
������������	���	

������ ����	
	���

� 
���
���� ��
 ��� ���
	�

����
 	 ��� ��
����
���� �� �
��

���
���

����
� �	�
���
 	�� �
����
 �
��
	

��

� ����

�����
�	� ����
� �� ��� �	� 	� ��	���
� !��
���

����
�	�
�� !�
����� 	�� "��
���

��



Robust nonparametric inference for the median
under a new neighborhood of distributions

Itsuro Kakiuchi 1 and Miyoshi Kimura 2

Kobe University and Nanzan University

Abstract

We propose a new neighborhood, the (c1, c2, γ) - neighborhood, to describe the de-

parture of data from an assumed model distribution. The neighborhood is gener-

ated from a special capacity determined by the three parameters, and as special

cases it includes not only the commonly used neighborhoods defined in terms of ε -

contamination and total variation but also various interesting new neighborhoods.

We give the characterization of the (c1, c2, γ) - neighborhood in three forms, which

reveals that the neighborhood is intuitively understandable and useful. As an impor-

tant application to robust inference, when the data distribution is unknown and the

data may be contaminated, under the (c1, c2, γ) - neighborhood we construct robust

nonparametric confidence intervals and tests for the median based on the sign test

statistics. These constructed tests and confidence intervals are the effectively robus-

tified versions of the sign test and its associated confidence interval. We investigate

their robustness and efficiency by deriving the maximum asymptotic lengths and

consistency distances.

AMS 2000 Subject classifications: Primary 62F35, Secondary 62G35, 62J05

Key words: Breakdown point, (c1, c2, γ) - neighborhood, consistency distance, maximum asymp-

totic length, median, robust nonparametric confidence interval, robust nonparametric test, sign

test, special capacity.

1 Introduction

The theory of robust statistical inference aims at deriving reliable parameter estimates and their

associated tests and confidence intervals when the data not only exactly but also approximately

follow an assumed model distribution. Since Huber treated robust statistical inference math-

ematically well in his pioneer works (1964, 1965, 1968), a large number of contributions have

been made to this field. Their results are found in the influential books such as Huber (1981),
1Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyougo, 657-8501
2Department of Information Systems and Mathematical Sciences, Nanzan University, 27 Seirei-cho, Seto, Aichi,

489-0863

1



Hampel, Ronchetti, Rousseeuw and Stahel (1986), Rieder (1994), Maronna, Martin and Yohai

(2006), Huber and Ronchetti (2009) and others. In this robust theory the departure of data

from an assumed model is usually expressed by some suitably chosen neighborhood of the model

distribution. The various types of neighborhoods have been used to describe the departure to

date. Among them, the neighborhoods defined in terms of ε - contamination and total varia-

tion distance have been most frequently adopted in the literatures. As a combination of such

two neighborhoods, Rieder (1977) introduced a neighborhood generated from a special capacity,

which we call Rieder’s neighborhood, and he used it in his many works on robust inference (see

Rieder, 1978, 1980, 1981a, 1981b). Ando and Kimura (2003) proposed the (c, γ) - neighborhood

which is a generalization of Rieder’s neighborhood and gave its applications to robust estima-

tion (see Ando and Kimura, 2004). Although the (c, γ) - neighborhood includes many important

special neighborhoods, the class of (c, γ) - neighborhoods seems to be a little large in practical

use.

In this paper, from the practical point of view, as a natural and useful neighborhood we

introduce a new neighborhood, the (c1, c2, γ) - neighborhood, generated from a special capac-

ity determined by the three parameters. By changing the values of the three parameters, the

(c1, c2, γ) - neighborhood yields not only the (c, γ) - neighborhood but also various important

neighborhoods. We present a list of such representative neighborhoods. In particular, we are

interested in two neighborhoods, that is, the total variation neighborhood partially narrowed

by ε - contamination (TNε - neighborhood, for short) and the neighborhood indicating a gap

from the model distribution (G - neighborhood, for short). The special capacity, which was com-

prehensively studied by Bednarski (1981), satisfies all the conditions of Choquet’s 2-alternating

capacity except condition (4) in Huber and Strassen (1973). Since the (c1, c2, γ) - neighborhood is

generated from a special capacity, it has nice properties for developing minimax theory in robust

inference. We give three characterizations (Theorems 3.1 and 3.2, Corollary 3.1) of the (c1, c2, γ) -

neighborhood, which show that the neighborhood consists of all γ - contamination of distributions

in a certain neighborhood indicating a gap from the model distributions determined by c1 and

c2. The characterization (Theorem 3.2) reveals that the (c1, c2, γ) - neighborhood is useful and

intuitively understandable. We also find the stochastically smallest and largest (improper) dis-

tributions and the upper bound of Kolmogorov distance for the (c1, c2, γ) - neighborhood. These

results play important roles in construction of robust procedures.

As an important application of the (c1, c2, γ) - neighborhood to robust inference, when the data

may be contaminated, we consider the problem of constructing robust confidence intervals and

tests based on the sign test statistics for the median of an unknown model distribution F ◦. This

problem was first treated under the ε - contamination neighborhood by Yohai and Zamar (2004),

and then under the (c, γ) - neighborhood by Ando, Kakiuchi and Kimura (2009), which showed

that the standard sign test and its associated confidence interval for the median are not robust.

Hettmansperger and Mckean (2011) also discussed robust nonparametric statistical methods

derived by the weighted L1 norm. We construct robust confidence intervals and tests for the

median of an unknown model distribution F ◦ under the (c1, c2, γ) - neighborhood (Theorems 4.1

and 5.1). In order to investigate their robustness and efficiency, we consider the asymptotic

behaviors of intervals and tests under the the (c̃1, c̃2, γ̃) - neighborhood, where (c̃1, c̃2, γ̃) denotes

the real size. We should understand the difference between the real size and the design size

(c1, c2, γ). The latter design size is used to construct the robust confidence intervals and tests.

We derive the maximum asymptotic length and the breakdown point of the confidence intervals
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(Theorems 4.2 and 4.3). We also show that when the data is uncontaminated, the constructed

confidence interval is efficient in the sense that it has the smallest asymptotic length among

all nonparametric robust confidence intervals for the median under the (c1, c2, γ) - neighborhood

(Theorem 4.4). As for the constructed tests, using the notions (power robustness, power distance,

power breakdown point) introduced by Yohai and Zamar (2004) we study their robustness and

efficiency (Theorems 5.2 and 5.3). Our results refine those of Yohai and Zamar (2004) and Ando,

Kakiuchi and Kimura (2009), and include all their results as special cases.

The papers is organized as follows. Section 2 presents the definition of the (c1, c2, γ) - neigh-

borhood and a list of representative special cases. Section 3 gives three forms of characterizations

of the (c1, c2, γ) - neighborhood. Section 4 constructs robust nonparametric confidence intervals

under the (c1, c2, γ) - neighborhood, and study their robustness and efficiency. Section 5 considers

robust nonparametric tests and treats their construction and robustness. Section 6 collects all

the proofs of lemmas and theorems.

2 The (c1, c2,γ) - neighborhood

Let X be a Polish space (a complete, separable and metrizable space), B the Borel σ - algebra of

subsets of X and M the set of all probability measures on (X,B). For some specified F ◦ ∈ M

we propose the following new class of neighborhoods Pc1,c2,γ(F
◦) of F ◦ with three parameters

c1, c2 and γ, which we call the (c1, c2, γ) - neighborhood.

Definition 2.1 The (c1, c2, γ) - neighborhood is defined by

Pc1,c2,γ(F
◦) = {G ∈ M | c1F ◦{A} ≤ G{A} ≤ c2F

◦{A}+ γ, ∀A ∈ B}, (2.1)

where c1, c2 and γ are the parameters such that

0 ≤ c1 ≤ 1− γ ≤ c2 < ∞, c1 ̸= c2 and 0 ≤ γ < 1. (2.2)

We note that c1F
◦{A} ≤ G{A} for all A ∈ B is equivalent to G{A} ≤ c1F

◦{A} + 1 −
c1 for all A ∈ B. Therefore the (c1, c2, γ) - neighborhood is expressed in the form of

Pc1,c2,γ(F
◦) = {G ∈ M | G{A} ≤ min (c2F

◦{A}+ γ, c1F
◦{A}+ 1− c1),

∀A ∈ B}. (2.3)

This shows that the (c1, c2, γ) - neighborhood is generated from the following special capacity

vh: Let

h(t) = min (c2t+ γ, c1t+ 1− c1), 0 ≤ t ≤ 1, (2.4)

and let

vh{A} =

h(F ◦{A}) if ϕ ̸= ∀A ∈ B,

0 if A = ϕ.
(2.5)
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Then, from (2.3) we obtain

Pc1,c2,γ(F
◦) = {G ∈ M | G{A} ≤ vh{A} for ∀A ∈ B}. (2.6)

By Lemma 3.1 of Bednarski (1981) vh is a special capacity, which satisfies all the conditions

of Choquet’s 2 - alternating capacity except condition (4) in Huber and Strassen (1973). Thus

the (c1, c2, γ) - neighborhood is generated from the special capacity vh with (2.4) and it has nice

properties for developing minimax theory in robust inference.

Remark 2.1 We removed the case of c1 = c2 in the condition (2.2). The reason is that when

c1 = c2 (= 1− γ), we have h(t) = (1− γ)t+ γ, which is the γ - contamination case. We also note

that either c1 = 1− γ or c2 = 1− γ leads to the γ - contamination case.

Changing the values of c1, c2 and γ, we can get various neighborhoods, for example, the

(c, γ) - neighborhood introduced by Ando and Kimura (2003), and hence as its special cases

Rieder’s neighborhood as well as the neighborhoods defined in terms of ε - contamination and

total variation distance. We now present a list of representative and important neighborhoods

and the corresponding h functions given by (2.4).

(i) ε - contamination neighborhood Pc1,1−ε,ε(F
◦) or P1−ε,c2,ε(F

◦): With (c1, c2, γ) = (1 −
ε, c2, ε) or (c1, 1− ε, ε), and h(t) = (1− ε)t+ ε, where 0 ≤ c1 < 1− ε < c2 and 0 ≤ ε < 1.

(ii) Total variation neighborhood P0,1,δ(F
◦): With (c1, c2, γ) = (0, 1, δ) and h(t) = min (t +

δ, 1), where 0 ≤ δ < 1.

(iii) Rieder’s neighborhood P0,1−ε,ε+δ(F
◦): With (c1, c2, γ) = (0, 1 − ε, ε + δ) and h(t) =

min {(1− ε)t+ ε+ δ, 1} , where 0 ≤ ε, 0 ≤ δ and ε+ δ < 1.

(iv) (c, γ) - neighborhood P0,c,γ(F
◦) : With (c1, c2, γ) = (0, c, γ) and h(t) = min (ct + γ, 1),

where 0 ≤ γ < 1 and 1− γ ≤ c < ∞.

(v) TNε-neighborhood P1−ε,1,δ(F
◦): With (c1, c2, γ) = (1−ε, 1, δ) and h(t) = min {t+δ, (1−

ε)t+ ε}, where 0 < δ < ε < 1.

(vi) G - neighborhood Pc1,c2,0(F
◦): With (c1, c2, γ) = (c1, c2, 0) and h(t) = min(c2t, c1t+ 1−

c1), where 0 < c1 < 1 < c2 < ∞.

We should notice that if c1 ̸= 0, c1 ̸= 1− γ and c2 ̸= 1− γ, then the graph of h corresponding

to the (c1, c2, γ) - neighborhood is a broken line intersecting at the inside of the square and hence

so do the graphs of h corresponding to the TNε - neighborhood (the total variation neighbor-

hood partially narrowed by the ε - contamination neighborhood) and the G - neighborhood (the

neighborhood without contamination indicating a gap from the model distribution). These two

neighborhoods are new, and we have a special interest.

3 Characterization of (c1, c2,γ) - neighborhood

We give three characterizations of the (c1, c2,γ) - neighborhood. The first two are for the general

case and the third one is for the case of X = R, the real line.
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Theorem 3.1 It holds that

Pc1,c2,γ(F
◦) = {G = c2(F

◦ −W ) + γK ∈ M | W ∈ Wc1,c2,γ(F
◦), K ∈ M }, (3.1)

where Wc1,c2,γ(F
◦) is the set of all measures W on (X,B) such that 0 ≤ W{A} ≤ {(c2 −

c1)/c2}F ◦{A} for any A ∈ B and W{X} = (c2 − 1 + γ)/c2.

Corollary 3.1 Suppose that c1 ̸= 0. Then it holds that

Pc1,c2,γ(F
◦) = {G = c1(F

◦ + V ) + γK ∈ M | V ∈ Vc1,c2,γ(F
◦), K ∈ M }, (3.2)

where Vc1,c2,γ(F
◦) is the set of all measures V on (X,B) such that 0 ≤ V {A} ≤ {(c2 −

c1)/c1}F ◦{A} for all A ∈ B and V {X} = (1− γ − c1)/c1.

From Theorem 3.1 and Corollary 3.1 it can be seen that the (c1, c2, γ) - neighborhood consists

of all the γ contamination of elements in a certain class of continuous distributions. In order

to express the (c1, c2, γ) - neighborhood in the intuitively more understandable form by using

density functions, we hereafter consider the case of X = R, the real line. Let F ◦ be an absolutely

continuous distribution function on R and let f◦ be a density function of F ◦ (with respect to

the Lebesgue measure). Also, let Mc(⊂ M ) be the set of all absolutely continuous distributions

on (R,B).

Theorem 3.2 It holds that

Pc1,c2,γ(F
◦) = {G = (1− γ)F + γK ∈ M | F ∈ Fc1,c2,γ(F

◦), K ∈ M }, (3.3)

where

Fc1,c2,γ(F
◦) =

{
F ∈ Mc

∣∣∣ c1
1− γ

f◦ ≤ f ≤ c2
1− γ

f◦
}

(3.4)

and f is a density function of F .

Remark 3.1 The concrete forms of (3.3) and (3.4) for the neighborhoods (i)− (vi) in Section

2 are obtained by substituting the respective values of the parameters (c1, c2, γ). For example,

the TNε - neighborhood is represented as

P1−ε,1,δ(F
◦) = {G = (1− δ)F + δK ∈ M | F ∈ F1−ε,1,δ(F

◦), K ∈ M }

and

F1−ε,1,δ(F
◦) =

{
F ∈ Mc

∣∣∣ 1− ε

1− δ
f◦ ≤ f ≤ 1

1− δ
f◦
}
.

Next, we give the stochastically smallest and largest distribution functions in Fc1,c2,γ(F
◦).

Let F ◦
L and F ◦

R be the distributions in Fc1,c2,γ(F
◦) defined as

F ◦
L(x) =


c2

1− γ
F ◦(x) if x ≤ xL,

c1
1− γ

F ◦(x) +

(
1− c1

1− γ

)
if x > xL,

(3.5)
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and

F ◦
R(x) =


c1

1− γ
F ◦(x) if x ≤ xR,

c2
1− γ

F ◦(x) +

(
1− c2

1− γ

)
if x > xR,

(3.6)

where

xL = (F ◦)−1

(
1− γ − c1

c2 − c1

)
(3.7)

and

xR = (F ◦)−1

(
c2 − 1 + γ

c2 − c1

)
. (3.8)

Theorem 3.3 Let F ◦
L and F ◦

R be given in (3.5) and (3.6). Then the following results hold:

(i) For any F ∈ Fc1,c2,γ(F
◦)

F ◦
R(x) ≤ F (x) ≤ F ◦

L(x) for all x ∈ R. (3.9)

(ii) For any G ∈ Pc1,c2,γ(F
◦)

(1− γ)F ◦
R(x) ≤ G(x) ≤ (1− γ)F ◦

L(x) + γ for all x ∈ R. (3.10)

Theorem 3.4 Let dK(G,H) = supx |G(x)−H(x)| be the Kolmogorov distance between G and

H in M . Then it holds that

sup
G,H∈Pc1,c2,γ(F

◦)
dK(G,H) = min{(1− γ)− c1, c2 − (1− γ)}+ γ. (3.11)

We define the size of the (c1, c2, γ) - neighborhood as

λ = min{(1− γ)− c1, c2 − (1− γ)}+ γ. (3.12)

The λ is decomposed into g = min {(1− γ)− c1, c2 − (1− γ)} and γ. Here we note

(1− γ) sup
F,F ′∈Fc1,c2,γ(F

◦)
dK(F, F ′) = g.

Since any element G in Pc1,c2,γ(F
◦) is written as G = (1−γ)F+γK, F ∈ Fc1,c2,γ(F

◦), K ∈ M ,

we can regard the (c1, c2, γ) - neighborhood as a mixture of a gap from the model distribution

F ◦ and its γ-contamination. We call g and γ the gap size and the contamination size of the

(c1, c2, γ) - neighborhood, respectively. Table 1 shows the values λ, g and γ for the representative

neighborhoods (i)− (vi) in Section 2. In particular, we have that λ = ε (0 ≤ ε < 1) for the G -

neighborhood (vi) when either c1 = 1 − ε, c2 ≥ 1 + ε or c1 ≤ 1 − ε, c2 = 1 + ε. It should

be noted that although the ε - contamination neighborhood (i) and the G - neighborhood are
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Table 1: The values of λ, g and γ for the neighborhoods (i)− (vi)

(i) (ii) (iii) (iv) (v) (vi)

λ ε 2δ ε+ 2δ c+ 2γ − 1 min(ε, 2δ) min(1− c1, c2 − 1)

g 0 δ δ c+ γ − 1 min(ε− δ, δ) min(1− c1, c2 − 1)

γ ε δ ε+ δ γ δ 0

heterogeneous, their λ are the same value ε. We can also see that λ of the TNε - neighborhood (v)

is smaller than those of the ε - contamination neighborhood and the total variation neighborhood

(ii) and that γ of the G - neighborhood is 0.

It should be emphasized that in modeling of the data distribution the decomposition of the

neighborhood into the gap and contamination is important for practical and conceptual analysis

of robust inference.

4 Robust nonparametric confidence intervals

The purpose of this section is to construct robust nonparametric confidence intervals for the me-

dian of the unknown model (target) distribution F ◦ when the data distribution is in Pc1,c2,γ(F
◦).

Note that our interest is in the median of the model distribution but not in that of the data

distribution. We now assume the following two conditions:

(C1) F ◦ is absolutely continuous with a unique median θ = (F ◦)−1(1/2).

(C2) 0 ≤ γ < 1/2 and c2 < 2(1− γ).

The second condition of (C2) guarantees that 0 < F (θ) < 1 holds for all F ∈ Fc1,c2,γ(F
◦), that

is, the median θ always lies inside the support of F.

Let Xn = (X1, · · · , Xn) be an independent and identically distributed random sample with a

common distribution G ∈ Pc1,c2,γ(F
◦), where F ◦ is unknown, and let X(1) ≤ X(2) ≤ · · · ≤ X(n)

be the order statistics of Xn. The sign test statistic can be used to construct the robust

nonparametric confidence interval, which is given by

Tn,θ(Xn) =

n∑
i=1

I(0,∞)(Xi − θ), (4.1)

where I(0,∞) denotes the indicator function on (0,∞). Then, the associated confidence interval

for θ is

In = [X(kn+1), X(n−kn)), (4.2)

which is obtained by inverting the acceptance region of the sign test, kn < Tn,θ(Xn) < n− kn,

where kn is the integer determined by given n, α (0 < α < 1) and λ (0 ≤ λ < 1) as follows:

kn = kn(n, α, λ) = argmin
k

|α∗(n, k, λ)− α|, (4.3)
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where

α∗ = α∗(n, k, λ) = 1− P (k < Zn < n− k) (4.4)

and Zn is distributed with the Binomial distribution B (n, (1− λ)/2) .

The problem is to determine the value of λ for which In is a nonparametric and robust confi-

dence interval under Pc1,c2,γ(F
◦), and now we let λ be the size of the (c1, c2, γ) - neighborhood

given by (3.12).

4.1 The (c1, c2,γ) - robust confidence interval

Definition 4.1 A confidence interval In = [an(Xn), bn(Xn)) is said to have nonparametric

(c1, c2, γ) - robust coverage 1− α if for all F ◦

inf
G∈Pc1,c2,γ(F

◦)
PG{an(Xn) ≤ θ < bn(Xn)} = 1− α, (4.5)

where PG means the probability under G.

Theorem 4.1 Let In = [X(kn+1), X(n−kn)) be the confidence interval given by (4.3). Then the

following results hold:

(i) In has nonparametric (c1, c2, γ)-robust coverage 1− α∗(n, kn, λ), that is, for all F ◦

inf
G∈Pc1,c2,γ(F

◦)
PG{X(kn+1) ≤ θ < X(n−kn)} = 1− α∗(n, kn, λ). (4.6)

(ii) The infimum in (4.6) is achieved for any γ - contaminating distribution of F ◦
L (or F ◦

R) which

places all its mass to the left (or the right) of θ, where F ◦
L and F ◦

R are the stochastically

smallest and largest distributions in Fc1,c2,γ(F
◦) given by (3.5) and (3.6), respectively.

Remark 4.1 (i) We note that limn→∞ α∗(n, kn, λ) = α, that is, the exact (i.e., real) coverage

probability 1 − α∗ of the confidence interval (4.2) asymptotically converges to the nominal

coverage probability 1− α.

(ii) Since 0 ≤ γ ≤ λ < 1, it follows that λ = 0 implies γ = 0 and hence c1 = 1 or c2 = 1 .

Thus, if λ = 0, then we have Pc1,c2,γ(F
◦) = {F ◦} and In becomes the usual confidence interval

derived from the sign test.

Theorem 4.1 states that the nonparametric (c1, c2, γ) - robust confidence interval In with cov-

erage probability 1−α∗(n, kn, λ) is determined only through λ. The confidence intervals In with

coverage probability 1−α∗(n, kn, λ) for λ = ε and λ = c+2γ−1 are the same as the nonparamet-

ric ε - robust confidence interval in Yohai and Zamar (2004) and the nonparametric (c, γ) - robust

confidence interval in Ando, Kakiuchi and Kimura (2009), respectively. This fact implies that

their confidence intervals have also nonparametric (c1, c2, γ) - robust coverage 1−α∗(n, kn, λ) for

all c1, c2 and γ such that λ = ε or λ = c+ 2γ − 1, respectively.

8



4.2 Robustness of the (c1, c2,γ) - robust confidence interval

As shown in Theorem 4.1, for some given n, α and λ(= λ(c1, c2, γ)) we can construct the

(c1, c2, γ) - robust coverage 1 − α∗ confidence interval In. We call the (c1, c2, γ) the design size.

In what follows, we investigate the robustness and efficiency of In under the real size (c̃1, c̃2, γ̃),

which is assumed to satisfy the conditions (2.2) and (C2) with (c1, c2, γ) replaced by (c̃1, c̃2, γ̃),

that is,

0 ≤ c̃1 ≤ 1− γ̃ ≤ c̃2 < 2(1− γ̃), c̃1 ̸= c̃2 and 0 ≤ γ̃ < 1/2. (4.7)

Thus we have to understand the difference between (c1, c2, γ) and (c̃1, c̃2, γ̃) clearly.

First, as a measure of the efficiency of {In} we consider its maximum asymptotic length

L{In, F ◦, (c̃1, c̃2, γ̃)} under the real size (c̃1, c̃2, γ̃) at F
◦, which is defined as

L{In, F ◦, (c̃1, c̃2, γ̃)} = sup
G∈Pc̃1,c̃2,γ̃

(F ◦)
essup lim sup

n→∞
(X(n−kn) −X(kn+1)),

where essup stands for essential supremum.

Theorem 4.2 Suppose that F ◦ has a symmetric (around θ) and unimodal density. Let 0 <

α < 1 and let λ be fixed and given by (3.12). Let the sequence {In} of confidence intervals

In = [X(kn+1), X(n−kn)) with kn given by (4.3). Then, for 0 ≤ λ < 1 − 2γ̃ the following results

hold:

(i) If 0 ≤ λ < max

{
0, 1− 2γ̃ −

2c̃2(1− γ̃ − c̃1)

c̃2 − c̃1

}
, then

L{In, F ◦, (c̃1, c̃2, γ̃)} = (F ◦)−1

(
1− 1− λ

2c̃1

)
− (F ◦)−1

(
1− 1 + λ

2c̃1

)
. (4.8)

(ii) If max

{
0, 1− 2γ̃ −

2c̃2(1− γ̃ − c̃1)

c̃2 − c̃1

}
≤ λ < min

{
c̃1(c̃2 − 1 + γ̃)

c̃2 − c̃1
, 1− 2γ̃

}
, then

L{In, F ◦, (c̃1, c̃2, γ̃)} = (F ◦)−1

(
λ

c̃1
+

1− 2γ̃ − λ

2c̃2

)
− (F ◦)−1

(
1− 2γ̃ − λ

2c̃2

)
. (4.9)

(iii) If min

{
c̃1(c̃2 − 1 + γ̃)

c̃2 − c̃1
, 1− 2γ̃

}
≤ λ < 1− 2γ̃, then

L{In, F ◦, (c̃1, c̃2, γ̃)} = (F ◦)−1

(
1− 1− λ

2c̃2

)
− (F ◦)−1

(
1− 2γ̃ − λ

2c̃2

)
. (4.10)

Remark 4.2 If c̃1 ̸= 0, then L{In, F ◦, (c̃1, c̃2, γ̃)} is classified into the three cases of (i)-(iii)

of Theorem 4.2. If c̃1 = 0, then only the case (iii) is applied and it is the same with that in

Theorem 2.2 of Ando, Kakiuchi and Kimura (2009). If either c̃1 = 1− γ̃ or c̃2 = 1− γ̃, then the

case (i) or the case (iii) is applied, respectively, and they are the same with that in Theorem 2

of Yohai and Zamar (2004).

The following Lemma gives the supplementary results of Theorem 4.2 with respect to the

conditions of λ. As a consequence, we obtain the conditions of (c̃1, c̃2, γ̃) for which the maximum

asymptotic lengths (4.8), (4.9) and (4.10) in Theorem 4.2 holds.
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Lemma 4.1 Assume that c̃1 ̸= 0, c̃1 ̸= 1 − γ̃ and c̃2 ̸= 1 − γ̃. Let A = max (0, a) and

B = min (b, 1−2γ̃), where a = 1−2γ̃−2c̃2(1− γ̃ − c̃1)/(c̃2 − c̃1) and b = c̃1(c̃2 − 1 + γ̃)/(c̃2 − c̃1),

respectively. Then the following results hold:

(i) If 0 < c̃1 ≤ 1/2, then

(A,B) =

 (0, b) for 0 ≤ γ̃ < c̃2(1− c̃1)/(2c̃2 − c̃1),

(0, 1− 2γ̃) for c̃2(1− c̃1)/(2c̃2 − c̃1) ≤ γ̃ < 1/2.

(ii) If 1/2 < c̃1 ≤ 2c̃2/(4c̃2 − 1), then

(A,B) =


(0, b) for 0 ≤ γ̃ < c̃2(1− c̃1)/(2c̃2 − c̃1),

(0, 1− 2γ̃) for c̃2(1− c̃1)/(2c̃2 − c̃1) ≤ γ̃ < 1/2 + c̃2(1− 2c̃1)/(2c̃1),

(a, 1− 2γ̃) for 1/2 + c̃2(1− 2c̃1)/(2c̃1) ≤ γ̃ < 1/2.

(iii) If 2c̃2/(4c̃2 − 1) < c̃1 ≤ c̃2/(2c̃2 − 1), then

(A,B) =


(0, b) for 0 ≤ γ̃ < 1/2 + c̃2(1− 2c̃1)/(2c̃1),

(a, b) for 1/2 + c̃2(1− 2c̃1)/(2c̃1) ≤ γ̃ < c̃2(1− c̃1)/(2c̃2 − c̃1),

(a, 1− 2γ̃) for c̃2(1− c̃1)/(2c̃2 − c̃1) ≤ γ̃ < 1/2.

(iv) If c̃2/(2c̃2 − 1) < c̃1, then

(A,B) =

 (a, b) for 0 ≤ γ̃ < c̃2(1− c̃1)/(2c̃2 − c̃1),

(a, 1− 2γ̃) for c̃2(1− c̃1)/(2c̃2 − c̃1) ≤ γ̃ < 1/2.

Remark 4.3 If c̃2 ≤ 1, then c̃2/(2c̃2 − 1) > 1, and hence the part (iv) of Lemma 4.1 is not

applied.

Example 4.1 We consider the maximum asymptotic length L{In, F ◦, (c̃1, c̃2, γ̃)} under the

TNε - neighborhood, where (c̃1, c̃2, γ̃) = (1− ε̃, 1, δ̃). The assumptions of Lemma 4.1 are satisfied

with 0 < δ̃ < ε̃ < 1 and δ̃ < 1/2, and the conditions of (i), (ii) and (iii) in Lemma 4.1

correspond to (i) 1/2 ≤ ε̃ < 1, (ii) 1/3 ≤ ε̃ < 1/2 and (iii) 0 < ε̃ < 1/3, respectively. Here, from

the viewpoint of similarity of the calculation we only show L{In, F ◦, (ε̃, δ̃)} for the case (iii).

From Theorem 4.2 we obtain the following results:

(a) Let 0 < δ̃ < ε̃/{2(1− ε̃)}. If 0 ≤ λ < (1− ε̃)δ̃/ε̃, then

L{In, F ◦, (ε̃, δ̃)} = (F ◦)−1

(
1− 2δ̃ + λ

2(1− ε̃)

)
− (F ◦)−1

(
1− 2δ̃ − λ

2

)
, (4.11)

and if (1− ε̃)δ̃/ε̃ ≤ λ < 1− 2δ̃, then

L{In, F ◦, (ε̃, δ̃)} = (F ◦)−1

(
1 + λ

2

)
− (F ◦)−1

(
1− 2δ̃ − λ

2

)
. (4.12)
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(b) Let ε̃/{2(1− ε̃)} ≤ δ̃ < ε̃/(1 + ε̃). If 0 ≤ λ < −1− 2δ̃ + 2δ̃/ε̃, then

L{In, F ◦, (ε̃, δ̃)} = (F ◦)−1

(
1− 2ε̃+ λ

2(1− ε̃)

)
− (F ◦)−1

(
1− 2ε̃− λ

2(1− ε̃)

)
, (4.13)

if −1− 2δ̃ + 2δ̃/ε̃ ≤ λ < (1− ε̃)δ̃/ε̃, then it is (4.11), and if (1− ε̃)δ̃/ε̃ ≤ λ < 1− 2δ̃, then it

is (4.12).

(c) Let ε̃/(1+ ε̃) ≤ δ̃ < ε̃. If 0 ≤ λ < −1− 2δ̃+2δ̃/ε̃, then it is (4.13), and if −1− 2δ̃+2δ̃/ε̃ ≤
λ < 1− 2δ̃, then it is (4.11). �

Example 4.2 The maximum asymptotic length under the G - neighborhood (i.e., γ̃ = 0, λ =

min (c2 − 1, 1 − c1)) can be easily obtained from Lemma 4.1 and Theorem 4.2. By Lemma 4.1

we have (A,B) = (0, b) for 0 < c̃1 ≤ c̃2/(2c̃2−1) and (A,B) = (a, b) for c̃1 > c̃2/(2c̃2−1), where

a = 1−2c̃2(1− c̃1)/(c̃2 − c̃1) and b = c̃1(c̃2−1)/(c̃2− c̃1). We first assume 0 < c̃1 ≤ c̃2/(2c̃2−1).

It directly follows from Theorem 4.2 that if 0 ≤ λ < b, then (4.9) holds with γ̃ = 0 and

λ = min (c2−1, 1−c1), and if b ≤ λ < 1, then (4.10) holds. Next, assume c̃2/(2c̃2−1) < c̃1 < 1.

Then we have (4.8), (4.9) and (4.10) according as 0 ≤ λ < a, a ≤ λ < b and b ≤ λ < 1. �

We now turn to stability or robustness properties. The next definition of the asymptotic length

robustness of the proposed confidence interval determined by λ under the real size (c̃1, c̃2, γ̃) is

the counterpart of Hampel’s breakdown point .

Definition 4.2 The length breakdown size λ∗{In, F ◦, (c̃1, c̃2, γ̃)} of the sequence {In} under the

real size (c̃1, c̃2, γ̃) at F
◦ is defined by

λ∗{In, F ◦, (c̃1, c̃2, γ̃)} = sup{λ | L{In, F ◦, (c̃1, c̃2, γ̃)} < ∞}.

Theorem 4.3 Under the assumptions of Theorem 4.2, the following results hold for 0 ≤ λ <

1− 2γ̃:

(i) λ∗{In, F ◦, (c̃1, c̃2, γ̃)} = 1− 2γ̃.

(ii) If γ̃ = γ, then the sequence {In} has the finite maximum asymptotic length under the real

size (c̃1, c̃2, γ̃) at F
◦ if and only if

min {(1− γ)− c1, c2 − (1− γ)}+ 3γ < 1.

Since the length breakdown size λ∗ dose not depend on c̃1 and c̃2, in the same way as Ando,

Kakiuchi and Kimura (2009) we can define the length breakdown point by

γ̃∗{In, F ◦, (c̃1, c̃2, γ̃)} = sup{γ̃ | L{In, F ◦, (c̃1, c̃2, γ̃)} < ∞}.
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Then, it follows from (i) of Theorem 4.3 that

γ̃∗{In, F ◦, (c̃1, c̃2, γ̃)} = (1− λ)/2.

In the cases of the ε - contamination neighborhood and (c, γ) - neighborhood, their length

breakdown points γ̃∗{In, F ◦, (c̃1, c̃2, γ̃)} are equal to those of Yohai and Zamar (2004), and Ando,

Kakiuchi and Kimura (2009), respectively. As easily seen, for the ε - contamination neighborhood

and total variation neighborhood we have λ∗ = γ∗ = 1/3, and λ∗ = 1/2 and γ∗ = 1/4, respec-

tively. Also, as for the TNε - neighborhood, we have (a) 1/3 ≤ λ∗ ≤ 1/2 and 1/4 ≤ γ∗ ≤ 1/3

for all δ < ε, (b) if ε approaches to δ, then both λ∗ and γ∗ approach to 1/3, and (c) if 2δ < ε,

then λ∗ and γ∗ are equal to 1/2 and 1/4, respectively.

Theorem 4.4 Let {In} be a sequence of confidence intervals In = [An(Xn), Bn(Xn)) such that

inf
G∈Pc1,c2,γ(G

◦)
PG{An(Xn) ≤ (G◦)−1 (1/2) < Bn(Xn)} = 1− α

for any absolutely continuous distribution G◦. Suppose that limn→∞ An(Xn) = A0 and

limn→∞ Bn(Xn) = B0 almost surely when the sample comes from F ◦. Then it holds that

A0 ≤ (F ◦)−1 ((1− λ)/2) and B0 ≥ (F ◦)−1 ((1 + λ)/2) .

Theorem 4.4 states that in the case of uncontaminated data (i.e., c̃1 = 1 − γ̃ and γ̃ = 0, or

c̃2 = 1− γ̃ and γ̃ = 0), the proposed interval In in Theorem 4.1 is efficient in the sense that it has

the smallest asymptotic length among all nonparametric (c1, c2, γ) - robust confidence intervals

for the median whose upper and lower confidence bounds converge.

5 The (c1, c2,γ) - robust nonparametric test

In the framework of Section 4 we consider robust nonparametric tests for the problem of testing

H0 : θ = θ0 versus H1 : θ ̸= θ0, where θ0 is fixed.

Definition 5.1 A non-randomized test φn,θ0(Xn) for H0 versus H1 is said to have nonparamet-

ric (c1, c2, γ) - robust level α if for all F ◦

sup
G∈Pc1,c2,γ(F

◦)
PG{φn,θ0(Xn) = 1} = α.

This definition implies that the probability of rejecting H0 is less than or equal to α, not only

at F ◦ but also at any G ∈ Pc1,c2,γ(F
◦).

Theorem 5.1 A non-randomized modified sign test φn,θ0(Xn) given by

φn,θ0(Xn) =

 1 if Tn,θ0(Xn) ≤ kn or Tn,θ0(Xn) ≥ n− kn,

0 if kn < Tn,θ0(Xn) < n− kn,
(5.1)
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has nonparametric (c1, c2, γ)-robust level α
∗(n, kn, λ), where Tn,θ(Xn) is defined by (4.1) and kn

and λ are given in Theorem 4.1.

As in the case of confidence intervals, we clearly distinguish the design size (c1, c2, γ) and the

real size (c̃1, c̃2, γ̃), and establish the asymptotic behavior of the power of the test (5.1) under

the (c̃1, c̃2, γ̃) which satisfies the condition of (4.7). The following definitions are closely related

to those of power robustness, power distance and power breakdown point which were introduced

by Yohai and Zamar (2004) as measures of efficiency and robustness of tests.

Definition 5.2 Let F ◦
η (x) = F ◦(x− η), where F ◦ is fixed. A sequence (φn,θ0), n ≥ n0, of non-

randomized tests is said to have (c̃1, c̃2, γ̃) - robust power at F ◦ if there exists a positive real

number M such that

inf
G∈Pc̃1,c̃2,γ̃

(F ◦
η )

lim
n→∞

PG{φn,θ0(Xn) = 1} = 1 for all |η| > M. (5.2)

Definition 5.3 The (c̃1, c̃2, γ̃) - consistency distance M∗{(φn,θ0), F
◦, (c̃1, c̃2, γ̃)} of a sequence

(φn,θ0), n ≥ n0, of tests at F ◦ is defined as the infimum of the set of values M for which (5.2)

holds.

Definition 5.4 The power breakdown size λ∗{(φn,θ0), F
◦, (c̃1, c̃2, γ̃)} of a sequence (φn,θ0), n ≥

n0, of tests at F ◦ is defined as the supremum of the set of values λ for which the sequence of

tests is (c̃1, c̃2, γ̃) - robust power at F
◦.

Theorem 5.2 Suppose that F ◦ has a symmetric (around θ) and unimodal density. Let 0 < α <

1 and consider the sequence of tests (φn,θ0), n ≥ n0, for H0 : θ = θ0 versus H1 : θ ̸= θ0 given by

(5.1). Then the following results hold:

(i) Let 0 ≤ c̃1 ≤ 1/2. If 0 ≤ γ̃ < 1/2, then

M∗{(φn,θ0), F
◦, (c̃1, c̃2, γ̃)} = (F ◦)−1

(
1−

1− 2γ̃ − λ

2c̃2

)
. (5.3)

holds for 0 ≤ λ < 1− 2γ̃.

(ii) Let 1/2 < c̃1 < 1− γ̃ and c̃1 ≤ c̃2/(2c̃2 − 1). If 0 ≤ γ̃ < 1/2 + {c̃2(1− 2c̃1)}/{2c̃1}, then
(5.3) holds for 0 ≤ λ < 1− 2γ̃, and if 1/2 + {c̃2(1− 2c̃1)}/{2c̃1} ≤ γ̃ < 1/2, then

M∗{(φn,θ0), F
◦, (c̃1, c̃2, γ̃)} = (F ◦)−1

(
1 + λ

2c̃1

)
(5.4)

holds for 0 ≤ λ < 1− 2γ̃− 2c̃2(1− γ̃− c̃1)/{c̃2− c̃1} , and (5.3) holds for 1− 2γ̃− 2c̃2(1−
γ̃ − c̃1)/{c̃2 − c̃1} ≤ λ < 1− 2γ̃.

(iii) Let c̃2/(2c̃2 − 1) < c̃1 < 1 − γ̃. If 0 ≤ γ̃ < 1/2, then (5.3) holds for 0 ≤ λ < 1 − 2γ̃ −
2c̃2(1− γ̃− c̃1)/{c̃2− c̃1}, and (5.4) holds for 1−2γ̃−2c̃2(1− γ̃− c̃1)/{c̃2− c̃1} ≤ λ < 1−2γ̃.
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Theorem 5.3 Under the assumptions of Theorem 5.2, the following results hold:

(i) λ∗{(φn,θ0), F
◦} = 1− 2γ̃.

(ii) If γ̃ = γ, then the sequence (φn,θ0), n ≥ n0, of tests has (c̃1, c̃2, γ̃)-robust power at F ◦ if

and only if

min {(1− γ)− c1, c2 − (1− γ)}+ 3γ < 1.

Remark 5.1 (i) If c1 = c̃1 = 0, then (5.3) holds, which is the same as (i) in Theorem 3.2 of

Ando, Kakiuchi and Kimura (2009) with c2 = c and c̃2 = c̃.

(ii) As in the length breakdown point for confidence interval, the power breakdown point γ∗

of a sequence (φn,θ0), n ≥ n0, of tests at F ◦ is defined as the supremum of the set of values

γ̃ for which the sequence of tests is (c̃1, c̃2, γ̃) - robust power at F ◦. In this case we can obtain

γ̃∗ = (1− λ)/2 from (i) in Theorem 5.3. This power breakdown point is the same as that of the

confidence interval.

6 Proofs

Proof of Theorem 3.1

First, in the case of γ ̸= 0, we show that for any element G of Pc1,c2,γ(F
◦) given by (2.1) G

can be expressed by the form of (3.1). Let f◦ and g be the density functions of F ◦ and G with

respect to a σ - finite measure µ (e.g. µ = F ◦ +G), respectively, and let

A = {x ∈ X | c1f◦(x) ≤ g(x) ≤ c2f
◦(x)} (Ac = {x ∈ X | g(x) > c2f

◦(x)}).

Noting that G{B} ≥ max (c1F
◦{B}, 1− c2 − γ + c2F

◦{B}) for any B ∈ B, we have

F ◦{B} − 1

c2
G{B} ≤ min

(
c2 − c1

c2
F ◦{B}, c2 − 1 + γ

c2

)
. (6.1)

From (6.1) it follows that if F ◦{A} ≥ (c2 − 1 + γ)/(c2 − c1), then

0 ≤ F ◦{A} − 1

c2
G{A} ≤ c2 − 1 + γ

c2
≤ c2 − c1

c2
F ◦{A},

and if F ◦{A} < (c2 − 1 + γ)/(c2 − c1), then

0 ≤ c2 − 1 + γ

c2
− c2 − c1

c2
F ◦{A} ≤ c2 − c1

c2
F ◦{Ac}.

Therefore, there exist two functions ϕ1(x) and ϕ2(x) defined on A and Ac, respectively, such

that

0 ≤ f◦(x)− 1

c2
g(x) ≤ ϕ1(x) ≤

c2 − c1
c2

f◦(x), 0 ≤ ϕ2(x) ≤
c2 − c1

c2
f◦(x)

and that if F ◦{A} ≥ (c2 − 1 + γ)/(c2 − c1)EEEEEEECthen∫
A
ϕ1(x)dµ(x) =

c2 − 1 + γ

c2
, ϕ2(x) ≡ 0,
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and if F ◦{A} < (c2 − 1 + γ)/(c2 − c1), then

ϕ1(x) =
c2 − c1

c2
f◦(x),

∫
Ac

ϕ2(x)dµ(x) =
c2 − 1 + γ

c2
− c2 − c1

c2
F ◦{A}.

Define ϕ on X as

ϕ(x) = ϕ1(x)IA(x) + ϕ2(x)IAc(x),

where IB(x) is the indicator function on B. It is clear that

0 ≤ ϕ(x) ≤ c2 − c1
c2

f◦(x),

∫
X
ϕ(x) dµ(x) =

c2 − 1 + γ

c2
.

Let

W{B} =

∫
B
ϕ(x) dµ(x) for any B ∈ B. (6.2)

Then W is a measure with the density ϕ such that W{X} = (c2 − 1 + γ)/c2, which implies

W ∈ Wc1,c2,γ(F
◦). Let

K{B} =
1

γ
{G{B} − c2(F

◦{B} −W{B})} , ∀B ∈ B.

Then we see that K is a probability measure on (X,B) and

G{B} = c2(F
◦{B} −W{B}) + γK{B}, ∀B ∈ B. (6.3)

Secondly, we consider the case of γ = 0. Any G ∈ Pc1,c2,0(F
◦) by (2.1) has a density g and

G{A} = G{X} = 1. Let

ϕ(x) = f◦(x)− 1

c2
g(x), ∀x ∈ X.

Then, using W in (6.2) with this ϕ, we have

G{B} = c2(F
◦{B} −W{B}), ∀B ∈ B. (6.4)

The equations (6.3) and (6.4) imply that G belongs to Pc1,c2,γ(F
◦) by (3.1).

Conversely, let G be any element of Pc1,c2,γ(F
◦) by (3.1). Then, for any B ∈ B there

exist W ∈ Wc1,c2,γ(F
◦) and K ∈ M such that G{B} = c2(F

◦{B} − W{B}) + γK{B}. Since
0 ≤ W{B} ≤ {(c2 − c1)/c2}F ◦{B}, we have

c2F
◦{B}+ γ ≥ G{B} ≥ c2

(
F ◦{B} − c2 − c1

c2
F ◦{B}

)
= c1F

◦{B}.

This implies that G belongs to Pc1,c2,γ(F
◦) by (2.1). �

Proof of Corollary 3.1

It is sufficient to show that Pc1,c2,γ(F
◦) given by (3.2) is equal to that by (3.1) whenever c1 ̸= 0.

Let G be any element of Pc1,c2,γ(F
◦) given by (3.1), which implies G = c2(F

◦−W )+γK. Then,

it is rewritten as

G = c1

{
F ◦ +

(
c2 − c1

c1
F ◦ − c2

c1
W

)}
+ γK

= c1 {F ◦ + V }+ γK,
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where V = {(c2 − c1)/c1}F ◦ − (c2/c1)W. Then, from W ∈ Wc1,c2,γ(F
◦) it follows that V is a

measure on (X,B) such that 0 ≤ V (A) ≤ {(c2 − c1)/c1}F ◦{A} for all A ∈ B and V {X} =

(1− γ − c1)/c1. Thus V ∈ Vc1,c2,γ(F
◦), and hence G is in Pc1,c2,γ(F

◦) given by (3.2).

Conversely, let G be any element of Pc1,c2,γ(F
◦) given by (3.2). Then, it is also written as

G = c1(F
◦ + V ) + γK

= c2

{
F ◦ −

(
c2 − c1

c2
F ◦ − c1

c2
V

)}
+ γK

= c2(F
◦ −W ) + γK,

whereW = {(c2−c1)/c2}F ◦−(c1/c2)V. From V ∈ Vc1,c2,γ(F
◦), it is easy to seeW ∈ Wc1,c2,γ(F

◦),

which implies G ∈ Pc1,c2,γ(F
◦) given by (3.2). �

Proof of Theorem 3.2

Let G be any element of Pc1,c2,γ(F
◦) given by (3.1). Then there exist W ∈ Wc1,c2,γ(F

◦) and

K ∈ M such that G = c2(F
◦ −W ) + γK. Hence we have

G = (1− γ)

{
c2

1− γ
(F ◦ −W )

}
+ γK

= (1− γ)F + γK,

where F = {c2/(1− γ)}(F ◦ −W ). We note that

F{R} =
c2

1− γ
(F ◦{R} −W{R}) = c2

1− γ

(
1− c2 − 1 + γ

c2

)
= 1.

Since F ◦ and W are absolutely continuous, F is an absolutely continuous distribution. Also,

since 0 ≤ W{B} ≤ {(c2 − c1)/c2}F ◦{B} for any B ∈ B, we have

c2
1− γ

F ◦{B} ≥ F{B} ≥ c2
1− γ

(
F ◦{B} − c2 − c1

c2
F ◦{B}

)
=

c1
1− γ

F ◦{B}.

Therefore we obtain F ∈ Fc1,c2,γ(F
◦), which implies G ∈ Pc1,c2,γ(F

◦) given by (3.3).

Conversely, let G be any element of Pc1,c2,γ(F
◦) given by (3.3). Then there exists F ∈

Fc1,c2,γ(F
◦) such that G = (1− γ)F + γK. Letting

W = F ◦ − 1− γ

c2
F,

we can easily see G = c2(F
◦ −W ) + γK and W ∈ Wc1,c2,γ(F

◦). This implies G ∈ Pc1,c2,γ(F
◦)

given by (3.1). �

Proof of Theorem 3.3

To show the assertion (i), let f◦
L and f◦

R be the density functions of F ◦
L and F ◦

R, respectively. Then,

from the form of density in Fc1,c2,γ(F
◦) it can be easily seen that f◦

L and f◦
R are stochastically

smallest and largest density functions in Fc1,c2,γ(F
◦), respectively, and xL and xR are the

constants such that they are density functions. This implies that (3.9) holds. Next, to show

the assertion (ii), let G be any element of Pc1,c2,γ(F
◦). Then, by Theorem 3.2 there exist

F ∈ Fc1,c2,γ(F
◦) and K ∈ M such that G = (1 − γ)F + γK. Noting that K is a distribution

function in M , we obtain (3.10) from the assertion (i). �
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Proof of Theorem 3.4

Let δ(m) denote the point mass distribution at m. We note that (1 − γ)F ◦
R(x) + γδ(m) is in

Pc1,c2,γ(F
◦) for all m and as m → ∞ its limit approaches to (1 − γ)F ◦

R(x), and similarly as

m → ∞, (1 − γ)F ◦
L(x) + γδ(−m) approaches to (1 − γ)F ◦

L(x) + γ. Therefore, from (3.10) we

have

sup
G,H∈Pc1,c2,γ(F

◦)
dK(G,H) = sup

x
{(1− γ)F ◦

L(x) + γ − (1− γ)F ◦
R(x)}

= (1− γ){F ◦
L(xL)− F ◦

R(xL)}+ γ.

Also we have

(1− γ){F ◦
L(xL)− F ◦

R(xL)} =

 1− γ − c1 if xL ≤ xR

c2 − 1 + γ if xR < xL

= min (1− γ − c1, c2 − 1 + γ)

because of xL ≤, > xR according as 1 − γ − c1 ≤, > c2 − 1 + γ, which completes the proof of

the theorem. �

Proof of Theorem 4.1

Let pθ(G) = PG {Xi > θ} = 1−G(θ). Since Tn,θ(Xn) is distributed with Binomial BN (n, pθ(G)) ,

we have

PG {kn < Tn,θ(Xn) < n− kn} =

n−kn−1∑
i=kn+1

(
n

i

)
{pθ(G)}i{1− pθ(G)}n−i. (6.5)

From Lemma 1 in Yohai and Zamar (2004), the right-hand side of (6.5) is symmetric at pθ(G) =

1/2 and nondecreasing about pθ(G) on [0, 1/2]. Here we note that

F ◦(θ)− F ◦(xL) =
1

2
− 1− γ − c1

c2 − c1
=

(c2 − 1 + γ)− (1− γ − c1)

2(c2 − c1)

and

F ◦(θ)− F ◦(xR) = F ◦(θ)− (1− F ◦(xL)) = F ◦(xL)− F ◦(θ),

because of F ◦(xL) + F ◦(xR) = 1, where xL and xR are given by (3.7) and (3.8), respectively.

This implies thatxR ≤ θ ≤ xL if c2 − 1 + γ ≤ 1− γ − c1,

xL < θ < xR if c2 − 1 + γ > 1− γ − c1.
(6.6)

By Theorem 3.3 we have

(1− γ)F ◦
R(θ) ≤ G(θ) ≤ (1− γ)F ◦

L(θ) + γ, (6.7)

where F ◦
L and F ◦

R are given by (3.5) and (3.6), respectively. Then, from (6.6) we obtain

(1− γ)F ◦
R(θ) =

 1− γ − c2
2

if c2 − 1 + γ ≤ 1− γ − c1,
c1
2

if c2 − 1 + γ > 1− γ − c1
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and

(1− γ)F ◦
L(θ) + γ =


c2
2

+ γ if c2 − 1 + γ ≤ 1− γ − c1,

1− c1
2

if c2 − 1 + γ > 1− γ − c1

From the definition of λ in (3.12) it follows that

(1− γ)F ◦
R(θ) =

1− λ

2
and (1− γ)F ◦

L(θ) + γ =
1 + λ

2
.

Therefore, by (6.7) we have

1− λ

2
≤ pθ(G) ≤ 1 + λ

2
for all G ∈ Pc1,c2,γ(F

◦),

and the infimum (the supremum) is attained for any γ-contaminating distribution of F ◦
L (F ◦

R)

which places all its mass to the left (the right) of θ. Noting that

PG(kn < Tn,θ(Xn) < n− kn) = PG(X(kn+1) ≤ θ < X(n−kn)), (6.8)

the infimum of the left-hand side of (6.8) is attained by pθ(G) = (1−λ)/2 or pθ(G) = (1+λ)/2,

which completes the proof. �

Proof of Theorem 4.2

Let ln(Xn) = X(n−kn) −X(kn+1). Then, by Lemma 2 in Yohai and Zamar (2004), we have

lim
n→∞

ln(Xn) = G−1

(
1 + λ

2

)
−G−1

(
1− λ

2

)
, (6.9)

where G = (1 − γ̃)F + γ̃K ∈ Pc1,c2,γ(F
◦). Let x0 = sup{x | G(x) < 1/2}. Then there exists

ξ ∈ [0, 1] such that

(1− γ̃)F (x0) + γ̃{K(x0 − 0) + ξ(K(x0)−K(x0 − 0))} =
1

2
.

Putting η = (1− ξ)K(x0 − 0) + ξK(x0), η takes the value on [0, 1] for all K ∈ M . Let

Hη(x) = (1− γ̃)F (x) + γ̃η, (6.10)

and then Hη(x) takes the value on [γ̃η, 1 − γ̃(1 − η)]. Here we note that H−1
η (u) is defined on

(γ̃, 1 − γ̃) for all η ∈ [0, 1]. Since Hη(x) is continuous and strictly increasing on (−∞,∞), we

have that Hη(x) ≥ G(x) if x < x0 and Hη(x) ≤ G(x) if x ≥ x0. This implies that for any

0 ≤ λ < 1− 2γ̃

H−1
η

(
1 + λ

2

)
−H−1

η

(
1− λ

2

)
≥ G−1

(
1 + λ

2

)
−G−1

(
1− λ

2

)
. (6.11)

The left-hand side of (6.11) is written as

F−1

(
1− 2ηγ̃ + λ

2(1− γ̃)

)
− F−1

(
1− 2ηγ̃ − λ

2(1− γ̃)

)
. (6.12)
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Denoting

d(η) =
(2η − 1)γ̃ + λ

2(1− γ̃)
, (6.13)

we have

1− 2ηγ̃ − λ

2(1− γ̃)
=

1

2
− d(η) and

1− 2ηγ̃ + λ

2(1− γ̃)
=

1

2
+ d(1− η).

Also, since d(η) + d(1− η) = λ/(1− γ̃) ≥ 0 and d(η)− d(1− η) = (2η − 1)γ̃/(1− γ̃), it follows

that  d(η) ≥ |d(1− η)| for
1
2
≤ η ≤ 1,

d(1− η) > |d(η)| for 0 ≤ η <
1
2
.

In order to obtain the upper bound of (6.12) for all F ∈ Fc̃1,c̃2,γ̃(F
◦), we first consider the case

of 1/2 ≤ η ≤ 1, and assume c̃1 ̸= 0, c̃1 ̸= 1− γ̃ and c̃2 ̸= 1− γ̃.

Let

x2 = F−1

(
1− 2ηγ̃ − λ

2(1− γ̃)

)
,

and let F̃ ∈ Fc̃1,c̃2,γ̃(F
◦) be defined by

F̃ (x) =



c̃2
1− γ̃

F ◦(x) if x < x1,

c̃2 − c̃1
1− γ̃

F ◦(x1) +
c̃1

1− γ̃
F ◦(x) if x1 ≤ x ≤ x3,(

1− c̃2
1− γ̃

)
+

c̃2
1− γ̃

F ◦(x) if x3 < x,

where x1 (−∞ ≤ x1 ≤ x2) and x3 (x2 ≤ x3 ≤ ∞) are determined so as to satisfy F̃ (x2) = F (x2)

and F ◦(x3) = F ◦(x1) + (c̃2 − 1 + γ̃)/(c̃2 − c̃1), respectively. Then we can easily see that F (x) ≤
, =, ≥ F̃ (x) according as x <, =, > x2. Moreover, denoting

x4 = (F̃ )−1

(
1− 2ηγ̃ + λ

2(1− γ̃)

)
,

we obtain that (6.12) is bounded above by x4 − x2.

Next, let F̃ ◦
L ∈ Fc̃1,c̃2,γ̃(F

◦) be the stochastically smallest distribution given by (3.5) with

(c1, c2, γ) replaced by (c̃1, c̃2, γ̃). Also, let x̃L = (F ◦)−1{(1− γ̃ − c̃1)/(c̃2 − c̃1)} and

x̃2L = (F̃ ◦
L)

−1

(
1− 2ηγ̃ − λ

2(1− γ̃)

)
. (6.14)

Now, we consider Case 1: x̃2L > x̃L and Case 2: x̃2L ≤ x̃L, separately. We first treat Case 1.

From (6.14) it follows that

x̃2L = (F ◦)−1

(
1− 1− 2(1− η)γ̃ + λ

2c̃1

)
.
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Therefore, expressing the condition x̃2L > x̃L as that in λ we have

Case 1: λ < 1− 2ηγ̃ −
2c̃2(1− γ̃ − c̃1)

c̃2 − c̃1
.

Let

x̃4L = (F̃ ◦
L)

−1

(
1− 2ηγ̃ + λ

2(1− γ̃)

)
= (F ◦)−1

(
1−

1− 2(1− η)γ̃ − λ

2c̃1

)
,

and we show that x̃4L− x̃2L ≥ x4−x2. It follows from the definition of F̃ ◦
L that F̃ (x)− F̃ (x̃2L) ≥

F̃ ◦
L(x)− F̃ ◦

L(x̃2L) for all x ≥ x̃2L. Since F̃ ◦
L(x̃2L) = F̃ (x2) and F̃ ◦

L(x̃4L) = F̃ (x4), we have

F̃ (x2)− F̃ (x̃2L) ≥ F̃ (x4)− F̃ (x̃4L). (6.15)

Here we assume θ = 0 without loss of generality. If x̃4L < 0, it is clear from the unimodality and

the symmetry of f◦ that x̃4L − x̃2L ≥ x4 − x2. Let x̃4L ≥ 0. Since 1− F̃ (x4) = 1/2− d(1− η) ≥
1/2−d(η) = F̃ ◦

L(x̃2L), it follows from the density forms of F̃ ◦
L and F̃ that x̃2L ≤ −x4. Therefore,

by (6.15) we obtain

x2 − x̃2L ≥ x4 − x̃4L.

This means that (6.12) is bounded above by x̃4L − x̃2L, that is,

(F ◦)−1

(
1− 1− 2(1− η)γ̃ − λ

2c̃1

)
− (F ◦)−1

(
1− 1− 2(1− η)γ̃ + λ

2c̃1

)
. (6.16)

Next, we consider

Case 2: λ ≥ 1− 2ηγ̃ −
2c̃2(1− γ̃ − c̃1)

c̃2 − c̃1
.

Let F̂ ◦
L ∈ Fc̃1,c̃2,γ̃(F

◦) be defined by

F̂ ◦
L(x) =



c̃2
1− γ̃

F ◦(x) if x < x̂2L,(
1− c̃1

c̃2

)
1− 2ηγ̃ − λ

2(1− γ̃)
+

c̃1
1− γ̃

F ◦(x) if x̂2L ≤ x ≤ x̂3L,(
1− c̃2

1− γ̃

)
+

c̃2
1− γ̃

F ◦(x) if x̂3L < x,

(6.17)

where

x̂2L = (F ◦)−1

(
1− 2ηγ̃ − λ

2c̃2

)

and x̂3L = (F ◦)−1{(1− 2ηγ̃ − λ)/(2c̃2) + (c̃2 − 1 + γ̃)/(c̃2 − c̃1)}. Let

x̂4L = (F̂ ◦
L)

−1

(
1− 2ηγ̃ + λ

2(1− γ̃)

)
.

We consider the case (a): x̂4L ∈ (x̂2L, x̂3L) and the case (b): x̂4L ∈ [x̂3L,∞), separately. We

note that the conditions x̂4L ∈ (x̂2L, x̂3L) and x̂4L ∈ [x̂3L,∞) are expressed in the forms of
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λ < c̃1(c̃2 − 1 + γ̃)/(c̃2 − c̃1) and λ ≥ c̃1(c̃2 − 1 + γ̃)/(c̃2 − c̃1), respectively. Hence, from (6.17)

it follows that

x̂4L =


(F ◦)−1

(
λ
c̃1

+
1− 2ηγ̃ − λ

2c̃2

)
if λ <

c̃1(c̃2 − 1 + γ̃)

c̃2 − c̃1
(the case (a)),

(F ◦)−1

(
1−

1− 2(1− η)γ̃ − λ

2c̃2

)
if λ ≥

c̃1(c̃2 − 1 + γ̃)

c̃2 − c̃1
(the case (b)).

(6.18)

As easily seen, if F̃ ◦
L is replaced by F̂ ◦

L, then the same argument as Case 1 yields the inequality

x̂4L− x̂2L ≥ x4−x2 in the case (a). Noting x̂4L = x4, we can also see that the same result holds

for the case (b). Thus, (6.12) is bounded above by

(F ◦)−1

(
λ

c̃1
+

1− 2ηγ̃ − λ

2c̃2

)
− (F ◦)−1

(
1− 2ηγ̃ − λ

2c̃2

)
if λ <

c̃1(c̃2 − 1 + γ̃)

c̃2 − c̃1
(6.19)

and

(F ◦)−1

(
1− 1− 2(1− η)γ̃ − λ

2c̃2

)
− (F ◦)−1

(
1− 2ηγ̃ − λ

2c̃2

)
if λ ≥

c̃1(c̃2 − 1 + γ̃)

c̃2 − c̃1
. (6.20)

Next we show that all the upper bounds of (6.16), (6.19) and (6.20) are attained at η = 1.

Let gi(η), i = 1, 2, 3 be the upper bounds given in (6.16), (6.19) and (6.20) and g′i(η), i = 1, 2, 3

be the derivatives of gi(η) with respect to η, respectively. For Case 1, we have

g′1(η) = − γ̃

c̃1

{
1

f◦
(
(F ◦)−1

(
1
2 + d1(η)

)) − 1

f◦
(
(F ◦)−1

(
1
2 − d2(η)

))} ,

where

d1(η) =
1

2
−

1− 2(1− η)γ̃ − λ

2c̃1
and d2(η) =

1− 2(1− η)γ̃ + λ

2c̃1
−

1

2
.

Since d1(η)+d2(η) = λ/c̃1 ≥ 0, d2(η)−d1(η) = {(1− γ̃− c̃1)+(2η−1)γ̃}/c̃1 ≥ 0 for 1/2 ≤ η ≤ 1

and d2(η) ≥ 0, we have d2(η) ≥ |d1(η)| for 1/2 ≤ η ≤ 1, and hence we obtain g′1(η) ≥ 0 for

1/2 ≤ η ≤ 1 from the unimodality and the symmetry of f◦(x). Thus the maximum value of

g1(η) on 1/2 ≤ η ≤ 1 is attained at η = 1, which is given by

g1(1) = (F ◦)−1

(
1− 1− λ

2c̃1

)
− (F ◦)−1

(
1− 1 + λ

2c̃1

)
.

For the case (a) of Case 2, g′2(η) is given by

g′2(η) = − γ̃

c̃2

{
1

f◦
(
(F ◦)−1

(
1
2 + d3(η)

)) − 1

f◦
(
(F ◦)−1

(
1
2 − d4(η)

))} , (6.21)

where

d3(η) =
λ

c̃1
−

1

2
+

1− 2ηγ̃ − λ

2c̃2
and d4(η) =

1

2
−

1− 2ηγ̃ − λ

2c̃2
. (6.22)

Then we have d3(η)+d4(η) = λ/c̃1 ≥ 0, d4(η)−d3(η) = −(c̃2− c̃1)λ/(c̃1c̃2)+(c̃2−1+2ηγ̃)/c̃2 ≥ 0

because of the condition for the case (a) of Case 2 given in (6.18) and d4(η) = (c̃2 − 1 + 2ηγ̃ +
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λ)/c̃2 ≥ ((1 − γ̃) − 1 + 2ηγ̃ + λ)/c̃2 = ((2η − 1)γ̃ + λ)/c̃2 ≥ 0 for 1/2 ≤ η ≤ 1. By the same

argument as in Case 1, the maximum value of g2(η) on 1/2 ≤ η ≤ 1 is given by

g2(1) = (F ◦)−1

(
λ

c̃1
+

1− 2γ̃ − λ

2c̃2

)
− (F ◦)−1

(
1− 2γ̃ − λ

2c̃2

)
.

For the case (b) of Case 2, the derivative g′3(η) is given by (6.21) with d3(η) replaced by

d5(η) =
1

2
−

1− 2ηγ̃ − λ

2c̃2
.

Therefore, similarly, the maximum value of g3(η) on 1/2 ≤ η ≤ 1 is given by

g3(1) = (F ◦)−1

(
1− 1− λ

2c̃2

)
− (F ◦)−1

(
1− 2γ̃ − λ

2c̃2

)
.

The upper bound of (6.12) for the case of 0 ≤ η < 1/2 is given as follows: Let F ∗(x) =

1− F (2θ − x). Then, we have that (6.12) is expressed by

(F ∗)−1

(
1

2
+ d(1− η∗)

)
− (F ∗)−1

(
1

2
− d(η∗)

)
, (6.23)

where d(η∗) is given by (6.13) with η∗ = 1 − η. Therefore, it can be easily seen that the upper

bounds of (6.23) for all F ∗ ∈ Fc̃1,c̃2,γ̃(F
◦) and η∗ ∈ (1/2, 1] are the same as those for the case of

1/2 ≤ η ≤ 1.

Here, we check the conditions about λ for Case 1, (1) and (2) of Case 2 with η = 1, respectively.

Since

c̃1(c̃2 − 1 + γ̃)

c̃2 − c̃1
−

{
1− 2γ̃ −

2c̃2(1− γ̃ − c̃1)

c̃2 − c̃1

}
=

c̃2(1− γ̃ − c̃1) + (c̃2 − c̃1)γ̃

c̃2 − c̃1
≥ 0,

we have three cases for λ (0 ≤ λ < 1 − 2γ̃) when c̃1 ̸= 0, c̃1 ̸= 1 − γ̃ and c̃2 ̸= 1 − γ̃: Let

A = 1− 2γ̃− 2c̃2(1− γ̃− c̃1)/(c̃2− c̃1) and B = c̃1(c̃2− 1+ γ̃)/(c̃2 − c̃1). Then it holds that (i) if

0 ≤ λ < max(0, A), then the upper bound is g1(1), (ii) if max(0, A) ≤ λ < min(B, 1− 2γ̃), then

g2(1) and (iii) if min(B, 1− 2γ̃) ≤ λ < 1− 2γ̃, then g3(1).

We note that if either c̃1 or c̃2 equals to 1 − γ̃, then Fc̃1,c̃2,γ̃(F
◦) = {F ◦}. In this case, the

maximum asymptotic length L{In, F ◦, (c̃1, c̃2, γ̃)} is

(F ◦)−1

(
1− 2γ̃ + λ

2(1− γ̃)

)
− (F ◦)−1

(
1− 2γ̃ − λ

2(1− γ̃)

)
for 0 ≤ λ < 1− 2γ̃, 0 ≤ γ̃ <

1

2
,

which is included in (i) or (iii) of this theorem according as c̃1 = 1− γ̃ or c̃2 = 1− γ̃, respectively.

Finally, let H̃δ(−m) be defined by (6.10) with F and η replaced by F̃ ◦
L and δ(−m), respec-

tively, where F̃ ◦
L is the smallest distribution in Fc̃1,c̃2,γ̃(F

◦) and δ(−m) denotes the point mass

distribution at −m. Then it is easy to see that H̃δ(−m) ∈ Pc̃1,c̃2,γ̃(F
◦) and the limit of

H̃−1
δ(−m)

(
1 + λ

2

)
− H̃−1

δ(−m)

(
1− λ

2

)
as m → ∞

is equal to g1(1). Similarly, let Ĥδ(−m) ∈ Pc̃1,c̃2,γ̃(F
◦) be defined by (6.10) with F and η

replaced by F̂ ◦
L and δ(−m), respectively, where F̂ ◦

L is given by (6.17). Then, the limit of

Ĥ−1
δ(−m) ((1 + λ)/2) − Ĥ−1

δ(−m) ((1− λ)/2) as m → ∞ is equal to g2(1) or g3(1) according as

the condition of λ in (6.19). Thus, the theorem is proved. �
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Proof of Lemma 4.1

We first calculate A. Since

a =
2c̃1

(c̃2 − c̃1)

(
γ̃ −

1

2
−

c̃2(1− 2c̃1)

2c̃1

)
,

we have

A =


0 if γ̃ <

1
2
+

c̃2(1− 2c̃1)

2c̃1
,

a if γ̃ ≥ 1
2
+

c̃2(1− 2c̃1)

2c̃1
.

If 0 < c̃1 ≤ 1/2, then 1/2 + c̃2(1− 2c̃1)/(2c̃1) > 1/2, and hence we have A = 0 for 0 ≤ γ̃ < 1/2.

If 1/2 < c̃1 ≤ 1− γ̃, then we have that

1

2
+

c̃2(1− 2c̃1)

2c̃1
≥, < 0 according as c̃1 ≤, >

c̃2

2c̃2 − 1
.

Therefore, if 1/2 < c̃1 ≤ 1− γ̃ and c̃1 ≤ c̃2/(2c̃2 − 1), then it follows that

A =


0 if γ̃ <

1
2
+

c̃2(1− 2c̃1)

2c̃1
,

a if γ̃ ≥ 1
2
+

c̃2(1− 2c̃1)

2c̃1
,

(6.24)

and also if 1/2 < c̃1 ≤ 1− γ̃ and c̃1 > c̃2/(2c̃2 − 1), then A = a for 0 ≤ γ̃ < 1/2.

Next, we consider B. From

1− 2γ̃ − b =
1

(c̃2 − c̃1)(2c̃2 − c̃1)

(
c̃2(1− c̃1)

2c̃2 − c̃1
− γ̃

)
and

0 <
c̃2(1− c̃1)

2c̃2 − c̃1
=

1

2
−

c̃1(c̃2 − 1/2)

2c̃2 − c̃1
<

1

2
,

we have

B =


b if 0 < γ̃ <

c̃2(1− c̃1)

2c̃2 − c̃1
,

1− 2γ̃ if
c̃2(1− c̃1)

2c̃2 − c̃1
≤ γ̃ <

1
2
.

(6.25)

Now we have

c̃2(1− c̃1)

2c̃2 − c̃1
−

{
1

2
+

c̃2(1− 2c̃1)

2c̃1

}
=

1

2c̃1(2c̃2 − c̃1)
(c̃2 − c̃1){(4c̃2 − 1)c̃1 − 2c̃2} (6.26)

and so the left-hand side of (6.26) is non-positive or positive according as c̃1 ≤ or > 2c̃2/(4c̃2−1).

Thus, from (6.24) and (6.25) the lemma is obtained. �

Proof of Theorem 4.3

The assertion (i) is the direct consequence of Theorem 4.2 and the assertion (ii) is the special

case of the assertion (i). �
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Proof of Theorem 4.4

First, we show (F ◦)−1{(1 + λ)/2} ≤ B0. Let

F ∗
R(x) =


0 if x < (F ◦)−1(γ),

F ◦(x)− γ

1− γ
if x ≥ (F ◦)−1(γ),

and

H∗
L(x) =


F ◦(x)

γ
if x < (F ◦)−1(γ),

1 if x ≥ (F ◦)−1(γ).

Then we have F ◦ = (1− γ)F ∗
R + γH∗

L. Also, for M = (F ◦)−1{(1 + λ)/2} let

VM (x) =

 0 if x < M,
1

1− F ∗
R(M)

(F ∗
R(x)− F ∗

R(M)) if x ≥ M,

and

G◦
R(x) =

1− γ

1 + λ− 2γ
F ∗
R(x) +

(
1− 1− γ

1 + λ− 2γ

)
VM (x).

Then we have G◦
R(M) = 1/2, that is, M is the median of G◦

R. Letting g◦R(x) be the density

function of G◦
R(x), it is easy to see that

g◦R(x) =


1− γ

1 + λ− 2γ
f∗
R(x) if x < M,

1− γ

1− λ
f∗
R(x) if x ≥ M.

From 1− λ ≤ 1 + λ− 2γ, it follows that for every x ∈ R

c1
1− γ

g◦R(x) ≤
c1

1− λ
f∗
R(x) (6.27)

and

c2
1− γ

g◦R(x) ≥
c2

1 + λ− 2γ
f∗
R(x). (6.28)

Noting 1 − λ = max (c1, 2(1 − γ) − c2) ≥ c1 and 1 + λ − 2γ = min (2(1 − γ) − c1, c2) ≤ c2,

we obtain from (6.27) and (6.28) that {c1/(1 − γ)} g◦R(x) ≤ f∗
R(x) ≤ {c2/(1 − γ)} g◦R(x), and

hence F ∗
R ∈ Fc1,c2,γ(G

◦
R). Since F ◦ = (1 − γ)F ∗

R + γH∗
L, we have F ◦ ∈ Pc1,c2,γ(G

◦
R). By the

assumptions of the theorem, this implies M = (F ◦)−1{(1 + λ)/2} = (G◦
R)

−1(1/2) ∈ [A0, B0],

and therfore we obtain (F ◦)−1{(1 + λ)/2} ≤ B0.

Next, in order to show (F ◦)−1{(1− λ)/2} ≥ A0, let

F ∗
L(x) =


F ◦(x)

1− γ
if x < (F ◦)−1(1− γ),

1 if x ≥ (F ◦)−1(1− γ),
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and

H∗
R(x) =


0 if x < (F ◦)−1(1− γ),

F ◦(x)− (1− γ)

γ
if x ≥ (F ◦)−1(1− γ).

Then we have F ◦ = (1− γ)F ∗
L + γH∗

R. Also, for N = (F ◦)−1((1− λ)/2) let

WN (x) =


1

F ∗
L(N)

F ∗
L(x) if x < N,

1 if x ≥ N,

and

G◦
L(x) =

1− γ

1 + λ− 2γ
F ∗
L(x) +

(
1− 1− γ

1 + λ− 2γ

)
WN (x).

Then we have G◦
L(N) = 1/2, that is, N is the median of G◦

L. Letting g◦L(x) be the density

function of G◦
L(x), we can see

g◦L(x) =


1− γ

1− λ
f∗
L(x) if x < N,

1− γ

1 + λ− 2γ
f∗
L(x) if x ≥ N.

By the same argument as in g◦R it is clear that F ∗
L ∈ Fc1,c2,γ(G

◦
L). Since F ◦ = (1− γ)F ∗

L + γH∗
R,

we have F ◦ ∈ Pc1,c2,γ(G0). Therefore, from the assumptions of the theorem it follows that

N = (F ◦)−1{(1− λ)/2} = (G◦
L)

−1(1/2) ∈ [A0, B0] and hence (F ◦)−1{(1− λ)/2} ≥ A0. �

Proof of Theorem 5.1

Let In(Xn) be given in Theorem 4.1. Then we have

PG{φn,θ(Xn) = 1} = PG{θ /∈ In(Xn)}. (6.29)

This implies that the theorem immediately follows from Theorem 4.1. �

Proof of Theorem 5.2

We assume θ = 0 without loss of generality. Since, by (6.9) we have X(kn) → G−1{(1 − λ)/2}
and X(n−kn) → G−1{(1 + λ)/2}, it follows from (6.29) that

lim
n→∞

PG{φn,θ(Xn) = 1} =

 1 if G−1{(1− λ)/2} > 0 or G−1{(1 + λ)/2} < 0,

0 if G−1{(1− λ)/2} < 0 < G−1{(1 + λ)/2}.

Then

inf
G∈Pc̃1,c̃2,γ̃

(F ◦
η )

lim
n→∞

PG{φn,θ(Xn) = 1} = 1 for all |η| > M

holds either if

sup
G∈Pc̃1,c̃2,γ̃

(F ◦
η )
G−1

(
1 + λ

2

)
= η + sup

G∈Pc̃1,c̃2,γ̃
(F ◦)

G−1

(
1 + λ

2

)
< 0 (6.30)
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or

inf
G∈Pc̃1,c̃2,γ̃

(F ◦
η )
G−1

(
1− λ

2

)
= η + inf

G∈Pc̃1,c̃2,γ̃
(F ◦)

G−1

(
1− λ

2

)
> 0. (6.31)

Also, it is easy to see that

sup
G∈Pc̃1,c̃2,γ̃

(F ◦)
G−1

(
1 + λ

2

)
= {(1− γ̃)F̃R}−1

(
1 + λ

2

)
and

inf
G∈Pc̃1,c̃2,γ̃

(F ◦)
G−1

(
1− λ

2

)
= {(1− γ̃)F̃L + γ̃}−1

(
1− λ

2

)
,

where F̃L(x) and F̃R(x) are given by (3.5) and (3.6) with respect to x̃L, x̃R, c̃1, c̃2 and γ̃. Here

we assume c1 ̸= 0. Note that the solution of the equation (1 − γ̃)F̃R(x̃R) = (1 + λ)/2 is λ =

1− 2γ̃− 2c̃2(1− γ̃− c̃1)/(c̃2 − c̃1), and that of the equation (1− γ̃)F̃L(x̃L)+ γ̃ = (1−λ)/2 is the

same. Therefore, we easily obtain that

G−1

(
1 + λ

2

)
≤


(F ◦)−1

(
1 + λ

2c̃1

)
if 0 ≤ λ ≤ max (0, a),

(F ◦)−1

(
1− 1− 2γ̃ − λ

2c̃2

)
if max (0, a) < λ < 1− 2γ̃,

and

G−1

(
1− λ

2

)
≥


(F ◦)−1

(
1− 1 + λ

2c̃1

)
if 0 ≤ λ ≤ max (0, a),

(F ◦)−1

(
1− 2γ̃ − λ

2c̃2

)
if max (0, a) < λ < 1− 2γ̃,

where a = 1−2γ̃−{2c̃2(1− γ̃− c̃1)}/(c̃2− c̃1). Therefore, since F
◦ is symmetric about 0, (6.30)

and (6.31) hold if

|η| >


(F ◦)−1

(
1 + λ

2c̃1

)
if 0 ≤ λ ≤ max (0, a),

(F ◦)−1

(
1− 1− 2γ̃ − λ

2c̃2

)
if max (0, a) < λ < 1− 2γ̃.

According to the criteria of A = max (0, a) in the proof of Lemma 4.1, this implies that the

theorem holds for c̃1 ̸= 0. As for the case of c̃1 = 0, the result is included. �

Proof of Theorem 5.3

The assertions (i) is the immediate consequences of Theorem 5.2 and the assertion (ii) readily

follows from the assertion (i). �
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