x+ u,

where x = (x1, . . . , xp)
′ is a random vector in Rp, θ0 = (θ10, . . . , θp0)

′ is the vector in Rp

of the true regression parameters, α0 is the true intercept parameter in R and the error
u is a random variable independent of x. Let F0 be the nominal distribution function of
u and G0 the nominal distribution function of x. Then the nominal distribution function
H0 of (y,x) is

H0(y,x) =

∫ x1

−∞
· · ·
∫ xp

−∞
F0(y − α0 − θ′

0s)dG0(s). (2.1)

Let M be the set of all distribution functions H on (Rp+1,Bp+1), where Bp+1 is the Borel
σ-field on Rp+1. Let T be a Rp-valued functional defined on M. Given a sample of inde-
pendent observations (y1,x1), · · · , (yn,xn) of size n from H, we define the corresponding
estimate of θ0 as T (Hn), where Hn is the empirical distribution of the sample.

The asymptotic bias of T at H is defined by

bA(T , H) = [(T (H)− θ0)
′A(T (H)− θ0)]

1
2 ,

where A is an affine equivariant covariance functional of x under G0. Since we only
work with regression and affine equivariant estimates and bA(T , H) is invariant under
regression and affine transformations, we can assume without loss of generality that θ0 = 0
and A = Ip (the identity matrix). Therefore the asymptotic bias bA(T , H) is given by

b(T , H) = ∥T (H)∥, (2.2)

where ∥ · ∥ denotes the Euclidean norm. We assume that T is Fisher consistent at H0,
i.e., T (H0) = 0.

In order to describe deviation from the nominal distribution H0 we adopt the following
neighborhood of H0, which was introduced by Ando and Kimura (2003):

PH0(c, γ) = {H ∈ M : H(B) ≤ cH0(B) + γ, ∀B ∈ Bp+1}, (2.3)

where 0 ≤ γ < 1 and 1 − γ ≤ c < ∞. Note that H0(H) is used as both a distribution
function and a probability measure for convenience. The neighborhood PH0(c, γ), which
is called a (c, γ) -contamination neighborhood ((c, γ)-neighborhood, for short), is a gen-
eralization of Rieder’s (1977) (ε, δ)-neighborhood and includes ε-contamination and total
variation neighborhoods: Let ε and δ be some given constants such that ε ≥ 0, δ ≥ 0 and
ε + δ < 1. Then we have the ε-contamination neighborhood PH0(1 − ε, ε) for c = 1 − ε
and γ = ε, the total variation neighborhood PH0(1, δ) for c = 1 and γ = δ, and Rieder’s
(1977) (ε, δ)-neighborhood PH0(1− ε, ε+ δ) for c = 1− ε and γ = ε+ δ. We can see that
PH0(c, γ) is generated by a special capacity v defined as

v(B) =

{
min{cH0(B) + γ, 1} if B ̸= ϕ, B ∈ Bp+1,
0, if B = ϕ.
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This means that the (c, γ)-neighborhood PH0(c, γ) has nice properties for developing min-
imax theory in robust inference (see Bednarski, 1981). Ando and Kimura (2003) gave the
following useful characterization of PH0(c, γ).

Proposition 2.1. For 0 ≤ γ < 1 and 1− γ ≤ c < ∞ it holds that

PH0(c, γ) = {H = c (H0 −W ) + γ K : W ∈ WH0,λ, K ∈ M},

where WH0,λ is the set of all measures W such that W (B) ≤ H0(B) holds for ∀B ∈ Bp+1

and W (Rp+1) = λ = (c+ γ − 1)/c.

The maximum asymptotic bias of T over PH0(c, γ) is defined as

BT (c, γ) = sup{∥T (H)∥ : H ∈ PH0(c, γ)}. (2.4)

We consider the following class of robust estimates defined as

(T0(H),T (H)) = argmin
α,θ

J(F
H,α,θ), (2.5)

where J(·) is a robust loss functional defined on the set of all distributions on the real line
and FH,α,θ is the distribution of the absolute residual |y−α−θ′x| under H. This class of
estimates includes the well-known robust estimates such as S-estimates, τ -estimates, CM -
estimates and R-estimates. We assume that J , F0 and G0 satisfy the following conditions
A1 and A2 corresponding to Berrendero and Zamar (2001).

Let L+ be the set of all distributions on [0,∞) and let L+
c be the subset of L+ of all

continuous distributions on (0,∞).

A1. (a) Let F ∈ L+ and G ∈ L+. If F (v) ≤ G(v) (F (v) < G(v)) for every v ≥ 0, then
J(F ) ≥ J(G) (J(F ) > J(G)).

(b) Let {Fn} and {Gn} be sequences of Fn ∈ L+
c and Gn ∈ L+

c (n = 1, 2, · · · )
such that Fn(v) → F (v) and Gn(v) → G(v), where F and G are possibly
sub-stochastic and continuous on (0,∞) with G(∞) ≥ 1 − γ. If G(v) ≥
F (v) (G(v) > F (v)) for every v > 0, then limn→∞ J(Fn) ≥ limn→∞ J(Gn)
(limn→∞ J(Fn) > limn→∞ J(Gn)).

(c) If F ∈ L+
c and G ∈ L+, then

J((1− γ)F + γδ∞) = lim
n→∞

J((1− γ)F + γUn) ≥ J((1− γ)F + γG),

where Un stands for the uniform distribution function on [n− 1
n
, n+ 1

n
].

A2. F0 has an even and strictly unimodal density f0 with f0(v) > 0 for every v ∈ R,
and PG0(θ

′x = a) < 1, for every θ ∈ Rp (θ ̸= 0) and a ∈ R.
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Remark 2.1 The ε-monotonicity condition A1(b) guarantees that the corresponding
estimate T is residual admissible (see Yohai and Zamar, 1993, for the definition of residual
admissible estimates). We should emphasize that A2 does not require ellipticity nor
continuity of regressor’s distribution.

3. Main results

We give three lemmas and two main theorems , whose proofs are collected in Section
5. First we introduce the family of measures (improper distributions) . Let ξ = {W

α,θ :

α ∈ R,θ ∈ Rp} be a family of W
α,θ ∈ WH0,λ and let

F ξ

α,θ
(v) = (H0 −W

α,θ)(|y − α− θ′x| ≤ v), ∀v ≥ 0. (3.1)

Also, let
dξ = J(c F ξ

0,0 + γδ∞) (3.2)

and
mξ(t) = inf

∥θ∥=t

inf
α∈R

J(c F ξ

α,θ
+ γδ0), (3.3)

where δ0 and δ∞ are the point mass distributions at 0 and ∞, respectively. Note that
F ξ

α,θ
is used as both distribution function and measure on (R,B).

We consider the following conditions of F ξ

α,θ
:

A3. (a) F ξ

kα,kθ
(v) is strictly decreasing in k > 0 for 0 < F ξ

kα,kθ
(v) < (1− γ)/c.

(b) F ξ

α,θ
satisfies 0 < F ξ

α,θ
(v) ≤ F ξ

0,0(v),
∀v > 0.

Let two families ξ̂ = {Ŵ
α,θ} and ξ∗ = {W ∗

α,θ} be defined as follows:

Ŵ
α,θ(B) = H0

(
B ∩

{
|y − α− θ′x| ≥ a

α,θ
(
c+γ−1

c

)})
, ∀B ∈ Bp+1 (3.4)

W ∗
α,θ(B) = H0

(
B ∩

{
|y − α− θ′x| ≤ a

α,θ
(
1−γ
c

)})
, ∀B ∈ Bp+1, (3.5)

where a
α,θ(η) (0 ≤ η < 1) denotes the upper 100η% point of the distribution of |y−α−θ′x|

under H0 such that

H0

(
|y − α− θ′x| ≥ a

α,θ(η)
)

= η.
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Let Fλ be the set of all ξ = {W
α,θ : α ∈ R,θ ∈ Rp} satisfying A3. Here we note that

ξ̂ belongs to Fλ but ξ∗ does not belong to Fλ (ξ∗ does not satisfy A3(b)). Then we obtain
the following three lemmas, which correspond to Lemmas 4, 5 and 6 in Berrendero and
Zamar (2001).

Lemma 3.1. Under A1(b) and A2, for any ξ = {W
α,θ} ∈ Fλ there exists α(θ) ∈ R

such that
J(c F ξ

α(θ),θ
+ γδ0) = inf

α∈R
J(c F ξ

α,θ
+ γδ0).

Moreover, for any t > 0 there exists Kt > 0 such that |α(θ)| ≤ Kt for every θ ∈ {θ :
∥θ∥ = t}.

Lemma 3.2. Under A2, F ξ̂

kα,kθ
(v) and F ξ∗

kα,kθ
(v) are strictly decreasing in k > 0 for

0 < F ξ̂

kα,kθ
(v) < (1− γ)/c and 0 < F ξ∗

kα,kθ
(v) < (1− γ)/c, respectively.

Lemma 3.3. Let mξ(t) be as in (3.3). Then, under A1(b) and A2, for any ξ =
{W

α,θ} ∈ Fλ the following results hold:

(a) There exist θt ∈ Rp and α(θt) ∈ R such that ∥θt∥ = t and mξ(t) = J(c F ξ

α(θt),θt
+

γδ0).

(b) mξ(t) is strictly increasing.

Using these lemmas, we can derive the following theorem which gives lower and upper
bounds for the maximum asymptotic bias BT (c, γ) of T .

Theorem 3.1. Let T be a regression estimate defined by (2.5). Assume A1 and A2.
Then it holds that

BT (c, γ) ≤ BT (c, γ) ≤ BT (c, γ), (3.6)

where
BT (c, γ) = sup

ξ∈Fλ

m−1
ξ (dξ) and BT (c, γ) = m−1

ξ̂
(dξ∗)

˙
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The function mξ(t) is simplified under symmetry and unimodality assumptions on the
regressors distribution.

Theorem 3.2. Let T be a regression estimate defined by (2.5). Assume A1 and A2,
and that under G0 the distribution of θ′x is symmetric, unimodal and only depends on
∥θ∥ for all θ ̸= 0. Then, for any ξ = {W

α,θ} ∈ Fλ it holds that

inf
α∈R

J(c F ξ

α,θ
+ γδ0) = J(c F ξ

0,θ
+ γδ0) = mξ(∥θ∥).

and the inequlities (3.6) are simplified.

Remark 3.1 When c = 1 − ε and γ = ε (i.e., the ε-contamination case) , Theorems
3.1 and 3.2 reduce to Theorems 1 and 2 of Berrendero and Zamar (2001), respectively. In
this case, we have λ = 0 and ξ̂ = ξ∗, and hence BT (c, γ) = BT (c, γ).

4. S-, τ-and CM-estimates under the Gaussian model

As important special cases, we consider S-estimates, τ -estimates and CM -estimates in
the case thatH0 is the multivariate normal distributionN(0, Ip+1) with mean vector 0 and
covariance matrix Ip+1. We denote by ϕ the density of the standard normal distribution

N(0, 1). For any ξ = {W
α,θ} ∈ Fλ let φξ

α,θ
denote the density of F ξ

α,θ
. Let F◦

λ be the

set of all ξ = {W
α,θ} ∈ Fλ such that φξ

0,θ
is expressed in the form of

φξ

0,θ
(v) =

1√
1 + ∥θ∥2

ϕξ

(
v√

1 + ∥θ∥2

)
, ∀v ≥ 0, (4.1)

where ϕξ (0 ≤ ϕξ ≤ 2ϕ) is some measurable function defined on [0,∞) such that∫ ∞

0

ϕξ(v)dv =
1− γ

c
.

We can easily see that ξ̂ = {Ŵ
α,θ} belongs to F◦

λ .

Let ρ1 and ρ2 be score functions satisfying the following conditions:

A4. (a) The functions ρ1 and ρ2 are even, bounded, monotone on [0,∞), continuous
at 0 with 0 = ρi(0) < ρi(∞) = 1, i = 1, 2 and with at most a finite number of
discontinuities.
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(b) The function ρ2 is differentiable with 2ρ2(v)− ρ′2(v)v ≥ 0.

The S-estimate (Rousseeuw and Yohai,1984) is defined with J(F ) = S(F ), where

S(F ) = inf
{
s > 0 : EF

[
ρ1

(v
s

)]
≤ b
}
, 0 < b < 1. (4.2)

For any ξ = {W
α,θ} ∈ Fλ let

gξ,i(s) = EF ξ
0,0

[
ρi

(v
s

)]
=

∫ ∞

0

ρi

(v
s

)
φξ
0,0(v)dv, i = 1, 2.

The following theorem gives the lower and upper bounds for the maximum asymptotic
bias BS(c, γ) of S-estimates based on ρ1.

Theorem 4.1. Assume that H0 is the multivariate normal distribution N(0, Ip+1).
Then

BS(c, γ) ≤ BS(c, γ) ≤ BS(c, γ), if γ < min(b, 1− b),

BS(c, γ) = ∞, if γ ≥ min(b, 1− b),

where

BS(c, γ) = sup
ξ∈F◦

λ

({
g−1
ξ,1

(
b− γ

c

)/
g−1
ξ,1

(
b

c

)}2

− 1

)1/2

(4.3)

and

BS(c, γ) =

({
g−1
ξ∗,1

(
b− γ

c

)/
g−1

ξ̂,1

(
b

c

)}2

− 1

)1/2

. (4.4)

The τ -estimate (Yohai and Zamar, 1988) is defined with J(F ) = τ 2(F ), where

τ 2(F ) = S2(F )EF

[
ρ2

(
v

S(F )

)]
. (4.5)
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As shown in Yohai and Zamar (1988), τ -estimates inherit the breakdown point of the
initial S-estimate defined by ρ1 and their efficiencies are mainly determined by ρ2. The
following theorem gives the lower and upper bounds for the maximum asymptotic bias
Bτ (c, γ) of τ -estimates which shows how Bτ (c, γ) relates to the maximum asymptotic bias
BS(c, γ) of the initial S-estimates based on ρ1.

Theorem 4.2. Assume that H0 is the multivariate normal distribution N(0, Ip+1).
Then

Bτ (c, γ) ≤ Bτ (c, γ) ≤ Bτ (c, γ),

where

Bτ (c, γ) = sup
ξ∈F◦

λ


[
g−1
ξ,1

(
b−γ
c

)
g−1
ξ,1

(
b
c

) ]2 Hξ,ξ(c, γ)− 1


1/2

, (4.6)

Bτ (c, γ) = {[1 +B
2

S(c, γ)]Hξ∗,ξ̂(c, γ)− 1}1/2, (4.7)

Hξ1,ξ2(c, γ) =

[
gξ1

(
b− γ

c

)
+

γ

c

]
/gξ2

(
b

c

)
and gξ(t) = gξ,2[g

−1
ξ,1(t)].

The CM estimate (Mendes and Tyler, 1996) is defined by J(F ) = CM(F ), where

CM(F ) = inf
s≥S(F )

{
aEF

[
ρ1

(v
s

)]
+ log s

}
, (4.8)

a is a tuning constant, and S(F ) is given by (4.2). We let

κξ
c,γ = g−1

ξ,1

(
b− γ

c

)
, ηξc,γ = g−1

ξ,1(
b

c
).

and
Aξ

a,c,γ(s) = acgξ,1(s) + log s. (4.9)

The following theorem gives the lower and upper bounds for the maximum asymptotic
bias BCM(c, γ) of CM -estimates based on ρ1.

Theorem 4.3. Assume that H0 is the normal distribution N(0, Ip+1). Then

BCM(c, γ) ≤ BCM(c, γ) ≤ BCM(c, γ),
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where

BCM(c, γ) = sup
ξ∈F◦

λ

{exp[2aγ + 2Dξ,ξ,a(c, γ)]− 1}1/2 , (4.10)

BCM(c, γ) = {exp[2aγ + 2Dξ∗,ξ̂,a(c, γ)]− 1}1/2, (4.11)

Dξ1,ξ2,a(c, γ) = inf
s≥κc,γ

Aξ1
a,c,γ(s)− inf

s≥ηc,γ
Aξ2

a,c,γ(s).

Remark 4.1. When c = 1 − ε and γ = ε , Theorems 4.1, 4.2 and 4.3 are reduced to
(3.24) of Martin et al. (1989), Theorem 3 of Berrendero and Zamar (2001) and Theorem
4.1 of Bererendero et al. (2007), respectively.

Remark 4.2. The upper bound BS(c, γ) in (4.4) is the same as (4.7) in Ando and
Kimura (2004). Note that hξ(τ) in the equality (4.7) satisfies the relation hξ(τ) = gξ,1(

1
τ
).

We notice that when ρ1 is a jump function, BS(c, γ) = BS(c, γ) holds for c ≤ 1 (see
Theorem 4.1 of Ando and Kimura, 2004).

Remark 4.3. The arguments concerning the intercept estimates can be seen in Section
7 of Berrendero and Zamar (2001). Here, we should point out that the same arguments
also hold for our (c, γ)-neighborhood case.

Table 1 exhibits the upper bounds Bτ (c, γ) for the τ -estimate based on Huber score
functions ρ1 = ρH with cH = 1.041 and ρ2 = ρH with cH = 2.832, where ρH(v) =
min{(v/cH)2, 1}. The constants cH are chosen so that the τ -estimate has 95% efficiency
and 0.5 breakdown point (i.e., b=0.5). We have Bτ (1 − γ, γ) = Bτ (1 − γ, γ) for γ -
contamination case. When ρ1 = ρ2, τ -estimates reduce to S-estimates. See Ando and
Kimura (2004) for the values of BS(c, γ). On the other hand, it is difficult to find the
exact values of the lower bounds Bτ (c, γ). In order to obtain their good approximate
values we need to find ξ ∈ F◦

λ which makes the inside of the supremum in (4.6) as large
as possible. Such ξ depends on c and γ. Table 2 presents lower bounds of Bτ (c, γ). We
obtained their bounds using the set {ξ1, · · · , ξ12} which consists of various types of ξ given
below. Acoording to (4.1), we define ϕξ0 , · · · , ϕξ12 as follows: Let

ϕξi(v) =


2ϕ(v) if 0 ≤ v < ai

0 if ai ≤ v < ai+1

2ϕ(v) if ai+1 ≤ v < ∞

where

ai = Φ−1

(
1

2
+ id

)
, d =

1− γ

2c
, i=0, 1, · · · , 10,

10



and Φ denotes the distribution function of N(0, 1). Let

ϕξ11(v) =

{
2ϕ(a) if 0 ≤ v < a

2ϕ(v) if a ≤ v < ∞,

where a is the constant such that

Φ(a)− ϕ(a) =
2c+ γ − 1

2c
,

and let ϕξ12(v) =
2(1− γ)

c
ϕ(v), v ≥ 0. The lower bounds in Table 2 were obtained from

max
1≤i≤12


[
g−1
ξi,1

(
0.5−γ

c

)
g−1
ξi,1

(
0.5
c

) ]2 Hξi,ξi(c, γ)− 1


1/2

. (4.12)

Here we note that ξ0 = ξ∗, ξ10 = ξ̂ and ξ∗ is not a member of F◦
λ . For the purpose of

getting good approximated values, we included different types of ξ as candidates in taking
the maximum values ( ξ∗ hardly affects the maximum values).
　 Figure 1 gives a graph of B̄τ (c, γ) and the lower bounds in Table 2 for c=1.2. This
graph shows that the lower and upper bounds of Bτ (c, γ) are useful .

Table 1: Bτ (c, γ) (Huber score function)

c \ γ 0.00 0.01 0.02 0.03 0.05 0.10 0.15 0.20 0.25 0.35 0.45
0.55 — — — — — — — — — — 20.22
0.65 — — — — — — — — — 5.05 26.03
0.75 — — — — — — — — 2.63 6.54 32.17
0.80 — — — — — — — 2.00 3.11 7.31 35.35
0.85 — — — — — — 1.52 2.44 3.62 8.09 38.58
0.90 — — — — — 1.10 1.92 2.87 4.13 8.89 41.87
0.95 — — — — 0.71 1.46 2.27 3.29 4.64 9.70 45.20
0.97 — — — 0.53 0.86 1.58 2.40 3.45 4.84 10.03 46.55
0.98 — — 0.42 0.62 0.93 1.64 2.47 3.53 4.94 10.19 47.22
0.99 — 0.29 0.53 0.70 0.99 1.70 2.54 3.61 5.04 10.35 47.90
1.00 0.00 0.42 0.61 0.76 1.04 1.76 2.60 3.69 5.14 10.52 48.58
1.10 0.84 0.97 1.11 1.24 1.52 2.29 3.25 4.48 6.14 12.19 55.47
1.20 1.20 1.34 1.48 1.63 1.93 2.80 3.88 5.28 7.15 13.89 62.50
1.50 2.08 2.28 2.47 2.67 3.10 4.30 5.79 7.69 10.22 19.16 84.36
2.00 3.47 3.77 4.07 4.38 5.02 6.84 9.06 11.87 15.56 28.42 123.01
3.00 6.29 6.83 7.37 7.91 9.05 12.18 15.96 20.69 26.87 48.10 204.65
5.00 12.34 13.38 14.43 15.50 17.69 23.69 30.82 39.70 51.23 90.60 381.21
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Table 2: Lower bouunds of Bτ (c, γ) (Huber score function)

c \ γ 0.00 0.01 0.02 0.03 0.05 0.10 0.15 0.20 0.25 0.35 0.45
0.55 — — — — — — — — — — 20.22
0.65 — — — — — — — — — 5.05 25.45
0.75 — — — — — — — — 2.63 5.82 31.09
0.80 — — — — — — — 2.00 2.71 6.27 33.97
0.85 — — — — — — 1.52 2.06 2.80 6.75 36.90
0.90 — — — — — 1.10 1.58 2.10 2.92 7.24 39.86
0.95 — — — — 0.71 1.16 1.62 2.16 3.04 7.75 42.86
0.97 — — — 0.53 0.72 1.18 1.63 2.18 3.09 7.96 44.07
0.98 — — 0.42 0.53 0.73 1.18 1.64 2.19 3.11 8.06 44.68
0.99 — 0.29 0.43 0.54 0.74 1.19 1.64 2.20 3.14 8.17 45.29
1.00 0.00 0.30 0.43 0.55 0.75 1.20 1.65 2.22 3.16 8.27 45.90
1.10 0.00 0.32 0.46 0.58 0.78 1.23 1.68 2.36 3.47 9.36 52.07
1.20 0.00 0.33 0.48 0.60 0.80 1.25 1.76 2.58 3.87 10.47 58.35
1.50 0.00 0.35 0.50 0.62 0.83 1.40 2.21 3.44 5.27 13.93 77.81
2.00 0.00 0.36 0.52 0.71 1.02 1.96 3.29 5.11 7.72 19.99 111.85
3.00 0.00 0.53 0.84 1.13 1.74 3.40 5.59 8.62 12.92 32.80 184.68
5.00 0.00 1.11 1.72 2.26 3.34 6.41 10.50 16.12 24.03 60.15 341.05
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Figure 1: Lower and upper bounds of Bτ (c, γ) for c=1.2
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5 Proofs

Proof. of Lemma 3.1 First we note that by A2 J(c F ξ

α,θ
+γδ0) is a continuous function

of α and θ. Since, for any v > 0, lim|α|→∞ F ξ

α,θ
(v) < F ξ

0,θ
(v), it also follows from A1(b)

that
lim

|α|→∞
J(c F ξ

α,θ
+ γδ0) > J(c F ξ

0,θ
+ γδ0).

Therefore, for any θ ∈ Rp there exists Kθ such that the infimum is attained in the
compact set [−Kθ, Kθ]. Denoting by α(θ) the value of α which gives the infimum (= the
minimum), we obtain the first assertion of the lemma. We note that α(θ) and Kt depend
on ξ.

Assume that the second assertion of the lemma is not true. Then, there exist some
t > 0 and a sequence {θn} ∈ {θ : ∥θ∥ = t} such that limn→∞ |α(θn)| = ∞. Suppose
without loss of generality that θn → θ̃. For any α > 0 and v > 0 we have

lim
n→∞

[c F ξ

α(θn),θn
(v) + γδ0(v)] = γ ≤ c F ξ

α,
˜θ
(v) + γδ0(v).

Hence

lim
n→∞

J(c F ξ

α(θn),θn
+ γδ0) ≥ J(c F ξ

α,
˜θ
+ γδ0). (5.1)

On the other hand, the definition of α(θ) implies that for any α ∈ R,

lim
n→∞

J(c F ξ

α(θn),θn
+ γδ0) ≤ J(c F ξ

α,
˜θ
+ γδ0). (5.2)

It follows from (5.1) and (5.2) that J(c F ξ

α,
˜θ
+γδ0) does not depend on α. This contradicts

lim|α|→∞ J(c F ξ

α,
˜θ
+ γδ0) > J(c F ξ

0,
˜θ
+ γδ0), which implies the second assertion. 2

Proof of Lemma 3.2. We note that F ξ̂

kα,kθ
and F ξ∗

kα,kθ
are expressed in the form of

F ξ̂

kα,kθ
(v) = min

(
F
H0,kα,kθ(v),

1− γ

c

)
, ∀v ≥ 0,

and

F ξ∗

kα,kθ
(v) = max

(
F
H0,kα,kθ(v)−

c+ γ − 1

c
, 0

)
, ∀v ≥ 0,

where F
H0,kα,kθ(v) is the distribution function of |y − kα − kθ′x| under H0. By Lemma

5 of Berrendero and Zamar (2001), F
H0,kα,kθ(v) is strictly decreasing in k > 0. Therefore,

F ξ̂

α,θ
(v) and F ξ∗

α,θ
(v) are strictly decreasing in k > 0. 2

Proof of Lemma 3.3. By Lemma 3.1, we have

mξ(t) = inf
∥θ∥=t

Mξ(θ) = inf
∥θ∥=t

inf
[−Kt,Kt]

J(c F ξ

α,θ
+ γδ0),

13



where J(c F ξ

α,θ
+ γδ0) is uniformly continuous on the compact set {θ : ∥θ∥ = t} ×

[−Kt, Kt]. Therefore, Mξ(θ) is continuous on the compact set {θ : ∥θ∥ = t} and there
exists ∥θt∥ = t such that Mξ(θt) = inf∥θ∥=t

Mξ(θ). This implies the assertion (a).

To show the assertion (b) let t1 and t2 be such that t1 > t2. Define k = t2/t1 < 1.
Applying the assertion (a), there exist θ1 and θ2 such that mξ(t1) = Mξ(θ1) and mξ(t2) =
Mξ(θ2). Since, by ξ ∈ Fλ

F ξ

α(θ1),θ1
(v) < F ξ

kα(θ1),kθ1
(v),

it follows from A1(a) and the definition of α(θ) that

mξ(t1) > J(c F ξ

kα(θ1),kθ1
+ γδ0) ≥ J(c F ξ

α(kθ1),kθ1
+ γδ0). (5.3)

Also, by the definition of mξ(t) and ∥kθ1∥ = t2

mξ(t2) ≤ Mξ(kθ1) = J(c F ξ

α(kθ1),kθ1
+ γδ0). (5.4)

The inequalities (5.3) and (5.4) imply the assertion (b). 2

Proof of Theorem 3.1. Let t∗ be such that dξ∗ = mξ̂(t
∗). First, we show BT (c, γ) ≤ t∗.

Let θ̃ ∈ Rp be such that ∥θ̃∥ = t > t∗. It is enough to show that for any H ∈ PH0(c, γ)
and any α ∈ R we have

J(F
H,α,

˜θ
) > J(FH,0,0). (5.5)

It is clear that for any H = c (H0 −W ) + γK ∈ PH0(c, γ), α ∈ R and v > 0,

F
H,α,

˜θ
(v) = c F ξ

α,
˜θ
(v) + γF

K,α,
˜θ
(v) ≤ c F ξ̂

α,
˜θ
(v) + γδ0(v), (5.6)

where ξ = {W
α,θ} ∈ Fλ is defined as W

α,θ = W for any α ∈ R and θ ∈ Rp. From (5.6),

A1(a), the definition of mξ(t) and Lemma 3.3(b) it follows that for any H ∈ PH0(c, γ)

J(F
H,α,

˜θ
) ≥ J(c F ξ̂

α,
˜θ
+ γδ0) ≥ mξ̂(t) > mξ̂(t

∗). (5.7)

The condition dξ∗ = mξ̂(t
∗) and A1(c) imply

mξ̂(t
∗) = lim

n→∞
J(c F ξ∗

0,0 + γUn) ≥ lim
n→∞

J(c F ξ

0,0 + γUn) ≥ J(FH,0,0). (5.8)

Noting t∗ = m−1

ξ̂
(dξ∗), we obtain BT (c, γ) ≤ BT (c, γ) from (5.7) and (5.8).

Next, we show BT (c, γ) ≥ m−1
ξ (dξ),

∀ξ ∈ Fλ. Let t1 = m−1
ξ (dξ) and let t < t1. We

find a distribution H ∈ PH0(c, γ) such that ∥T (H)∥ ≥ t. By Lemma 3.3(a), there exist
θt and αt such that mξ(t) = J(c F ξ

αt,θt
+ γδ0). Define H̃n = δ(yn,xn), where xn = nθt and

14



yn is uniformly distributed on the interval [αt+nt2− 1
n
, αt+nt2+ 1

n
]. If Fn is the uniform

distribution function on [− 1
n
, 1
n
], then for any β ∈ Rp, v > 0 and α ∈ R

F
H̃n,α,β(v) = Fn(v + α− αt − n(t2 − β′θt)) (5.9)

−Fn(−v + α− αt − n(t2 − β′θt)).

For any ξ = {W
α,θ} ∈ Fλ let Hξ

n(α,θ) = c (H0 −W
α,θ) + γH̃n ∈ PH0(c, γ). Suppose that

sup
n,α,θ ∥T (Hξ

n(α,θ))∥ < t to find a contradiction. Then, for any α ∈ R and θ ∈ Rp

there exists a convergent subsequence, {T (Hξ
n(α,θ))}, such that

lim
n→∞

T (Hξ
n(α,θ)) = lim

n→∞
θξ
n(α,θ) = θ̃

ξ
(α,θ), where ∥θ̃ξ

(α,θ)∥ = t̃ξ(α,θ) < t.

Since t2 − θ′
tθt = 0, it follows from (5.9) that

lim
n→∞

F
H̃n,αt,θt

(v) = 1, ∀v > 0. (5.10)

We show that for any α ∈ R and θ ∈ Rp the subsequence of intercepts corresponding
to θξ

n(α,θ), denoted by {T0(H
ξ
n(α,θ))} = {αξ

n(α,θ)} converges to a finite α̃ξ(α,θ). To
do this, assume limn→∞ |αξ

n(α
∗,θ∗)| = ∞ for some α∗ ∈ R and θ∗ ∈ Rp. Then, it follows

from (5.10) that
limn→∞ F

Hξ
n(α∗,θ∗

),αξ
n(α∗,θ∗

),θξ

n(α
∗,θ∗

)
(v)

= γ lim
n→∞

F
H̃n,α

ξ
n(α∗,θ∗

),θξ

n(α
∗,θ∗

)
(v)

< cF
(H0−W

α∗,θ∗ ),αt,θt
(v) + γδ0(v) (5.11)

= lim
n→∞

F
Hξ

n(α∗,θ∗
),αt,θt

(v), ∀v > 0.

Hence, by A1(b) we have

J(F
Hξ

n(α∗,θ∗
),αξ

n(α∗,θ∗
),θξ

n(α
∗,θ∗

)
) > J(F

Hξ
n(α∗,θ∗

),αt,θt
)

for large enough n. This fact contradicts the definition of (αξ
n(α

∗,θ∗),θξ
n(α

∗,θ∗)). There-

fore, for any α and θ we have limn→∞ |αξ
n(α,θ)| = α̃ξ(α,θ) < ∞. Since t2−|θ′

tθ̃
ξ
(α,θ)| =

t2 − tt̃ξ(α,θ) > 0, it follows from (5.9) that

lim
n→∞

F
H̃n,α

ξ
n(α,θ),θξ

n(α,θ)
(v) = 0, ∀v > 0. (5.12)

Hence, by (5.12) and ξ ∈ Fλ we have

lim
n→∞

F
Hξ

n(α,θ),αξ
n(α,θ),θξ

n(α,θ)
(v) = c F ξ

α̃ξ(α,θ),
˜θ
ξ

(α,θ)
(v)

≤ c F ξ
0,0(v) (5.13)

= lim
n→∞

[c F ξ
0,0(v) + γUn(v)],

∀v > 0.
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By A1(b) and A1(c) we have

lim
n→∞

J(F
Hξ

n(α,θ),αξ
n(α,θ),θξ

n(α,θ)
) ≥ lim

n→∞
J(c F ξ

0,0 + γUn) (5.14)

= dξ = mξ(t1).

From (5.10) it follows that

lim
n→∞

F
Hξ

n(α,θ),αt,θt
(v) = c F ξ

αt,θt
(v) + γδ0(v) (5.15)

The equation (5.15) and Lemma 3.3(b) imply

lim
n→∞

J(F
Hξ

n(α,θ),αt,θt
) = J(c F ξ

αt,θt
+ γδ0) = mξ(t) < mξ(t1). (5.16)

By (5.14) and (5.16), we have

J(F
Hξ

n(α,θ),αξ
n(α,θ),θξ

n(α,θ)
) > J(F

Hξ
n(α,θ),αt,θt

)

for large enough n. This inequality is a contradiction because of (αξ
n(α,θ),θ

ξ
n(α,θ)) =

argmin
η,β J(F

Hξ
n(α,θ),η,β). Thus, for any t < t1 we obtain sup

n,α,θ ∥T (Hξ
n(α,θ))∥ ≥ t.

This completes the proof. 2

Proof of Theorem 3.2. It is easy to check that

F ξ̂

α,θ
(v) = (H0 − Ŵ

α,θ)(−v + α ≤ y − θ′x ≤ v + α), ∀v > 0.

By the symmetry and unimodality assumptions on F0 and G0 and the definition of Ŵ
α,θ,

we have for all α ∈ R,

F ξ̂

α,θ
(v) ≤ (H0 − Ŵ

0,θ)(−v ≤ y − θ′x ≤ v) = F ξ̂

0,θ
(v), ∀v > 0,

and therefore, from A1(a), it follows that

J(c F ξ̂

α,θ
+ γδ0) ≥ J(c F ξ̂

0,θ
+ γδ0),

∀α ∈ R.

This implies the first equality of the lemma. It is easy to see that J(c F ξ̂

0,θ
+ γδ0) only

depends on θ through the value of ∥θ∥, because F ξ̂

0,θ
is so. 2

Proof of Theorem 4.1. It follows from (4.2) and Theorem 3.2 that

dξ∗ = S(c F ξ∗

0,0 + γδ∞) = g−1
ξ∗,1

(
b− γ

c

)
and

mξ̂,S(∥θ∥) = S(c F ξ̂

0,θ
+ γδ0) =

√
1 + ∥θ∥2g−1

ξ̂,1

(
b

c

)
.
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Hence, solving mξ̂,S(∥θ∥) = dξ∗ in ∥θ∥, we obtain (4.4). Similarly, we can obtain (4.3).
Assume b ≤ 0.5. Then we have min(b, 1− b) = b,

lim
γ ↑ b

g−1
ξ∗,1

(
b− γ

c

)
= ∞ and lim

γ ↑ b
g−1
ξ◦,1

(
b− γ

c

)
= ∞,

where ξ◦ = {W ◦
α,θ}, W ◦

α,θ = [(c+ γ − 1)/c]H0. Therefore

lim
γ ↑ b

BS(c, γ) = lim
γ ↑ b

BS(c, γ) = ∞.

This completes the proof. 2

Proof of Theorem 4.2. It is seen from (4.5) and Theorem 3.2 that

dξ∗ = τ 2(c F ξ∗

0,0 + γδ∞)

=

[
g−1
ξ∗,1

(
b− γ

c

)]2 [
c gξ∗

(
b− γ

c

)
+ γ

]
and that

mξ̂,τ (∥θ∥) = τ 2(c F ξ̂

0,θ
+ γδ0)

= m2
ξ̂,S

(∥θ∥) · cE
F ξ̂

0,θ

[
ρ2

(
y − θ′x

mξ̂,S(∥θ∥)

)]
(5.17)

= (1 + ∥θ∥2)
[
g−1

ξ̂,1

(
b

c

)]2
c gξ̂

(
b

c

)
.

Solving mξ̂,τ (∥θ∥) = dξ∗ , we obtain.

∥θ∥ = m−1

ξ̂,τ
(dξ∗) = {(1 +BS(c, γ)

2)Hξ∗,ξ̂(c, γ)− 1}1/2.

which implies (4.7). Similarly, we can obtain (4.6). 2

Proof of Theorem 4.3. It is easily seen from (4.8) and Theorem 3.2 that

dξ∗ = CM(c F ξ∗

0,0 + γδ∞)

= inf
s≥σ(cF ξ∗

0,0+γδ∞)

{
aE

cF ξ∗
0,0+γδ∞

[
ρ1

(v
s

)]
+ log s

}
= inf

s≥σξ∗
b,c,γ

Aξ∗

a,c,γ(s) + aγ.

We also see that

mξ̂,CM(∥θ∥) = CM(c F ξ̂

0,θ
+ γδ0)

= inf
s≥(1+∥θ∥2)1/2ηξ̂b,c,γ

{
acgξ̂,1

(
s

(1 + ∥θ∥2)1/2

)
+ log s

}
(5.18)

= inf
s≥ηξ̂b,c,γ

Aξ̂
a,c,γ(s) +

1

2
log(1 + ∥θ∥2). (5.19)
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Therefore, it follows from mξ̂,CM(∥θ∥) = dξ∗ that

∥θ∥ = {exp[2aγ + 2Dξ∗,ξ̂,a(c, γ)]− 1}1/2. (5.20)

which is (4.11).

Similarly, we obtain (4.10). 2
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