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Yasuaki Oishi† and Teodoro Alamo‡

Two conservative approaches are proposed to a semidefinite programming problem nonlinearly de-
pendent on uncertain parameters. These approaches are applicable to general nonlinear parameter
dependence not necessarily polynomial or rational. They are based on a mild assumption that the
parameter dependence is expressed as the difference of two convex functions. The first approach
uses constant bounds on the parameter dependence. Optimization of the bounds is reduced to con-
vex nonsmooth minimization in general. The second approach uses parameter-dependent bounds
for a less conservative result. Optimization of the bounds is immediate when the gravity center
is computable for the parameter set. Numerical examples are presented for illustration of the
approaches.
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representation, convexity, conjugate functions, linear matrix inequalities, conservatism.

1. Introduction

A robust semidefinite programming problem (robust SDP problem) is an important optimization

problem, to which many control problems are reduced (Ben-Tal & Nemirovski, 2001; Scherer, 2006;

Ben-Tal, El Ghaoui, & Nemirovski, 2009). There, a linear objective function is to be optimized under

a linear matrix inequality (LMI) constraint dependent on uncertain parameters. When the parameter

dependence is affine, this problem is exactly solvable: the parameter-dependent constraint is replaced

by the constraints corresponding to the vertices of the parameter set and the resulting problem is

solved with the standard interior-point method. Note however that the problem is NP-hard even in

this simple case (Nemirovskii, 1993). When the parameter dependence is not affine, a conservative

approach is usually taken: the parameter-dependent constraint is replaced by its sufficient condition

expressed by a finite number of parameter-independent LMI constraints. Considerable efforts have

been paid in the case of polynomial or rational parameter dependence (e.g., Ben-Tal & Nemirovski,

1998; El Ghaoui, Oustry, & Lebret, 1998; Bliman, 2004; Chesi, Garulli, Tesi, & Vicino, 2005; Scherer,

2005; Scherer & Hol, 2006; Peaucelle & Sato, 2009; Oishi, 2009). There, conservatism can be reduced

to any desired degree. On the other hand, the case of general nonlinear parameter dependence has not

been considered so much except for a few works (Papachristodoulou & Prajna, 2005; Chesi & Hung,

2008; Oishi & Fujioka, 2010).
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In this paper, we consider a robust SDP problem with general nonlinear parameter dependence and

show the usefulness of the, so-called, DC-representations, which will be explained later. Specifically, we

consider minimization of a linear objective function subject to an LMI constraint affinely dependent on

q continuous nonlinear functions aj(θ), j = 1, 2, . . . , q, where θ is a p-dimensional uncertain parameter.

This constraint has to be satisfied for all θ in the set Θ, which is a p-dimensional closed convex polytope

(i.e., bounded polyhedron) having a nonempty interior. (See Section 2.1 for the explicit form of the

problem.) One possible approach to this problem is to obtain upper and lower bounds, aj ≤ aj(θ) ≤ aj

(θ ∈ Θ), for each j = 1, 2, . . . , q and to replace aj(θ) in the original LMI constraint either by aj or aj .

The resulting 2q LMIs constitute a sufficient condition for the original LMI constraint to be satisfied.

Hence, we can minimize the objective function subject to these LMIs and regard the obtained solution

as an approximate solution of the original problem. Now, we have two issues in this approach. First,

the upper and lower bounds on aj(θ) can be difficult to find. Second, this approach can be considerably

conservative because it uses constant bounds and neglects how aj(θ) depends on θ. (See Section 5 for

an example.)

In this paper, we would like to address these two issues using the DC-representations. Here,

the letters “DC” mean the difference of two convex functions. We assume that each of the nonlin-

ear functions aj(θ) is expressed as the difference of two convex functions. Then, we can compute

upper and lower bounds on aj(θ) with this representation. Furthermore, we can obtain parameter-

dependent bounds incorporating the parameter dependence of aj(θ). The constant bounds as well as

the parameter-dependent bounds form parameterized families and they can be optimized in some spe-

cific sense. Between these two types of bounds, the parameter-dependent bounds look better because

they can incorporate the parameter dependence of aj(θ) and they have computational advantage in

their optimization. The notion of the DC-representation has been utilized in the field of optimization

(Tuy, 1998; Horst & Thoai, 1999). Its application in control was considered by Tuan, Apkarian, Hosoe,

and Tuy (2000), Tuan, Hosoe, and Tuy (2000), Bravo, Alamo, Fiacchini, and Camacho (2007), and

Alamo, Bravo, Redondo, and Camacho (2008).

The organization of the paper is as follows. In Section 2, the problem is presented and the notion

of DC-representation is introduced. In Section 3, an approach with the constant bounds is presented.

In Section 4, an approach with the parameter-dependent bounds is presented and its advantage is

discussed. Section 5 gives numerical examples and Section 6 concludes the paper.

The following notation is used. The symbol Rn stands for the set of n-dimensional real column

vectors. The symbol T expresses the transpose of a vector. The symbol I denotes the identity matrix

of appropriate size. For a symmetric matrix A, the inequality A º O means that A is positive

semidefinite. For a closed convex polytope Θ, the symbol ver Θ indicates the set of the vertices of Θ.

The number of the vertices is expressed by | verΘ|.
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2. Preparations

2.1. Problem to be considered

The problem to be considered in this paper is the following:

P : minimize cTx

subject to F0(x) +
p∑

i=1

θiFi(x) +
q∑

j=1

aj(θ)Fp+j(x) º O (∀θ ∈ Θ). (1)

Here, x ∈ Rn is a design variable; c ∈ Rn is a given vector; Fi(x), i = 0, 1, . . . , p+q, are affine functions

of x whose values are m × m symmetric matrices; θ = (θ1 θ2 · · · θp)T is an uncertain parameter

taking the value in the parameter set Θ; Θ is a closed convex polytope in Rp having a nonempty

interior; aj(θ), j = 1, 2, . . . , q, are continuous nonlinear functions of θ ∈ Θ. This problem is difficult to

solve because the constraint (1) has to be satisfied for all θ in Θ. If the nonlinear functions aj(θ) are

polynomial or rational, a sufficient condition can be obtained for (1) and can be used for approximate

solution of the problem P (El Ghaoui, et al., 1998; Bliman, 2004; Chesi, et al., 2005; Scherer, 2005;

Scherer & Hol, 2006; Peaucelle & Sato, 2009; Oishi, 2009). Hence, we are interested in the case that

aj(θ) are not polynomial or rational though not restricted to the case.

As discussed in the introduction, a conservative approach is possible to the problem P if upper

and lower bounds are available on aj(θ), j = 1, 2, . . . , q. To have these bounds, we use the DC-

representation of aj(θ), which is explained next.

2.2. DC-representation

Let Θ be a closed convex polytope in Rp having a nonempty interior. A continuous function a(θ) on

Θ is said to have a DC-representation if it is expressed as the difference of two convex functions, that

is,

a(θ) = b(θ) − c(θ) (θ ∈ Θ),

where b(θ) and c(θ) are convex functions on Θ.

Example 1. Suppose that a(θ) = sinh θ and Θ = [−1, 1]. Its DC-representation is given by b(θ) =

eθ/2 and c(θ) = e−θ/2.

Suppose that a(θ) = sin θ and Θ = [−2, 2]. The second derivative of sin θ is larger than or equal to

−1 on Θ, which implies the convexity of sin θ + θ2/2 on Θ. Hence, b(θ) = sin θ + θ2/2 and c(θ) = θ2/2

give the DC-representation. 3

Polynomials and rational functions have DC-representations if they are continuous on Θ. Any

function continuous on Θ can be approximated to any precision by a function possessing a DC-

representation. Moreover, the second example above shows that an explicit DC-representation can

be obtained for a given function if a lower bound is known on its second derivative (or the Hessian

matrix in the case of p > 1). Computation of such a bound is discussed by Adjiman and Floudas
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Figure 1. The graphs of f(θ) and fλ(θ)

(1996). It is hence reasonably mild to assume the nonlinear functions aj(θ) in the problem P to have

known DC-representations. In the following sections, we are to consider the problem P under this

assumption.

3. Approach with constant bounds

We assume in the problem P that the nonlinear function aj(θ) has a known DC-representation

aj(θ) = bj(θ) − cj(θ) (θ ∈ Θ)

for each j = 1, 2, . . . , q, where bj(θ) and cj(θ) are convex functions on Θ. We consider in this section

how to obtain upper and lower bounds on aj(θ) using its DC-representation. Once such bounds are

obtained, we can form a sufficient condition for the constraint (1) of the problem P and obtain an

approximate solution of P .

For preparation, let us consider in general a convex function f(θ) on Θ. For any λ ∈ Rp, we define

an affine function in θ by

fλ(θ) := λTθ − max
bθ∈Θ

[
λTθ̂ − f(θ̂)

]
. (2)

Rewriting it as

fλ(θ) = min
bθ∈Θ

[
λT(θ − θ̂) + f(θ̂)

]
, (3)

we can see that the graph of this function forms the hyperplane having the normal vector (λT − 1)T

and supporting the graph of f(θ) from below (Figure 1). It is also seen that fλ(θ) ≤ f(θ) for any

θ ∈ Θ because the square bracket in (3) is equal to f(θ) with θ̂ = θ. The function fλ(θ) is related to

the conjugate function of f(θ), which will be used later in Proposition 8.

The next proposition gives the desired bounds on aj(θ).

Proposition 2. For each j = 1, 2, . . . , q, set the values

aj,λ := min
θ∈ver Θ

[
bj,λ(θ) − cj(θ)

]
, aj,µ := max

θ∈ver Θ

[
bj(θ) − cj,µ(θ)

]
(4)

with λ and µ being any vectors in Rp. Then, they satisfy aj,λ ≤ aj(θ) ≤ aj,µ (θ ∈ Θ).
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Proof. The relation bj,λ(θ) ≤ bj(θ) implies aj(θ) ≥ bj,λ(θ) − cj(θ) ≥ minθ∈Θ[bj,λ(θ) − cj(θ)] for any

θ ∈ Θ. The function bj,λ(θ) − cj(θ) is concave because bj,λ(θ) is affine and −cj(θ) is concave. This

function hence attains the minimum at a vertex of Θ. This implies one of the desired inequalities,

aj,λ ≤ aj(θ). The remaining inequality aj(θ) ≤ aj,µ follows by similar reasoning. ¤

Computation of the bounds aj,λ and aj,µ is carried out as follows. For given λ and µ, we first

obtain explicit forms of bj,λ(θ) and cj,µ(θ) following the definition (2). This can be performed through

maximization of the concave functions λTθ̂ − bj(θ̂) and µTθ̂ − cj(θ̂), though it requires a numerical

technique1 in general (e.g., Hiriart-Urruty & Lemaréchal, 1993; Bertsekas, 1999). Then, we carry out

minimization and maximization in (4) to obtain the bounds. This step requires only comparison of a

finite number of values.

Proposition 2 allows us to construct a sufficient condition for the constraint (1) of the problem P .

Let us choose the vectors λ(j) and µ(j) arbitrarily from Rp for each j = 1, 2, . . . , q and consider the

following condition on x ∈ Rn:

F0(x) +
p∑

i=1

θiFi(x) +
q∑

j=1

αjFp+j(x) º O

(∀αj ∈ {aj,λ(j), aj,µ(j)}, j = 1, 2, . . . , q; ∀θ ∈ verΘ). (5)

Here, all the 2q assignments are considered for αj , j = 1, 2, . . . , q, and all the vertices of Θ are

considered for θ.

Proposition 3. Let λ(j) and µ(j) be some vectors in Rp for each j = 1, 2, . . . , q. Then, for a given

x ∈ Rn, the condition (1) is satisfied if the condition (5) is satisfied.

Proof. Proposition 2 assures aj,λ(j) ≤ aj(θ) ≤ aj,µ(j) (θ ∈ Θ) for each j = 1, 2, . . . , q. Since the

condition (5) is convex in θi and αj , it implies the condition (1). ¤

We now have the following approach to the problem P . We replace the constraint (1) with its

sufficient condition (5) to have a standard SDP problem solvable with the interior-point method. The

optimal solution of this modified problem can be used as an approximate solution of P , though it

attains, in general, a larger value than the minimum of P . The condition (5) consists of 2q| verΘ|
LMIs with | verΘ| meaning the number of the vertices of Θ. Although this number becomes large for

a large q, it may be reasonable for the NP-hard problem P .

The choice of the vectors λ(j) and µ(j) is arbitrary. It would be nice, however, if we can choose

optimal vectors. Specifically, the desired λ and µ would be such that maximize the lower bound aj,λ

and minimize the upper bound aj,µ, respectively. The result of Carrizosa (2001) is useful for this

purpose. (A related result can be found in Bravo, et al. (2007).) He showed that these maximization

1Maximization is not necessary to have bj,λ(θ) if λ is known to be a subgradient of bj(θ) at some point θ0 ∈ Θ.

Indeed, in this case, we have bj,λ(θ) = λT(θ − θ0) + bj(θ
0). The same comment applies to cj,µ(θ), too. This property

will be used in Proposition 8.
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Figure 2. The graphs of a(θ) and its bounds. (a) The case of a(θ) = sinh θ and Θ = [−1, 1]. The solid

line stands for the original function a(θ); the broken lines stand for the constant bounds aλ and aµ;

the dash-dotted lines stand for the parameter-dependent bounds rλ(θ) and rµ(θ), to be introduced in

Section 4. (b) The case of a(θ) = sin θ and Θ = [−2, 2]. The usage of the lines is the same as in (a).

and minimization can be reduced to minimization of some convex functions. This minimization is

however not easy in general because the minimized functions do not have analytic expressions and

may not be differentiable at some points. On the other hand, in the special case that Θ is a simplex,

we can obtain the optimal λ and µ by solving linear equations. Indeed, λ is optimal when the value

of λTθ − cj(θ) is identical for all θ ∈ verΘ. A similar property holds on the optimal µ but with

µTθ − bj(θ) this time.

Example 4. We continue Example 1.

In the case that a(θ) = sinh θ and Θ = [−1, 1], the functions b(θ) = eθ/2 and c(θ) = e−θ/2 give

the DC-representation. Let us compute the optimal lower bound aλ. Since the parameter set Θ is a

simplex, the optimal λ can be obtained by solving λ · (−1)− c(−1) = λ · 1− c(1), i.e., λ = 1/4e− e/4.

With this λ, we obtain the explicit expression of bλ(θ) = λθ − max
bθ∈Θ

[λθ̂ − b(θ̂)]. Differentiating

the function in the square bracket, we see that the maximum is attained at θ̂ = −1, which gives

bλ(θ) = λθ + λ + 1/2e. To compute aλ = minθ∈ver Θ[bλ(θ) − c(θ)], we evaluate bλ(θ) − c(θ) at θ = −1

and θ = 1. The two values are equal and give the desired optimal lower bound aλ = 1/2e− e/2. This

bound is tight because a(θ) takes the same value at θ = −1. By symmetry, the optimal upper bound

is aµ = e/2 − 1/2e, which is attained at µ = e/4 − 1/4e. Figure 2 (a) shows the obtained optimal

bounds aλ and aµ together with the original function a(θ). It confirms the inequality aλ ≤ a(θ) ≤ aµ

(θ ∈ Θ) and the tightness of the bounds. The figure also shows the parameter-dependent bounds, to

be discussed in the next section.

In the case that a(θ) = sin θ and Θ = [−2, 2], the functions b(θ) = sin θ + θ2/2 and c(θ) =

θ2/2 give the DC-representation. The optimal lower bound aλ is computed similarly to the first

example. In particular, we obtain the optimal λ as 0 by noticing that Θ is a simplex. Since bλ(θ) =

−max
bθ∈Θ

[− sin θ̂ − θ̂2/2], we carry out the numerical maximization to have the explicit expression

bλ(θ) ≈ −0.400. We then evaluate bλ(θ) − c(θ) at θ = −2 and θ = 2 and obtain the optimal lower

bound aλ ≈ −2.400. This bound is not tight. Computation of the optimal upper bound aµ is similar.
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The result is aµ ≈ 2.103 for µ ≈ 0.455. This bound is not tight, either. Figure 2 (b) shows the bounds

in this case. 3

Our approach is conservative because the condition (5) is only sufficient for the original condition

(1). This conservatism can be reduced by division of the parameter set Θ. Namely, we divide the

parameter set Θ into a finite family of closed convex polytopes and consider a condition corresponding

to (5) for each subpolytope. It is also possible to make such division adaptively in order to suppress

the rapid increase of the number of subpolytopes. See Oishi (2009) and Oishi and Fujioka (2010) for

the details.

4. Approach with parameter-dependent bounds

The bounds in the previous section are constant in θ and neglect how the functions aj(θ) depend on θ.

They can give a considerably conservative result when incorporation of this dependence is important

for solving P . In this section, we introduce parameter-dependent bounds using the DC-representations

of aj(θ). These bounds give another sufficient condition for the constraint (1) of the problem P . Using

this condition in the problem P , we have a solvable SDP problem, which gives an approximate solution

of P . We hence have another approach to the problem P .

The considered bounds are the following.

Proposition 5. For each j = 1, 2, . . . , q, define the functions on Θ as

rj,λ(θ) := bj,λ(θ) − cj(θ), rj,µ(θ) := bj(θ) − cj,µ(θ) (6)

with λ and µ being any vectors in Rp. Then, rj,λ(θ) is concave and rj,µ(θ) is convex. Moreover, they

satisfy

rj,λ(θ) ≤ aj(θ) ≤ rj,µ(θ) (θ ∈ Θ).

Proof. The concavity of rj,λ(θ) follows from the affinity of bj,λ(θ) and the convexity of cj(θ). The

convexity of rj,µ(θ) follows similarly. The desired inequality is a consequence of bj,λ(θ) ≤ bj(θ) and

cj,µ(θ) ≤ cj(θ). ¤

With the parameter-dependent bounds rj,λ(θ) and rj,µ(θ), we have the following sufficient condition

for (1). Let λ(j) and µ(j) be some vectors in Rp for each j = 1, 2, . . . , q. Then, for a given x ∈ Rn, we

consider the condition

F0(x) +
p∑

i=1

θiFi(x) +
q∑

j=1

ρj(θ)Fp+j(x) º O

(∀ρj ∈ {rj,λ(j), rj,µ(j)}, j = 1, 2, . . . , q; ∀θ ∈ verΘ). (7)

Here, ρj(θ) is a function chosen from the two candidate functions rj,λ(j)(θ) and rj,µ(j)(θ) for each j.

All the 2q choices are considered for ρj(θ), j = 1, 2, . . . , q, and all the vertices in ver Θ are considered

for θ.
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Proposition 6. For a given x ∈ Rn, the condition (1) is satisfied if the condition (7) is satisfied.

Proof. Let v be any nonzero vector in Rm. The proof is complete if we can show

vTF0(x)v +
p∑

i=1

θiv
TFi(x)v +

q∑
j=1

aj(θ)vTFp+j(x)v ≥ 0 (8)

for any θ ∈ Θ, which is the inequality (1) multiplied by vT and v. Toward this end, multiply vT and

v to the assumption (7). Defining

fj(θ) := min
{
rj,λ(j)(θ)v

TFp+j(x)v, rj,µ(j)(θ)v
TFp+j(x)v

}
for j = 1, 2, . . . , q, we have

vTF0(x)v +
p∑

i=1

θiv
TFi(x)v +

q∑
j=1

fj(θ) ≥ 0 (θ ∈ verΘ). (9)

Pick up any j and suppose vTFp+j(x)v ≥ 0. In this case, the function fj(θ) is equal to rj,λ(j)(θ)vTFp+j(x)v,

which is concave in θ and less than or equal to aj(θ)vTFp+j(x)v by Proposition 5. Repeating a similar

discussion in the case of vTFp+j(x)v < 0, we see that, in any case, fj(θ) is concave and satisfies

aj(θ)vTFp+j(x)v ≥ fj(θ) (θ ∈ Θ) (10)

for each j. The concavity of fj(θ) implies that the inequality (9) holds for all θ ∈ Θ and the inequality

(10) implies that the desired inequality (8) holds for all θ ∈ Θ. The proof is complete. ¤

In the present approach, the utilized sufficient condition (7) consists of 2q| verΘ| LMIs. This

number is the same as the approach in the previous section. On the other hand, the present approach

is less conservative than the previous one when the two approaches use the same λ(j) and µ(j) for

each j. This is shown by the next result.

Proposition 7. Let λ(j) and µ(j) be some vectors in Rp for each j = 1, 2, . . . , q. Then, the condition

(7) is satisfied if the condition (5) is satisfied.

Proof. The claim follows if we have

aj,λ(j) ≤ rj,λ(j)(θ) (θ ∈ Θ), rj,µ(j)(θ) ≤ aj,µ(j) (θ ∈ Θ) (11)

for each j = 1, 2, . . . , q.

Recall that

aj,λ(j) = min
θ∈ver Θ

[
bj,λ(j)(θ) − cj(θ)

]
= min

θ∈Θ

[
bj,λ(j)(θ) − cj(θ)

]
,

rj,λ(j)(θ) = bj,λ(j)(θ) − cj(θ).

Hence, the first inequality in (11) follows immediately. The second inequality is similarly derived. ¤
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We next consider how the vectors λ(j) and µ(j) should be chosen for the parameter-dependent

bounds. One possibility is to use the λ and µ that optimize the constant bounds aj,λ and aj,µ.

Proposition 7 then guarantees a less conservative result for the parameter-dependent bounds. A

problem here is that computation of such λ and µ is not easy except for the special case that Θ is a

simplex. Even if such λ and µ are computed, we still need concave maximization to have the explicit

expressions of bj,λ(θ) and cj,µ(θ). It is also questionable if the optimality in this criterion really means

the goodness of the parameter-dependent bounds.

We here consider another criterion for the choice of λ and µ. It does not guarantee a less conserva-

tive result for the present approach in the sense of Proposition 7. It is however reasonable to use and

convenient to compute the corresponding bounds. In particular, we employ the following quantity as

a measure of conservatism:

Vj(λ, µ) :=
∫

Θ
rj,µ(θ) − rj,λ(θ) dθ (12)

and choose λ and µ so as to minimize this measure for each j. The measure Vj(λ, µ) stands for the

volume of the region sandwiched by the parameter-dependent bounds rj,λ(θ) and rj,µ(θ). Since we

use rj,λ(θ) and rj,µ(θ) to approximate aj(θ) in the present approach, it is reasonable to choose λ and

µ so as to minimize Vj(λ, µ). Such λ and µ have the following simple characterization.

Proposition 8. For each j = 1, 2, . . . , q, the measure of conservatism, Vj(λ, µ) in (12), is minimized

if and only if λ and µ are subgradients of bj(θ) and cj(θ), respectively, at the gravity center of Θ, that

is,

θc :=

∫
Θ θ dθ∫
Θ dθ

.

Moreover, for these λ and µ, the following relationships hold:

bj,λ(θ) = λT(θ − θc) + bj(θc), cj,µ(θ) = µT(θ − θc) + cj(θc).

Proof. As noticed in the previous section, the functions bj,λ(θ) and cj,µ(θ), which are used in the

definitions of rj,λ(θ) and rj,µ(θ), are related to the notion of conjugate functions. Consider in general

a convex function f(θ) on Θ. Then, its conjugate f∗(λ) is defined as

f∗(λ) := max
θ∈Θ

[
λTθ − f(θ)

]
for λ ∈ Rp (e.g., Hiriart-Urruty & Lemaréchal, 1993; Bertsekas, Nedić, & Ozdaglar, 2003). The

conjugate function f∗(λ) is convex because it is the maximum of the family of affine functions. With

this notion, we can write

rj,λ(θ) = λTθ − b∗j (λ) − cj(θ), rj,µ(θ) = bj(θ) − µTθ + c∗j (µ)

for any j, λ, and µ. The measure of conservatism can be rewritten as

Vj(λ, µ) =
∫

Θ

[
bj(θ) − µTθ + c∗j (µ) − λTθ + b∗j (λ) + cj(θ)

]
dθ
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=
∫

Θ
bj(θ) + cj(θ) dθ − λT

∫
Θ

θ dθ + b∗j (λ)
∫

Θ
dθ − µT

∫
Θ

θ dθ + c∗j (µ)
∫

Θ
dθ

for each j. This is minimized when both −λTθc + b∗j (λ) and −µTθc + c∗j (µ) are minimized. Let us

consider when the first function, −λTθc + b∗j (λ), is minimized. Due to the convexity of this function,

it is minimized if and only if 0 is a subgradient of −λTθc + b∗j (λ) or, equivalently, θc is a subgradient

of b∗j (λ). This occurs if and only if λ is a subgradient of bj(θc) by a property of conjugate functions

(Corollary X.1.4.4 of Hiriart-Urruty and Lemaréchal (1993)). Similar equivalence holds on the second

function.

Suppose that λ is a subgradient of bj(θ) at θ = θc. Then, the graph of λT(θ − θc) + bj(θc) gives a

hyperplane supporting the graph of bj(θ) from below. This means that this function is identical with

bj,λ(θ). Similar discussion is possible on cj,µ(θ). ¤

Example 9. This is a continuation of Example 4.

We consider the first example: a(θ) = sinh θ and Θ = [−1, 1]. The function b(θ) = eθ/2 is

differentiable at the gravity center θc = 0 and its gradient is 1/2 there. Hence, by Proposition 8,

λ = 1/2 is optimal and the corresponding bλ(θ) is λ(θ − θc) + b(θc) = θ/2 + 1/2. We thus obtain

the optimal lower bound rλ(θ) = θ/2 + 1/2 − e−θ/2. By symmetry, the optimal upper bound is

rµ(θ) = eθ/2 + θ/2 − 1/2 for µ = −1/2. The obtained bounds are shown in Figure 2 (a). In a

large subset of Θ, they are closer to the original function a(θ) than the constant bounds aλ and aµ

considered in Example 4. It is seen however that aλ is closer to a(θ) than rλ(θ) around θ = −1 and

that aµ is closer than rµ(θ) around θ = 1. This is not surprising. Indeed, the uniform superiority

of the parameter-dependent bounds is not guaranteed in the sense of Proposition 7 because different

values are used for λ and µ between the two types of bounds.

The procedure is the same for the second example: a(θ) = sin θ and Θ = [−2, 2]. The function

b(θ) = sin θ + θ2/2 has the gradient 1 at the gravity center θc = 0. Hence, λ = 1 is optimal and the

corresponding bλ(θ) is λ(θ− θc)+ b(θc) = θ. This gives the optimal lower bound rλ(θ) = θ− θ2/2. On

the other hand, the function c(θ) = θ2/2 has the gradient 0 at θc = 0. Hence, µ = 0 is optimal and the

corresponding cµ(θ) is µ(θ−θc)+c(θc) = 0. The obtained optimal upper bound is rµ(θ) = sin θ+θ2/2.

The obtained bounds are found in Figure 2 (b). The same comments apply on the comparison with

the constant bounds. 3

When the gravity center θc is computable for Θ, the following approach is possible to the problem

P . For each j = 1, 2, . . . , q, we compute subgradients of bj(θ) and cj(θ) at θ = θc and choose them for

λ(j) and µ(j), respectively. Proposition 8 then guarantees their optimality with respect to Vj(λ, µ) and

provides the explicit expressions of bj,λ(j)(θ) and cj,µ(j)(θ). We obtain the optimal bounds rj,λ(j)(θ)

and rj,µ(j)(θ) with (6) and substitute them into the condition (7). Using this condition in place of (1),

we obtain an approximate problem of P , which is solvable with the interior-point method. If we want

to reduce the conservatism of the present approach, we can divide the parameter set Θ as in Section 3.

Computation of the gravity center θc is immediate when Θ is a simplex or a parallelepiped. In

many control problems, Θ is a hyperrectangle, which is a special parallelepiped. On the other hand,

10



the exact computation of θc is difficult when Θ is a general polytope (Rademacher, 2007). A solution

would be approximate computation of θc with a randomized technique (e.g., Bertsimas & Vempala,

2004).

5. Examples

We applied the proposed two approaches to three example problems. The first two problems are on

random matrices and the last problem is on control system design. The proposed approaches worked

well for all the problems. In particular, they gave approximate solutions of the problems, whose

precision became better as the division of the parameter region became finer.

Example 10. Set a(θ) = sinh θ and Θ = [−1, 1]. Let F be a 3× 3 symmetric matrix whose elements

are randomly generated according to the standard normal distribution. We consider the problem:

minimize z

subject to zI − θ diag(x1, x2, x3) + a(θ)F º O (∀θ ∈ Θ), (13)

zI + θ diag(x1, x2, x3) − a(θ)F º O (∀θ ∈ Θ), (14)

with the real scalar design variables z, x1, x2, and x3. Here, diag(x1, x2, x3) stands for the 3 × 3

diagonal matrix with the diagonal elements x1, x2, and x3. In this problem, uniform approximation

of a(θ)F is considered with θ diag(x1, x2, x3). Hence, it is important to take account of the parameter

dependence of a(θ).

For 100 randomly generated F , we applied our two approaches and obtained the approximate

solutions. Let zcons stand for the minimum given by the approach with the constant bounds; let

zdep stand for the minimum given by the approach with the parameter-dependent bounds. These

are upper bounds on the true minimum of the problem. For reference, we also computed its lower

bound zsamp by minimizing z subject to the inequalities (13) and (14) but only for the 101 values of θ

equally spaced in Θ. The normalized approximation error for the approach with the constant bounds,

i.e., (zcons − zsamp)/zsamp, had the mean 0.96 and the standard deviation 1.81. On the other hand,

the normalized approximation error for the approach with the parameter-dependent bounds, i.e.,

(zdep−zsamp)/zsamp, had the mean 0.22 and the standard deviation 0.30. To summarize, the approach

with the parameter-dependent bounds gave better approximation on average. For some individual

instances of F , however, this approach was inferior to the other. This is not surprising because the

optimality of the parameter-dependent bounds does not imply the minimality of the approximation

error. The mean computational time was 0.15 s in the approach with the constant bounds and 0.22 s

in the approach with the parameter-dependent bounds. Here, the SDP problems were solved with

SeDuMi (Sturm, 1999) through the modeling language YALMIP (Löfberg, 2004) on the computer

equipped with Intel Core 2 Duo P8800 (2.66 GHz) and the memory of 4GB.

We were able to improve the result by dividing the parameter set Θ to the two intervals [−1, 0]

and [0, 1]. Indeed, for the same set of 100 matrices F , the mean of (zcons−zsamp)/zsamp was improved
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from 0.96 to 0.65 and the mean of (zdep − zsamp)/zsamp was improved from 0.22 to 0.031. The mean

computational time was a little longer: 0.24 s in the approach with the constant bounds and 0.34 s in

the approach with the parameter-dependent bounds. 3

Example 11. We consider the same problem as the previous example for the same set of F but with

a(θ) = sin θ and Θ = [−2, 2]. The result was more or less similar to the previous one. We first applied

our approaches without dividing Θ. The mean of the normalized approximation error was 2.66 for the

approach with the constant bounds and 3.33 for the approach with the parameter-dependent bounds.

Although the result of the parameter-dependent approach was worse, the situation changed when Θ

was divided into [−2, 0] and [0, 2]. Namely, the mean of the normalized error became 0.71 for the

approach with the constant bounds and 0.35 for the approach with the parameter-dependent bounds.

3

Example 12. We apply our approaches to design of a sampled-data control system with an uncertain

sampling interval. Consider a linear continuous-time plant (d/dt)x(t) = Ax(t) + Bu(t) with

A =

(
0 1

0 −0.1

)
, B =

(
0

0.1

)
.

We would like to design a matrix K so that the sampled-data state-feedback control

u(t) = Kx(tk) (tk ≤ t < tk+1; k = 0, 1, 2, . . .)

stabilizes the plant, where t0, t1, t2, . . . are sampling instants that satisfy 0 = t0 < t1 < t2 < · · · and

limk→∞ tk = ∞. We assume here that the sampling interval tk+1−tk is uncertain and can vary with k,

motivated by the need in the networked and embedded control. In particular, we consider the (rather

extreme) situation that tk+1 − tk can take any value in (0, 200] and look for a stabilizing K even in

this situation.

This type of control problems has been considered by several authors (e.g., Fridman, Seuret, &

Richard, 2004; Hetel, Daafouz, & Iung, 2006; Mirkin, 2007; Naghshtabrizi, Hespanha, & Teel, 2008).

We here follow the approach of Oishi and Fujioka (2010) and reduce the problem to a robust SDP

problem:

minimize z

subject to Q − I º O,

(the formula (15) at the bottom of this page)

with Θ := [0, 200] and

(
−E(θ)(AQ + BL) − (AQ + BL)TE(θ)T + zI

√
θE(θ)(AQ + BL)

√
θ(AQ + BL)TE(θ)T Q

)
º O (θ ∈ Θ) (15)
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E(θ) :=
1
θ

∫ θ

0
eAt dt =

(
1 −10

0 1

)(
1 0

0 e−0.1θ−1
−0.1θ

)(
1 10

0 1

)
.

We define E(θ) = I at θ = 0. In this problem, the design variables are a scalar z, a 2 × 2 symmetric

matrix Q, and a 1 × 2 matrix L. If a feasible solution (z,Q,L) such that z < 0 is found for this

problem, a stabilizing state-feedback gain K is obtained by LQ−1.

Let us set a1(θ) =
√

θ and a2(θ) = (e−0.1θ − 1)/(−0.1θ). We define a2(θ) = 1 at θ = 0. We first

notice that the constraint of the problem includes the product a1(θ)a2(θ). To remove this product,

we apply the technique of Oishi (2009) and Oishi and Isaka (2009). Then, we can obtain a sufficient

condition, which is affine in a1(θ) and a2(θ). Replacing the constraint by this sufficient condition, we

can apply our approaches. We choose b1(θ) and c2(θ) to be zero noting the concavity of a1(θ) and the

convexity of a2(θ), respectively.

The obtained minimum was 1.75×10−5 in the approach with the constant bounds and 3.87×10−4

in the approach with the parameter-dependent bounds. This means that both approaches failed to

give a stabilizing state-feedback gain. The situation changed when Θ was divided into two subintervals

[0, 100] and [100, 200]. Indeed, with both approaches, a feasible solution with a negative z was found,

which gave a stabilizing state-feedback gain. The computational time in this case was 1.65 s in the

approach with the constant bounds and 4.85 s in the approach with the parameter-dependent bounds.

Oishi and Fujioka (2010) gave an approach specialized for analysis and design of this type of

sampled-data control systems. The performance of our present approaches were comparable to this

specialized approach. Indeed, the specialized approach failed to give a state-feedback gain when Θ

was not divided. It failed again with the division consisting of [0, 100] and [100, 200]. After some trials

and errors, it succeeded with the division consisting of [0, 25] and [25, 200]. The computational time

in the last case was 0.39 s, which was short due to specialization. 3

6. Conclusion

Two conservative approaches are proposed for robust SDP problems with general nonlinear parameter

dependence. The first approach is based on the computation of constant bounds for each nonlinear

function. It is conceptually simple but has a computational issue in the optimization of the bounds.

The second approach is based on the computation of parameter-dependent bounds. It has a potential

to give a less conservative result by exploiting the parameter dependence of the problem. It also

has a computational advantage when the gravity center is computable for the parameter set. Both

approaches rely on the assumption that the nonlinear parameter dependence is expressed as the

difference of two convex functions. Since this assumption is mild enough, the proposed approaches

can be applied to a large class of problems.

Some extensions are possible with the present approaches. We saw in Example 12 that, even if the

original constraint includes the product a1(θ)a2(θ), we can apply our approaches with the help of the

existing result. This technique can be generalized to the case that the constraint includes polynomial
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or rational functions of aj(θ) (Peaucelle & Sato, 2009; Oishi, 2009; Oishi & Isaka, 2009). On the other

hand, by mimicing the approach of Chesi and Hung (2008), it is possible to expand aj(θ) to the finite

Taylor series and compute the proposed bounds for the remainder term. This technique can reduce

conservatism when the remainder term is smaller than the original function aj(θ).
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