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Passivity Degradation under the Discretization with the Zero-Order

Hold and the Ideal Sampler∗

Yasuaki Oishi†

Quantitative study is made on how much passivity is lost when a continuous-time nonlinear
system is discretized for digital implementation of a controller. The standard discretization
with the zero-order hold and the ideal sampler is mainly considered though other types of
discretization are also considered. The result can be used for the choice of the sampling
period. Namely, the sampling period has to be small when the original continuous-time
system is oscillatory. The general input-output framework is used for the discussion.

Keywords: passivity, discretization, sampling period, sampled-data systems.

1. Introduction

Passivity is an important notion in systems analysis and control especially in the case of nonlinear
systems [1, 2, 3]. It is well-known however that this notion is not compatible with discretization,
which is required for digital implementation of a controller. Namely, even if the original continuous-
time system is passive, the discretized system may not be passive any more.

Various authors have analyzed this phenomenon. Laila–Nešić–Teel [4] and de la Sen [5] gave
conditions for passivity to be preserved with a small enough sampling period. Although these authors
used standard discretization with the zero-order hold and the ideal sampler, Costa-Castelló–Fossas
[6] considered a different type of discretization with the average of the output of the system. They
showed that this discretization preserves passivity for any sampling period. Stramigioli–Secchi–van
der Schaft–Fantuzzi [7] considered the same discretization for port-Hamiltonian systems. A drawback
of this discretization is that the average of the output requires the future value of the output, which
is difficult to compute for a nonlinear system.

In this paper, we quantitatively investigate how much passivity is lost due to discretization. In
particular, we express the passivity degradation as a function of the sampling period. Our main
interest is on the standard discretization with the zero-order hold and the ideal sampler though other
types of discretization are considered as well. The result gives an insight for the choice of the sampling
period. Namely, a small sampling period is required for an oscillatory system. We use the input-output
framework for the sake of generality.

This paper is organized as follows. In Section 2, the notion of passivity and two types of dis-
cretization are presented. Passivity loss under discretization is also discussed there. Section 3 is the
main section and evaluates the passivity degradation under the standard discretization. Finally in
Section 4, extension of the result is discussed.

Notation is standard. The symbol Rm stands for the space of the m-dimensional real vectors. The
symbol T expresses the transpose of a vector. For a vector v ∈ Rm, its norm ‖v‖ is defined as

√
vTv.
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2. Passivity and Discretization

The continuous-time system S is an operator mapping a piecewise continuous signal u(t) to a contin-
uous signal y(t), each of which takes a value in Rm. It is assumed to map the zero input u(t) ≡ 0 to
the zero output y(t) ≡ 0.

Suppose that the system S satisfies the passivity inequality∫ T

0
u(t)Ty(t) dt ≥ ε

∫ T

0
‖u(t)‖2 dt + δ

∫ T

0
‖y(t)‖2 dt (1)

for any T ≥ 0 and any piecewise continuous input u(t), where ε and δ are real numbers. Although
ε and δ can be negative, we are interested in the case that they are nonnegative. In particular, S is
called (i) passive when ε = δ = 0; (ii) input strictly passive when ε > 0 and δ = 0; (iii) output strictly
passive when ε = 0 and δ > 0; (iv) very strictly passive when ε > 0 and δ > 0 [1, 2, 3].

We next consider discretization of S. With h being some positive number called the sampling
period, we define the discrete-time input ud(k), k = 1, 2, . . ., and the discrete-time output yd(k),
k = 1, 2, . . ., so as to be related to their continuous-time counterparts in a way described later. The
values ud(k) and yd(k) are considered as the signals at the time t = kh. Now the operator from
{ud(k)} to {yd(k)} is regarded as a discrete-time system. This procedure as well as the resulting
discrete-time system is called the discretization of S.

Passivity can be considered also on a discrete-time system. Suppose that the discrete-time system
considered above satisfies the discrete-time passivity inequality

h
K−1∑
k=0

ud(k)Tyd(k)≥εdh
K−1∑
k=0

‖ud(k)‖2 + δdh
K−1∑
k=0

‖yd(k)‖2 (2)

for any positive integer K and any input ud(k), where εd and δd are real numbers. Then this system
is called (i) passive when εd = δd = 0; (ii) input strictly passive when εd > 0 and δd = 0; (iii) output
strictly passive when εd = 0 and δd > 0; (iv) very strictly passive when εd > 0 and δd > 0. The factor
h appears in (2) for making its dimension in time consistent with the continuous-time inequality (1).

The most commonly used discretization is the following. The discrete-time input ud(k) is related
to the continuous-time input u(t) by the zero-order hold, that is,

u(t) = ud(k), kh ≤ t < (k + 1)h, k = 0, 1, . . . ; (3)

the discrete-time output yd(k) is corresponded to the continuous-time output y(t) by the ideal sampler,
that is,

yd(k) = y(kh), k = 0, 1, . . . . (4)

We call this procedure standard discretization and write the resulting discrete-time system as Ssta
d .

Important observation here is that, even if S is passive, its standard discretization Ssta
d may not be

so. See Example 2 below. The approach of [7, 6] to avoid this problem is to define the discrete-time
output by

yd(k) =
1
h

∫ (k+1)h

kh
y(t) dt, k = 0, 1, . . . , (5)

in place of (4). We call this discretization average discretization and write the resulting discrete-time
system as Save

d . This discretization preserves passivity. We state the result in a stronger form than
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that in [6]. Namely, we consider preservation not only of (nonstrict) passivity but also of the three
types of strict passivity. Moreover, the result is given in a quantitative way. The real number δ is
assumed to be nonnegative here.

Theorem 1. Suppose that the original continuous-time system S satisfies the continuous-time pas-
sivity inequality (1) with some real numbers ε and δ ≥ 0. Then its average discretization Save

d satisfies
the discrete-time passivity inequality (2) with εd = ε and δd = δ. In particular, if S is passive, input
strictly passive, output strictly passive, and very strictly passive, so is its average discretization Save

d ,
respectively.

Proof. Assuming the relationships (3) and (5) and T = Kh, we compare the three integrals in the
continuous-time passivity inequality (1) with the corresponding summations in (2), respectively.

The first integral in (1) is equal to the corresponding summation in (2) because∫ Kh

0
u(t)Ty(t) dt =

K−1∑
k=0

ud(k)T
∫ (k+1)h

kh
y(t) dt = h

K−1∑
k=0

ud(k)Tyd(k). (6)

As easily seen, the second integral is again equal to the corresponding summation, i.e.,∫ Kh

0
‖u(t)‖2 dt = h

K−1∑
k=0

‖ud(k)‖2. (7)

Finally, the third integral is rewritten as∫ Kh

0
‖y(t)‖2 dt =

K−1∑
k=0

m∑
i=1

∫ (k+1)h

kh
yi(t)2 dt

with y(t) = (y1(t) y2(t) · · · ym(t))T. Here, we have

√
h

√∫ (k+1)h

kh
yi(t)2 dt ≥

∣∣∣∣∫ (k+1)h

kh
yi(t) dt

∣∣∣∣
by the Cauchy–Schwarz inequality. It hence follows that∫ Kh

0
‖y(t)‖2 dt ≥

K−1∑
k=0

m∑
i=1

1
h

(∫ (k+1)h

kh
yi(t) dt

)2

= h

K−1∑
k=0

‖yd(k)‖2. (8)

Using (6)–(8) with the passivity inequality (1), we have the desired result. Note that δ has to be
nonnegative because (8) is an inequality. ¤

Example 2. Let S be a linear system

ẋ(t) = −x(t) + u(t), x(0) = 0,

y(t) = x(t).

This system satisfies ẏ(t)y(t) = −y(t)2 + u(t)y(t) and then

0 ≤ 1
2
y(T )2 =

∫ T

0
ẏ(t)y(t) dt = −

∫ T

0
y(t)2 dt +

∫ T

0
u(t)y(t) dt,

3



which implies that S is output strictly passive with ε = 0 and δ = 1.
This system is not input strictly passive. To see this, let a be a positive integer and consider the

input u(t) equal to sin at for 0 ≤ t < 2π and to 0 otherwise. The integral
∫ T
0 u(t)2 dt = π for any

T ≥ 2π irrespective of a. On the other hand,
∫ T
0 u(t)y(t) dt approaches zero as a → ∞. This means

that the continuous-time passivity inequality (1) does not hold with ε > 0 and δ = 0.
Its standard discretization Ssta

d can be written in the state-space form as

x((k + 1)h) = e−hx(kh) + (1 − e−h)ud(k), x(0) = 0,

yd(k) = x(kh).

This system is however not passive irrespectively of the sampling period h. To see this, let the input
ud(k) be equal to 1 for k = 0, to −1 for k = 1, and to 0 otherwise. This input gives yd(0) = 0
and yd(1) = 1 − e−h, resulting in h

∑K−1
k=0 ud(k)yd(k) = −h(1 − e−h) < 0 for K ≥ 2. Hence, the

discrete-time passivity inequality (2) does not hold with εd = δd = 0.
On the other hand, the average discretization Save

d remains output strictly passive due to Theo-
rem 1. 3

The average discretization is theoretically attractive because it makes the passivity-based methods
available after the discretization. A drawback of this discretization is that computation of the average
sample yd(k) = (1/h)

∫ (k+1)h
kh y(t) dt may not be easy at the time t = kh because it requires the future

output value y(t), kh < t < (k + 1)h. When the original system S is linear, computation of yd(k) is
possible at t = kh because the future value is explicitly obtained as a function of the present state
x(kh) and input ud(k). When S is nonlinear, however, such explicit expression is difficult usually.

Motivated by this fact, we go back to the standard discretization and investigate how much pas-
sivity is lost with it.

3. Passivity Degradation under the Standard Discretization

This is the main section of the paper. We evaluate how much passivity is lost under the standard
discretization. The result is summarized in the following theorem. Nonnegativity of δ is not required
this time.

Theorem 3. Suppose that the original continuous-time system S satisfies the continuous-time pas-
sivity inequality (1) with some real numbers ε and δ. Suppose also that the operator from u(t) to ẏ(t)
has the finite L2-gain γ > 0, that is,∫ T

0
‖ẏ(t)‖2 dt ≤ γ2

∫ T

0
‖u(t)‖2 dt

for any T ≥ 0 and admissible u(t). Then its standard discretization Ssta
d satisfies the discrete-time

passivity inequality (2) with

εd = ε − hγ − hγ|δ| − h2γ2|δ|,

δd = δ − hγ|δ|.

In particular, if S is input strictly passive and very strictly passive, so is its standard discretization
Ssta

d , respectively, for a small enough sampling period h.
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This theorem tells importance of input strict passivity for preservation of passivity. Indeed, if
the original system S lacks input strict passivity, its passivity or output strict passivity may not be
preserved however small the sampling period would be. This is what we observed in Example 2. The
result is consistent with the results of [4, 5].

It is notable that Theorem 3 presents the degradation of passivity as a function of the sampling
period h. In order to make the degradation small, we need to choose h small. It is especially so when
γ is large, that is, when the operator from u(t) to ẏ(t) has a high gain. This is understandable because
such a system should be oscillatory and require fast enough sampling for its behavior to be captured.

Proof. We again compare the three integrals in the continuous-time passivity inequality (1) with
the corresponding summations but assuming (3) and (4) this time.

The discrepancy between the first integral and the corresponding summation is

D1 :=
∣∣∣∣∫ Kh

0
u(t)Ty(t) dt − h

K−1∑
k=0

ud(k)Tyd(k)
∣∣∣∣.

Rewriting this with (3) and (4), we obtain

D1 =
∣∣∣∣K−1∑
k=0

ud(k)T
∫ (k+1)h

kh
y(t) − y(kh) dt

∣∣∣∣ =
∣∣∣∣K−1∑
k=0

ud(k)T
∫ (k+1)h

kh

∫ t

kh
ẏ(s) dsdt

∣∣∣∣
≤

K−1∑
k=0

‖ud(k)‖
∫ (k+1)h

kh

∫ t

kh
‖ẏ(s)‖ dsdt.

In the last expression, the integral with respect to s can be bounded from above as

∫ t

kh
‖ẏ(s)‖ds ≤

∫ (k+1)h

kh
‖ẏ(s)‖ds ≤

√
h

√∫ (k+1)h

kh
‖ẏ(s)‖2 ds.

We hence have

D1 ≤ h
√

h

K−1∑
k=0

‖ud(k)‖

√∫ (k+1)h

kh
‖ẏ(s)‖2 ds ≤ h

√
h

√√√√K−1∑
k=0

‖ud(k)‖2

√√√√K−1∑
k=0

∫ (k+1)h

kh
‖ẏ(s)‖2 ds.

Since the L2-gain from u(t) to ẏ(t) is γ, the second summation in the last expression can be bounded
from above by γ2

∫ Kh
0 ‖u(t)‖2 dt, which is equal to γ2h

∑K−1
k=0 ‖ud(k)‖2. This gives

D1 ≤ hγ · h
K−1∑
k=0

‖ud(k)‖2.

On the second integral in (1), the equation (7) remains to hold. On the third integral, we can
make comparison in a similar way to the first one and obtain∣∣∣∣∫ Kh

0
‖y(t)‖2 dt − h

K−1∑
k=0

‖yd(k)‖2

∣∣∣∣ ≤ (hγ + h2γ2)h
K−1∑
k=0

‖ud(k)‖2 + hγ · h
K−1∑
k=0

‖yd(k)‖2.

Using the obtained relationships with (1) and arranging the terms, we have the theorem. ¤
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Figure 1. The stability bounds on the sampling period h obtained from the passivity theorem (solid
line) and the closed-loop pole location (dashed line)

Example 4. We continue Example 2. Recall that the original system S is output strictly passive and
its standard discretization Ssta

d is not passive for any sampling period h > 0. This phenomenon is
explained by Theorem 3. Indeed, the lack of input strict passivity of S leads to the loss of passivity.

Quantitative discussion is possible. The operator from u(t) to ẏ(t) is in this case

ẋ(t) = −x(t) + u(t), x(0) = 0,

ẏ(t) = −x(t) + u(t),

which has the L2-gain γ = 1. Theorem 3 states that the standard discretization Ssta
d satisfies the

passivity inequality with εd = −2h − h2 and δd = 1 − h.
This result can be used for stability analysis. Let us recall the passivity theorem [1, p. 350]. There,

we consider a closed-loop system connecting two continuous-time systems by the negative feedback
and assume it well-posed. Then, the closed-loop system is L2-stable if the two systems satisfy the
passivity inequality (1) with ε, δ and ε′, δ′, respectively, and they have ε + δ′ > 0 and ε′ + δ > 0. The
same result holds on discrete-time systems, too.

We now consider the closed-loop system connecting S and a static linear gain g > 0 by the negative
feedback. It is well-posed due to the strict properness of S. The system S has ε = 0 and δ = 1 as in
Example 2 while the gain g has ε′ = 0 and δ′ = 1/g as seen easily. The passivity theorem says that
the closed-loop system is L2-stable for any g > 0. This can be confirmed also with the location of the
closed-loop pole.

The situation is different for the discrete-time closed-loop system consisting of Ssta
d and g. Since

εd = −2h − h2, δd = 1 − h, ε′d = 0, and δ′d = 1/g, the stability condition is

0 < h < min
{

1,

√
1 +

1
g
− 1

}
.

It claims that, when the gain g is large, the sampling period has to be chosen adequately small.
We can obtain a stability condition from the location of the closed-loop pole, which turns out

0 < h < ln
g + 1
g − 1

(g > 1).
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The two stability conditions are compared in Figure 1. They show similar behavior for a large g. The
condition from the passivity theorem looks more conservative than the other. This conservatism is
considered to come from Theorem 3 and, possibly, from the passivity theorem as well. We need to
notice, however, that the condition from the passivity theorem guarantees stability not only for the
particular linear gain g but also all the static nonlinear gain belonging to the sector [0, g]. 3

4. Discussion

In this paper, we investigate how much passivity is lost under the standard discretization. Our
investigation is quantitative and can be used, for example, for the choice of the sampling period as
seen in the example. This is considered to be useful in practice.

An extension of the result is possible. The standard discretization can be improved with the
information available at the time t = kh as

yd(k) = y(kh) +
h

2
ẏ(kh), k = 0, 1, . . . .

This is obtained by substitution of the first-order Taylor expansion y(t) ≈ y(kh) + (t − kh)ẏ(kh) into
the definition of the average discretization (5). Let us call it the first-order discretization and write
the resulting system as Sfir

d . Passivity degradation under this discretization can be evaluated similarly
to the case of the standard discretization.

Theorem 5. Suppose that the original continuous-time system S satisfies the continuous-time pas-
sivity inequality (1) with some real numbers ε and δ. Suppose also that the operator from u(t) to ẏ(t)
has the finite L2-gain γ > 0 and the operator from u(t) to ÿ(t) has the finite L2-gain β > 0. Then its
first-order discretization Sfir

d satisfies the discrete-time passivity inequality (2) with

εd = ε − 1
2
h2β −

(
h2γ2 +

1
2
h2β +

1
4
h4β2

)
|δ|,

δd = δ − 1
2
h2β|δ|.

In particular, if S is input strictly passive and very strictly passive, so is its first-order discretization
Sfir

d , respectively, for a small enough sampling period h.

Proof. See Appendix. ¤

Passivity degradation under the first-order discretization is of order h2 while it is of order h under
the standard discretization. This reduction is a consequence of the improvement of discretization. On
the other hand, it is still not possible to preserve passivity without input strict passivity. Indeed, when
the original system S is not input strictly passive, its discretization Sfir

d may not be passive however
small the sampling period would be.

In order to quantify the passivity degradation, we need γ and β, which are the L2-gain from u(t)
to ẏ(t) and that from u(t) to ÿ(t), respectively. Their evaluation is easy for a linear S as seen in
the example. It is however difficult for a nonlinear S in general. It is even possible that S does not
have any finite γ or β. This difficulty arises because the present framework allows the input u(t) to

7



be infinitely large. In this sense, a local framework of passivity might be useful for extending the
discussion here.

Kawakami–Fujioka [8] analyzed stability of a sampled-data Hamiltonian system by extending the
scaled small-gain theorem, which is more general than the passivity theorem. This direction of the
research should be fruitful for tight stability analysis.
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Appendix: Proof of Theorem 5

The idea of the proof is the same as in Theorems 1 and 3. We compare the three integrals in (1) with
the corresponding summations in (2). To do this, the following relationship is useful:

y(t) − yd(k) = y(t) − y(kh) − h

2
ẏ(kh)

=
1
h

∫ (k+1)h

kh

[
y(t) − y(kh) − (s − kh)ẏ(kh)

]
ds

=
1
h

∫ (k+1)h

kh

[∫ t

kh
ẏ(r) dr −

∫ s

kh
ẏ(kh) dr

]
ds

=
1
h

∫ (k+1)h

kh

[∫ t

s
ẏ(r) dr +

∫ s

kh
ẏ(r) − ẏ(kh) dr

]
ds

=
1
h

∫ (k+1)h

kh

∫ t

s
ẏ(r) dr ds +

1
h

∫ (k+1)h

kh

∫ s

kh

∫ r

kh
ÿ(q) dq dr ds. (9)

We compare the first integral in (1) with the corresponding summation in (2). Their discrepancy
is written as

D′
1 :=

∣∣∣∣∫ Kh

0
u(t)Ty(t) dt − h

K−1∑
k=0

ud(k)Tyd(k)
∣∣∣∣ =

∣∣∣∣K−1∑
k=0

ud(k)T
∫ (k+1)h

kh
y(t) − yd(k) dt

∣∣∣∣.
We substitute (9) into the last expression. Noting that the first term of (9) vanishes after the integra-
tion with t, we have

D′
1 =

∣∣∣∣K−1∑
k=0

ud(k)T
∫ (k+1)h

kh

1
h

∫ (k+1)h

kh

∫ s

kh

∫ r

kh
ÿ(q) dq dr dsdt

∣∣∣∣
≤

K−1∑
k=0

‖ud(k)‖
∫ (k+1)h

kh

∫ s

kh

∫ r

kh
‖ÿ(q)‖dq dr ds

≤
K−1∑
k=0

‖ud(k)‖h2

2

∫ (k+1)h

kh
‖ÿ(q)‖dq

8



≤
K−1∑
k=0

‖ud(k)‖h2

2

√
h

√∫ (k+1)h

kh
‖ÿ(q)‖2 dq

≤ h2

2

√
h

√√√√K−1∑
k=0

‖ud(k)‖2

√√√√K−1∑
k=0

∫ (k+1)h

kh
‖ÿ(q)‖2 dq.

The second summation in the last expression is bounded by β2
∫ Kh
0 ‖u(t)‖2 dt = β2h

∑K−1
k=0 ‖ud(k)‖2.

We hence have

D′
1 ≤ h2β

2
· h

K−1∑
k=0

‖ud(k)‖2.

The second integral in (1) is equal to the corresponding summation in (2). On the third integral, its
discrepancy with the corresponding summation can be evaluated similarly to the first one. Specifically
we have∣∣∣∣∫ Kh

0
‖y(t)‖2 dt − h

K−1∑
k=0

‖yd(k)‖2

∣∣∣∣ ≤ (
h2γ2 +

1
2
h2β +

1
4
h4β2

)
h

K−1∑
k=0

‖ud(k)‖2 +
1
2
h2β · h

K−1∑
k=0

‖yd(k)‖2.

Using the obtained relationships with (1) and arranging the terms, we have the desired inequality.
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