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Abstract

In this paper, we consider the design of large-scale hub-and-spoke transportation networks in a
competitive environment. We adopt the hub arc location model that locates arcs with discounted
transport costs connecting pairs of hub facilities. Two firms compete for customers in a Stackelberg
framework where the leader firm locates hub arcs to maximize its revenue, given that the follower
firm will subsequently locate its own hub arcs to maximize its own revenue. Several mechanisms
are presented to allocate traffic between the two firms based on the relative utility of travel via the
competing hub networks. Results with up to three hub arcs for each competing firm show the role of
a competitive environment in designing transportation systems.

key words: Hub location, competition, transportation, Stackelberg

1 Introduction

Hub-and-spoke networks play an important role in many transportation systems. These networks provide

efficient transportation between many origins and destinations (e.g., cities) via a set of hubs that serve

as switching and flow consolidation points, hub arcs that connect two hubs with a discounted travel

cost, and access arcs that connect the non-hub nodes and hubs. Hub networks use fewer arcs than in a

point-to-point network and thus can reduce transportation costs by exploiting the economies of scale from

consolidated flows. Because of the rich applications in the real world, studies on various hub location

models have attracted much attention since O’Kelly [15]. The large, and growing, literature on hub

location research is summarized in Alumur and Kara [2] and Campbell et al. [4]. Nearly all hub location
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research has been directed at finding an optimal (or near-optimal) hub network for a single firm to serve

a given set of demand specified as flows between many origins and destinations.

However, real-world hub-based transportation systems typically operate in a competitive environment

where several carriers (e.g., airlines or motor carriers) exist in a market and compete in transporting

freight or passengers throughout a geographic region. In this case, the customers (passengers or freight

shippers) must decide which competing carrier(s) to use, and this is typically based on the relative level

of service provided and the costs (or fare) charged. Thus, competitive hub models require designing hub

networks for each competitor and allocating the demand among the competitors. The objective is usually

to maximize the market share captured, where market share may be measured in terms of the percentage

of the passengers, freight, revenue, or profit captured. This competition to capture market share is likely

to influence the optimal hub locations and hub network design. Reviews of competitive location research

for general (non-hub) networks include [8, 9, 17, 22].

Although a variety of hub location models have been studied in the last two decades, studies on

competitive hub location problems are scarce. The earliest work is Marianov et al. [14], which formulated

a competitive hub median problem on a network. This model assumes that one firm locates p hubs

optimally (as in a multiple allocation p-hub median problem [4]) and then the second firm locates p hubs,

given the locations of the first firm’s hubs, to maximize the flow captured. Wagner [23] provides improved

formulations and results for the problems presented in [14] with optimal solutions for up to 50 nodes and

5 hubs. These works allocate customers between the two firms based on the relative costs of the OD paths

and include both a binary “all-or-nothing” allocation, where all passengers for each OD pair are allocated

to whichever firm provides the lowest cost OD path (with ties being allocated to the first firm), and a

five-level fractional allocation, where each firm captures 0%, 25%, 50%, 75% or 100% of the passengers,

depending on the relative OD path costs for the two competitors. Eiselt and Marianov [10] extend this

line of research by replacing the discrete passenger allocation mechanism with a continuous proportional

allocation based on the relative travel time and travel cost of the OD paths of the competitors. They

provide solutions with up to five hubs for each competitor using heuristic procedures where the first of the

two competing firms locates its hubs either at random or to provide the optimal p-hub median network.

The models in [10, 14, 23] assume the hub-level network is fully connected (i.e., there is a hub arc between

every pair of hub nodes) and OD paths are limited to include at most three arcs and one hub arc. These

are also sequential competitive location models in that the first firm locates its hubs without anticipation

of a future competitor.

In practice, competitors are often aware of each other and one firm (the leader) will locate its hubs
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in anticipation of another firm (the follower) optimally locating its hubs based on the known locations

of the leader’s hubs. In this case, the leader seeks to locate its hubs so that its objective is optimized

after the follower best locates its hubs. This is a Stackelberg hub location problem, analogous to the

Stackelberg location problem on a network introduced by Hakimi [11] and used in several other studies of

non-hub facility location (e.g., [18, 21]). Sasaki and Fukushima [20] presented a continuous Stackelberg

hub location model where passenger allocations are determined by a logit function. The results showed

that the leader firm may suffer heavy losses if it neglects to consider the competitor’s strategies. Sasaki

[19] considers a discrete Stackelberg hub location model with flow threshold constraints to ensure that a

firm does not carry an unrealistically low level of flow for any OD pair. The model is formulated as a

bilevel programming problem where the upper (leader) and lower (follower) problems are binary integer

programs. Both [19] and [20] limit OD paths to a single hub stop, so there is no discounted inter-hub

travel (i.e., no hub arcs). There has also been some research involving competitive models for locating

a single intercontinental gateway (hub) airport, but these works focus on issues such as airline alliances

and mergers [1] and setting intercontinental service frequencies[13], more than hub network design.

In this paper, we present a more general discrete Stackelberg hub location problem using the hub

arc location model [5, 6] that locates hub arcs whose endpoints are hub nodes, rather than the hub

median model that locates fully connected hub nodes as in [14, 23]. The hub arc model allows OD paths

with one or two stops at hubs and helps concentrate flows on the discounted hub arcs, by relaxing the

restriction in hub median models that every flow between two hubs is discounted, whether or not it is

warranted by the level of flow. Furthermore, in our model each firm seeks to maximize the revenue

(not traffic) captured and we employ a flexible customer allocation mechanism to model the different

customer behaviors that might arise in applications ranging from passenger airlines, to express parcel

delivery, to ground (truck) freight transportation. Unlike other models that implicitly treat all customers

(e.g., passengers) equivalently by maximizing the traffic captured, in our model some customers are more

valuable since they generate higher revenues (e.g., from higher fares for longer trips). We assume the

same revenue applies to each competitor for each OD pair, which may be realistic in the long run due to

competitive pressures. Because firms in our model do not compete based on revenues (e.g., by offering

different fares), we focus on the competition from the different levels of service offered by the OD paths

through the hub networks of each firm. We adopt a flexible passenger allocation function that allocates a

fraction of demand to each competitor based on the relative utility of the OD paths for each competitor.

This allows an “all-or-nothing” allocation and the fractional allocations as in [14, 23].

The remainder of this paper is organized as follows. In Section 2, we provide some background and a
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formulation of the model. Section 3 describes the solution algorithm and Section 4 includes computational

results using real airlines’ data. In Section 5, we give concluding remarks and mention some future work.

2 Model description

In the hub arc location model, each firm locates a given number of hub arcs. We assume that the firms’

hub sets are disjoint, so they do not share any hubs or hub arcs. Without this assumption, the follower

can capture at least 50% of the market by using the same hub arcs as the leader. Given the large resources

required for a passenger airline hub, the assumption is reasonable; for other applications, (e.g., trucking)

this assumption could be relaxed. OD paths for our hub arc location model are limited to three arcs,

where the first arc is for collection from the origin to a hub and the last arc is for distribution from a

hub to the destination. Each of these may be a degenerate arc (from a node to itself) if the node is also

a hub. OD paths may also include a central hub arc for transfer between two hubs.

Figure 1 shows three possible multiple allocation hub networks that provide service for flows among

seven origin/destination nodes. Figure 1(a) shows a 3-hub median solution with hubs at nodes 1, 2 and 4

(shown as squares) and three hub arcs (in bold) connecting the hubs. This is the type of model analyzed

in previous competitive hub location research [10, 14, 23] where each firm uses a fully connected network

of hub arcs. Figure 1(b) shows a 2-hub arc solution (for one firm) with hubs at nodes 1, 2, 3 and 4

connected by two hub arcs between nodes 1 and 4 and nodes 2 and 3. Because each OD pair is joined

by a path with at most three arcs where the central arc, if it exists, is a hub arc, the path from node 6

to node 3 is 6-1-4-3, not 6-1-2-3. Figure 1(c) shows a competitive hub arc solution where Firms A and

B each locate one hub arc. Each firm provides service for all OD pairs via one-stop or two-stop routes

through its own hubs. Thus, the path from node 6 to node 3 for Firm A is 6-1-4-3 and for Firm B is

6-2-3. Similarly, the path from node 4 to node 5 for Firm A is 4-5 and for Firm B is 4-3-2-5.

2.1 Notation

Let Firm A be the leader firm and Firm B be the follower firm. We employ the following notation:
V : the set of demand nodes, |V | = n.

Wij : the trip demand between node i ∈ V and node j ∈ V (j > i).

Fij : the revenue (e.g. airfare) per unit demand between node i ∈ V and node j ∈ V (j > i).

dij : the distance between node i ∈ V and node j ∈ V (j ≥ i). dii = 0(i ∈ V ).

α: the reduced unit cost for transfer on hub arcs to reflect economies of scale.

χ: the unit transportation costs for collection (from origin to hub).

δ: the unit transportation costs for distribution (from hub to destination).

Cijkl: the unit cost for a path from an origin i ∈ V to a destination j ∈ V (j > i) through hubs

k ∈ V and l ∈ V in this order.
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Figure 1: Hub arc networks

qA: the number of Firm A’s hub arcs.

qB : the number of Firm B’s hub arcs.

A: a set of qA hub arcs used by Firm A.

B: a set of qB hub arcs used by Firm B, where Firms A and B share no hubs.

HA: the set of combinations of qA hub arcs that can be used by Firm A.

HB : the set of combinations of qB hub arcs that can be used by Firm B.

We assume that the trip demand is symmetric. Therefore, we define Wij and Fij for all j > i for

each i. Note that Cijkl = χdik + αdkl + δdlj and Cijkk = χdik + δdkj for one-stop paths as dkk = 0

for all k ∈ V . By introducing CA
ijkl and CB

ijkl for each firm with specific α, χ, δ, we can easily employ a

different cost function for each firm. However, in this paper we assume that both firms employ the same

cost function.

The decision variables for Firms A and B are as follows:

xA
ijkl = 1 if the lowest cost path for OD pair i, j with Firm A is through hubs k ∈ V

and l ∈ V (l ≥ k) in this order, and 0 otherwise.

yA
kl = 1 if Firm A locates a hub arc between nodes k ∈ V and l ∈ V (l > k), and 0 otherwise.

zA
k = 1 if node k ∈ V is a hub for Firm A, and 0 otherwise.

xB
ijkl = 1 if the lowest cost path for OD pair i, j with Firm B is through hubs k ∈ V

and l ∈ V (l ≥ k) in this order, and 0 otherwise.

yB
kl = 1 if Firm B locates a hub arc between nodes k ∈ V and l ∈ V (l > k), and 0 otherwise.

zB
k = 1 if node k ∈ V is a hub for Firm B, and 0 otherwise.

Note that hub arcs are assumed to be undirected and no degenerate hub arc, i.e. (k, k), is allowed to

be established. Therefore, it is sufficient to define variables yA
kl and yB

kl for all l > k for each k. Because

each firm provides service for each OD pair via a single (lowest cost) path, the competition is between

two paths.
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2.2 Customer allocation function

Because of the competitive environment, the given demand for each OD pair is divided between Firms

A and B using a customer allocation function. This allocation function should reflect the customers’

preferences and will likely differ among the many applications for hub models (e.g., between passenger

and freight transportation). Previous competitive hub location models have addressed air passenger

transportation where passengers are allocated between competitors based on the relative path costs

[14, 23] or path costs and travel times [10], with an objective of maximizing the number of passengers

captured. Having passengers choose among carriers based on the travel cost via the hub network provides

an incentive for passengers to travel circuitous paths via the lower cost hub arcs, especially for small values

of α. While these circuitous paths are desirable from the carrier’s perspective to reduce their own costs,

they are undesirable from the passenger’s perspective as they lead to longer OD travel times.

In general, air passengers will select among competing carriers that offer different services (e.g., flight

frequencies, flight paths, departure and arrival times) and fares. Due to the strategic nature of hub

location models, we do not specifically address detailed scheduling issues, such as departure and arrival

times, and instead focus on service in terms of the OD path length via the hub network. The OD path

length can be viewed as a proxy for the OD travel time, which is the key concern to passengers, given that

in our model both firms have the same revenues (i.e., fares) for each OD pair. Thus, our first customer

allocation function is based on the relative differences in OD travel distances, which may be most useful

for passenger transportation applications. Further refinements to include the number of hub stops or

total travel time including airport time, as in [10], are an area of future research.

For freight transportation hub networks, the situation is different because the customer is the freight

shipper, who is not the traveler. Therefore, the customer is not particularly concerned with the length

of the OD path the freight follows, as long as the freight is delivered when scheduled (e.g., next-day

by 10:30 am). Because on-time delivery could occur via a variety of OD paths, a freight carrier has

more flexibility than a passenger carrier to route freight via a lower cost, but more circuitous, path that

exploits the reduced travel costs on hub arcs. (In contrast, the passengers would prefer more direct OD

paths that avoid hub arcs and additional stops at hubs.) Because in our model the customer (e.g., freight

shipper) pays the same cost (i.e., carrier revenue) with both competing carriers for a given shipment

(i.e., OD pair), the freight carrier can choose to route freight along the minimum cost path via the

hub network, assuming this provides adequate service. (For non-competitive hub location models with

service level constraints, see [3, 7, 16].) So, our second customer allocation function is based on the

relative differences in OD travel costs, which may be most useful for freight transportation applications.
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Because customers for a given OD pair do not in general all select the same service, we model customer

allocation as a step function with five levels of capture (as in [14, 23]) depending on the relative utility

of the paths via Firm A’s and Firm B’s hub network. To develop our customer allocation functions, we

first define CA
ij as the minimum cost for a trip from origin i to destination j using hub arc set A for Firm

A:

CA
ij = min

(k,l)∈A
min{Cijkl, Cijlk, Cijkk, Cijll}.

We define CB
ij analogously for Firm B:

CB
ij = min

(k,l)∈B
min{Cijkl, Cijlk, Cijkk, Cijll}.

Similarly, let DA
ij and DB

ij be the distance of the path that corresponds to the minimum cost path from

i to j for for Firms A and B, respectively. Thus, if the minimum cost path from i to j for Firm A with

hub arc set A is i − k − l − j, then CA
ij = χdik + αdkl + δdlj and DA

ij = dik + dkl + dlj . We now define

the customer allocation distance ratio DRA,B
ij as

DRA,B
ij = (DA

ij − DB
ij)/(DA

ij + DB
ij).

We define an analogous customer allocation cost ratio CRA,B
ij as

CRA,B
ij = (CA

ij − CB
ij)/(CA

ij + CB
ij).

Each of these is the ratio of the difference in path distances (or costs) to the sum of the path distances

(or costs). Both CRA,B
ij and DRA,B

ij range from −1 to +1 and represent the relative advantage of Firm B

over Firm A. A ratio of zero indicates equivalent distances or costs for the paths with Firm A and Firm

B. A large ratio (close to +1) indicates that the best path via Firm B’s hub network is much preferred

(shorter or less expensive) over the best path via Firm A’s hub network.

To allocate customers among the competitors, we define φA
ij(x

A, xB) and φB
ij(x

A, xB) as the fraction

of demand between origin i and destination j captured by Firm A and Firm B, respectively, where

xA = [xA
ijkl] and xB = [xB

ijkl]. We set φA
ij(x

A, xB) + φB
ij(x

A, xB) = 1 for all OD pairs, so all demand is

transported. Note that the allocation functions φA
ij and φB

ij depend on the distance or cost ratio (DRA,B
ij

or CRA,B
ij ), which depends on the path distances or costs (DA

ij and DB
ij or CA

ij and CB
ij), which in turn

depends on the decision variables xA
ijkl and xB

ijkl. To link the cost or distance ratios CRA,B
ij and DRA,B

ij

to the fraction of flow captured we adopt a five-level step function as shown in Table 1. This function

assigns a fraction of the demand for each OD pair of 100%, 75%, 50%, 25% or 0% to each competitor

based on the values r1 and r2, where r1 ≥ r2 ≥ 0. This step function essentially allocates the customers

equally (50% to each firm) when the path costs or distances are similar (between −r2 and r2), allocates
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Table 1: The fraction of flow captured
CRA,B

ij or DRA,B
ij φA

ij(x
A, xB)

≤ −r1 100%

−r1 to −r2 75%

−r2 to r2 50%

r2 to r1 25%

> r1 0%

three times as many customers to the firm with better performance when the absolute value of the cost

or distance ratio is between r2 and r1, and allocates all customers to the firm with better performance

when the absolute value of the cost or distance ratio exceeds r1. By adjusting the values of r1 and r2, a

range of different customer allocation schemes can be evaluated. In the extreme case of r1 = r2 = 0, the

firm offering the better (lower distance or cost) OD path will capture all the demand. If the paths for

Firm A and Firm B have equal lengths (or costs), then DRA,B
ij = 0 (or CRA,B

ij = 0) and we assume the

demand is split equally between the two firms. (This is slightly different than in [14, 23] where in the

event of equal paths, all demand is allocated to a single competitor.)

2.3 Formulation

We can formulate our Stackelberg hub arc location problem as a bilevel programming problem in which

each firm locates a given number of its own hub arcs to maximize the revenue it captures. First we

consider Firm B’s problem in which Firm A’s decision variables xA
ijkl, yA

kl and zA
k are all given. Given

Firm A’s hub arcs, Firm B will establish its hub network (i.e., hub arcs) so as to maximize its total

revenue captured. This is formulated as for the hub arc model in [3] based on [12]. Thus, Firm B’s hub

arc location problem in a competitive environment, denoted HALCE-B, is as follows:

[HALCE-B]

maximizexB ,yB ,zB

∑
i∈V

∑
j≥i

FijWij(1 − φA
ij(x

A, xB)) (1)

subject to
∑
k∈V

∑
l>k

yB
kl = qB , (2)

zB
k ≤ 1 − zA

k k ∈ V, (3)

zB
k ≤

∑
l>k

yB
kl +

∑
l<k

yB
lk k ∈ V, (4)

xB
ijkl ≤ yB

kl i, j, k, l ∈ V, j > i, l > k, (5)

xB
ijlk ≤ yB

kl i, j, k, l ∈ V, j > i, l > k, (6)
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xB
ijkk +

∑
m∈V \{k}

(xB
ijkm + xB

ijmk) ≤ zB
k i, j, k, l ∈ V, j > i, (7)

∑
k∈V

∑
l∈V

xB
ijkl = 1 i, j ∈ V, j > i (8)

xB
ijkl ∈ {0, 1} i, j, k, l ∈ V, j > i, l ≥ k,

yB
kl ∈ {0, 1} k, l ∈ V, l > k,

zB
k ∈ {0, 1} k ∈ V.

The objective function (1) is the total revenue captured by Firm B. Constraint (2) ensures that exactly

qB hub arcs are selected. Constraints (3) ensure that Firm B cannot select a node as a hub if it is a

hub for Firm A. Constraints (4) ensure that hub nodes are established only at the endpoints of hub

arcs. Constraints (5), (6) and (7) ensure that hub arcs and hub nodes are established for every path.

Constraints (8) ensure there is a path with Firm B for all OD pairs. Note that constraint (3) and the

objective function link HALCE-B to the hub arc location problem for Firm A.

Firm A’s problem is stated as the following bilevel programming problem:

[HALCE-A]

maximizexA,yA,zA

∑
i∈V

∑
j≥i

FijWijφ
A
ij(x

A, xB) (9)

subject to
∑
k∈V

∑
l>k

yA
kl = qA, (10)

zA
k ≤

∑
l>k

yA
kl +

∑
l<k

yA
lk k ∈ V, (11)

xA
ijkl ≤ yA

kl i, j, k, l ∈ V, j > i, l > k, (12)

xA
ijlk ≤ yA

kl i, j, k, l ∈ V, j > i, l > k, (13)

xA
ijkk +

∑
m∈V \{k}

(xA
ijkm + xA

ijmk) ≤ zA
k i, j, k, l ∈ V, j > i, (14)

∑
k∈V

∑
l∈V

xA
ijkl = 1 i, j ∈ V, j > i, (15)

[xB , yB , zB ] = ξ(xA, yA, zA), (16)

xA
ijkl ∈ {0, 1} i, j, k, l ∈ V, j > i, l ≥ k,

yA
kl ∈ {0, 1} k, l ∈ V, j > i, l > k,

zA
k ∈ {0, 1} k ∈ V.

The objective function (9) is the total revenue for Firm A. Constraint (10) ensures that exactly qA

hub arcs are selected. Constraints (11) ensure that hub nodes are established only at the endpoints of

hub arcs. Constraints (12), (13) and (14) ensure that hub arcs and hub nodes are established for every

path. Constraints (15) ensure there is a possible path with Firm A for all OD pairs. Constraint (16)
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indicates that HALCE-B is solved optimally for any value of (xA, yA, zA), where ξ(xA, yA, zA) denotes

an optimal solution for HALCE-B. Thus, Firm A solves its own problem subject to the condition that

(xB , yB , zB) is an optimal solution of HALCE-B.

Given the interdependent nature of the two problems HALCE-A and HALCE-B, we do not solve the

formulations directly. In the next section we present an optimal algorithm that uses two bounding

procedures within an enumeration scheme.

3 Algorithm

We could obtain an optimal solution by enumerating every possible combination of hub arcs for Firms A

and B. However, since HALCE-A is a bilevel optimization problem that includes constraints where Firm B

also finds optimal hub arcs, the complete enumeration approach could solve problems of small size only.

Therefore, we develop a much more efficient “smart” enumeration scheme by using bounding techniques

to reduce the number of Firm B’s hub arc combinations that need to be enumerated for a given set of

Firm A’s hub arcs, and to reduce the number of OD pairs that need to be evaluated for a given set of

hub arcs for Firms A and B.

Recall that HA and HB are the sets of all possible combinations of qA and qB hub arcs for Firms A

and B, respectively. Let fA(A,B) denote the revenue of Firm A, where A ∈ HA and B ∈ HB are the hub

arcs employed by Firm A and Firm B, respectively. In the same manner, let fB(A,B) denote Firm B’s

revenue with given A and B. Let B∗
A be the optimal set of hub arcs for Firm B for a given set of Firm

A’s hub arcs: B∗
A = argmaxB fB(A,B). Note that

fA(A,B∗
A) = W − max

B∈HB
fB(A,B),

where W is the total revenue for both firms: W =
∑

i∈V

∑
j>i WijFij . The idea behind the upper

bounding procedure is as follows: For a given set of Firm A’s hub arcs, denoted Ā, if we find some set of

Firm B’s hub arcs, say B̄, such that fA(Ā, B̄) is worse (i.e., smaller) than a known solution for Firm A,

then we need not consider any other sets of Firm B’s hub arcs with Ā. More formally,

Proposition Let f∗ be the best known value of HALCE-A. Consider a given set of Firm A’s hub arcs,

denoted Ā ∈ HA. If fA(Ā,B) < f∗, for some B ∈ HB , then fA(Ā,B∗
Ā) < f∗.

Proof Assume that B̄ ∈ HB satisfies the above inequality, i.e., fA(Ā, B̄) < f∗ holds. Since fA(Ā, B̄) +

fB(Ā, B̄) = W then W − fB(Ā, B̄) < f∗. Hence, fA(Ā,B∗
Ā) = W − fB(Ā,B∗

Ā) < W − fB(Ā, B̄) < f∗.

¤

Thus, to encourage early cutting in the algorithm we would like to enumerate the hub arc combinations

for Firm B in a sequence such that the algorithm quickly finds very good (high revenue) solutions for
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Firm B. Similarly, we seek to enumerate the hub arc combinations for Firm A in sequence such that the

algorithm quickly finds very good (high revenue) solutions for Firm A. Our algorithm also uses upper

bounds to avoid enumerating all OD pairs when evaluating a candidate set of hub arcs for Firms A and

B, as shown below in Step 2 below. In the algorithm, ḡA is an upper bound for Firm A’s revenue and

ḡB is used as the best known solution for Firm B with a given A. The smart enumeration (SE) solution

algorithm can be described as follows.

[SE Algorithm]

Step 0: Set f∗ := −∞,A∗ = ∅ and B∗ = ∅.

Step 1: If HA is empty, go to Step 4. Select A ∈ HA. Set HA := HA\{A}, and ḡA := ∞. Create HB
A

as the set of all hub arc combinations from HB that do not include a hub node used in A.

Step 2:

(a) If HB
A is empty, then go to Step 3. Select B ∈ HB

A. Set HB
A := HB

A\{B}.

(b) gA := 0, gB := 0, ḡB := 0, and Π is the set of all OD pairs {i, j}, where j > i.

(c) If Π = ∅, then go to Step 2(e). Select OD pair {i, j} ∈ Π. Π := Π\{i, j}. gA := gA +

FijWijφ
A
ij(x

A, xB). gB := gB + FijWijφ
B
ij(x

A, xB).

(d) If W − gA < ḡB then go to Step 2(f). Otherwise, go to Step 2(c).

(e) If gB > ḡB then ḡB := gB .

(f) If gA < ḡA, set ḡA := gA. If ḡA < f∗, go to Step 1. Otherwise go to Step 2(a).

Step 3: If f∗ < ḡA, then set f∗ := ḡA, A∗ := A, B∗ := B. Go to Step 1.

Step 4: The optimal hub arcs for Firms A and B are A∗ and B∗, respectively. The optimal objective

value of Firms A and B are f∗ and W − f∗, respectively.

Note that W − gA in Step 2(d) is an upper bound on Firm B’s revenue. If this is less than Firm

B’s best known solution, then we need not consider any more OD pairs for the current set of Firm B’s

hub arcs. Otherwise, the algorithm returns to Step 2(c) to consider another OD pair. To make this

efficient, we select the OD pairs in decreasing order of OD demand×distance. Based on experimentation

over a wide range of problems and prior results for a similar algorithm in [6], we select the hub arc

combinations A and B in Steps 1 and 2(a) by first sorting the potential hub arcs in decreasing order of

OD demand×revenue, and then selecting A and B from the sorted lists as described in [6].
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4 Results

The section reports computational results from the optimal solutions for 540 problem instances using the

standard CAB hub location data set derived from air passenger traffic between 25 major cities in the

US. As is common with the CAB data, we set χ = δ = 1 and vary α from 0.2 to 1.0. These problems

were solved using the SE algorithm coded in C++ on a DELL OPTIPLEX GX620 computer with a 3.4

GHz Intel Pentium 4 processor operated under Windows XP Professional with 2.0 GB DDR2-SDRAM

memory. We set the candidate sets of hub arcs for Firms A and B to be the entire set of arcs connecting

all pairs of the 25 cities, so there were 300 candiate hub arcs for each firm.

4.1 Problem scenarios

We utilize a variety of scenarios to consider a range of transportation systems with different OD revenues

and different customer behaviors. For the OD revenues, we prepared two data sets, denoted Airfare and

Distance. The revenue set Airfare is based on IATA Y class standard airfare between the city pairs

collected by the lead author in 1998 from http://www.airfare.com/. For each OD pair, the lowest Y

class airfare was selected from the many fares provided. Thus, the Airfare data set represents realistic

revenues at a particular point in time. (Of course, the long run patterns of airfares may differ due to

the dynamic nature of the industry and its pricing structures.) A plot of the airfares versus the direct

OD distance showed a strong correlation for some origins (cities) individually (R2 > 0.7), but a weaker

correlation in aggregate (R2 = 0.189). More details on the charateristics of the Airfare revenue set are

in Appendix A.

For comparison purposes we created a second revenue set, denoted Distance, that is the direct OD

distance for each city pair. This could represent a situation where revenues are strongly correlated with

OD distance, as is the case for aircraft operating costs [1]. Also, if the carrier profit per unit of demand

(i.e., per passenger or per shipment) is strongly correlated with the OD distance, then this revenue data

set could also be used to explore profit maximizing solutions. Using the Airfare and Distance revenue

sets, our objective is to maximize the total revenue captured. (If the demand is in units of passengers,

then we could easily maximize the number of passengers captured by using a revenue of 1.0 for all OD

pairs.)

Note that since the demand and the revenue appear only in the problem objective, the product

Fij×Wij can be viewed as a new demand set. Thus, the problem of maximizing the revenue captured is

equivalent to maximizing the demand captured when the demand Wij is replaced by Fij×Wij . Because

the Airfare and Distance revenue sets are not strongly correlated with the demand in the CAB data set,

12



they do not create a very large change in the relative sizes of the demand for each city. Table 2 shows a list

of the 25 CAB cities with the percentages of the total demand, demand×Airfare, and demand×Distance,

respectively, originating and terminating at each city. For example, the “largest” city is 17 which has

17% of the total originating and terminating demand, 16.9% of the the total originating and terminating

demand weighted by the Airfare revenues, and 16.3% of the total originating and terminating demand

weighted by the Distance revenues. One effect of the Distance revenue set is to effectively increase the

demand of the west coast cities; for example, 12 (Los Angeles) and 22 (San Francisco) have 7.3% and

5.1%, respectively, of the total demand, but are 12.5% and 8.7% of the total when demand is weighted

by the Distance revenue set. Correspondingly, central city 4 (Chicago), which has 10.0% of the total

originating and terminating demand, has only 8.5% of the total when demand is weighted by the Distance

revenue set. Note that the Airfare revenue set does not generally provide such large changes (except for

city 4).

Table 2: Cities in the CAB data set
# City % Demand % Demand ×Airfare % Demand ×Distance
1 Atlanta 2.8 2.9 2.3
2 Baltimore 1.7 1.5 1.4
3 Boston 6.1 5.3 4.5
4 Chicago 10.0 8.0 8.5
5 Cincinnati 1.6 2.1 1.0
6 Cleveland 3.0 3.0 2.1
7 Dallas 3.1 3.8 3.0
8 Denver 2.4 3.2 2.7
9 Detroit 4.3 5.0 3.3

10 Houston 2.4 2.9 2.4
11 Kansas City 2.0 1.8 1.7
12 Los Angeles 7.3 7.2 12.5
13 Memphis 1.2 1.4 0.9
14 Miami 5.5 5.2 6.6
15 Minneapolis 2.5 3.5 2.3
16 New Orleans 1.8 2.0 1.7
17 New York 17.0 16.9 16.3
18 Philadelphia 3.6 3.6 3.3
19 Phoenix 1.5 1.3 1.8
20 Pittsburgh 2.8 3.0 1.8
21 St. Louis 2.9 2.6 2.2
22 San Francisco 5.1 4.9 8.7
23 Seattle 1.9 2.1 3.1
24 Tampa 1.9 1.8 1.8
25 Washington DC 5.7 4.7 4.1

Our computational results include three different settings for r1 and r2 in the customer allocation

function introduced in Section 2.2 to explore a range of customer behaviors in selecting between competing

firms. Our base case, denoted low customer selectivity, corresponds to r1 = 0.75 and r2 = 0.25, and
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reflects customers being rather insensitive to the relative service of the competitors. With these large

values of r1 and r2, a very large relative difference in distance (or cost) is needed to strongly prefer one firm

over the other. Specifically, the five level customer allocation step function with low customer selectivity

implies the following relative performance characteristics for each firm’s hub network: to capture all

demand for an OD pair it must provide a travel distance (or cost) of less than one-seventh (14%) of the

competitor’s value; to capture 75% of the demand it must provide a distance (or cost) of 14% to 60% of

the competitor’s value; to share the demand equally (capture 50%), it must provide a distance (or cost)

of 60% to 167% of the competitor’s value; to capture 25% of the demand, it must provide a distance (or

cost) of 167% to 700% of the competitor’s value; and to capture none of the demand, it must provide a

distance (or cost) of over 700% of the competitor’s value. In our preliminary tests using low customer

selectivity with the CAB data, both firms generally share the demand equally for about 80% of all OD

pairs, with the remaining OD pairs shared 25% and 75%. As an example with low customer selectivity,

Figure 2(a) shows the distribution of the percentage of OD pairs captured by Firm A in each level of

the five-level step function for an instance with qA = qB = 2 and α = 0.2. Note that this is close to the

extreme case of very large values for r1 and r2, when each firm would capture 50% of the demand for

every OD pair (and therefore in aggregate).

For our second customer allocation pattern, we selected values for r1 and r2 to create a more even

distribution of OD pairs among the five different levels of allocation (100%, 75%, 50%, etc.). This is not

straightforward as different problem parameters (e.g., number of hub arcs, revenue sets, α values, etc.)

produce different allocation patterns for the same settings of r1 and r2. Based on our experimention

we denote r1 = 0.083 and r2 = 0.015 as medium customer selectivity. Figure 2(b) shows the more even

distribution of the percentage of OD pairs captured by Firm A with medium customer selectivity for the

same instance shown in Figure 2(a). Here, each of the five levels of capture includes between 11% and

31% of the OD pairs.

For our third customer allocation pattern, denoted high customer selectivity, we set r1 = r2 = 0. In

this case, the firm providing better service captures all passengers and the other firm captures none, even

when the travel difference through the two hub networks is extremely small. When the two hub networks

provide identical service (i.e., identical path distances when using DRA,B
ij or identical path costs when

using CRA,B
ij ), we split the demand equally between the competitors. Figure 2(c) shows the distribution

of the percentage of OD pairs captured by Firm A with high customer selectivity for the same instance

shown in Figure 2(a). Although Firm A captures 100% of the revenues for only about one-third of the

OD pairs in this instance, this corresponds to 52.6% of the total revenue, since Firm A captures more
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higher revenue customers. Note that Figure 2(c) shows 1.67% of OD pairs being split equally between

the two firms for five OD pairs with OD paths of equal distance. Figure 2 clearly shows the flexibility of

our customer allocation function with its ability to model different levels of customer selectivity. This is

just one example, but similar patterns were observed in other problem instances.
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Figure 2: The distribution of the percentage of OD pairs captured by Firm A with low, medium and
high customer selectivity (using customer allocation based on the distance ratio, the Airfare revenue set,
qA = qB = 2 and α = 0.2)

Our results use the low, medium and high levels of customer selectivity to explore how the optimal

solutions depend on the customer allocation. If a carrier knows the customer response pattern for

a particular market, then appropriate values of r1 and r2 should be selected to reflect the customer

behavior. To simplify the notation in presenting and discussing results, we will adopt the notation

HALCE(RS,AL,SL,qA,qB ,α) where RS indicates the revenue set (RA=Airfare, RD=Distance), AL

indicates the allocation type (PD=path distance, PC=path cost), and SL indicates the level of customer

selectivity (low, medium or high).

The remainder of this section includes results from 540 instances using the two revenue sets (Air-

fare and Distance), three levels of customer selectivity (low, medium and high), five values of α (0.2,

0.4, 0.6, 0.8, 1.0) and nine 〈qA, qB〉 combinations with up to three hub arcs for each firm: 〈qA, qB〉 =

〈1, 1〉, 〈1, 2〉, 〈1, 3〉, 〈2, 1〉, 〈2, 2〉, 〈2, 3〉, 〈3, 1〉, 〈3, 2〉, 〈3, 3〉. Each problem is solved to optimality using the

SE algorithm from Section 3. We first consider customer allocation based on the distance ratio DRA,B
ij .

As noted earlier, these might best represent passenger transportation systems since the customers prefer

shorter distance paths.

4.2 Base Case

As a base case we present detailed results using low customer selectivity in Table 3 for the Airfare revenue

set and in Table 4 for the Distance revenue set. The results show that Firms A and B capture similar
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revenue shares in all problems, even when one firm has three hub arcs and the other has only one. Firm

A’s share ranges from 46.12% to 53.75% in Table 3, with a similar, but slightly smaller range in Table 4.

The results also show the share captured is rather insensitive to α for each particular number of hub arcs

- and the same solutions for a fixed 〈qA, qB〉 with large α values in many cases. Note that with α = 1,

the hub arcs provide no advantage so any combination of the hub nodes shown is optimal. Another

interesting finding is that the “first entry paradox” [9] occurs in which Firm A does not take advantage

of being the leader (it has less than 50% of the revenue) with qA = qB = 1. When qA < qB , it is not

surprising that Firm A captures less than 50% of the revenue, though it is interesting that it is always

near 50%. Comparing the solutions in Tables 3 and 4 for the same problem shows the influence of using

different revenue sets. In many cases, Firm A uses the same hubs arcs with both revenue sets, but Firm

B does not (e.g., see qA = qB = 2 with α=0.6, 0.8 and 1.0). In other cases, such as qA = 2, qB = 3 with

α=0.4, 0.6, 0.8 and 1.0, both firms use the same optimal hub arcs with both revenue sets, even though

the revenue captured differs due to the different revenue data.

As expected, the computational effort shown in Tables 3 and 4 increases with increasing numbers of

hub arcs. The maximum cpu time (for qA = qB = 3 and α = 0.2) is nearly 100 minutes. In many cases,

but not all, the cpu times decreased somewhat (often around 25%) as α increased from 0.2 to 1.0.

Figure 3 shows how Firm A’s share increases as it adds hub arcs with qB=1 for various values of

α. As expected, there are marginally decreasing returns with added hub arcs. The figure also shows

that Firm A’s share is smaller with the Distance revenue set, but the sensitivity to α varies between the

revenue sets. When qA = 1 Firm A’s share seems more sensitive to α using the Airfare revenue set, but

the opposite is true for qA = 3. Another interesting observation is that with both revenue sets, when

qA = 1, Firm A’s share is the worst when α = 0.2 and the best when α = 1.0, while with qA = 3, the

worst case occurs when α = 1.0 and the best case occurs when α = 0.2.

4.3 Customer selectivity

To explore the role of customer preferences we compare results with the low, medium and high levels of

customer selectivity. Complete results for these problems are available in Appendix B. Figure 4 shows

the percentage of Firm A’s share for the problems of 〈qA, qB〉 = 〈3, 1〉, 〈2, 2〉, and 〈1, 3〉 with low, medium

and high selectivity. The solid lines and the dashed lines show the results with α = 0.8 and α = 0.2,

respectively. (Other values of α produce similar results.) A comparison of the two charts shows that the

share captured is rather insensitive to the revenue set for all levels of selectivity. Combined with Figure

2, some interesting relations between captured share and the distribution of demand for different levels

of selectivity can be observed. When the selectivity level is low, both firms share the customers almost
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Table 3: Optimal results for HALCE(RA,PD,low,qA,qB ,α)
qA qB α CPU sec. A’s hub arcs B’s hub arcs A’s share(%) B’s share(%)

1 1 0.2 0.11 2-21 4-17 49.77 50.23
0.4 0.08 4-17 8-20 50.33 49.67
0.6 0.06 4-17 8-25 50.55 49.45
0.8 0.08 4-17 8-25 50.57 49.43
1.0 0.06 4-17 8-25 50.57 49.43

1 2 0.2 2.70 4-20 1-18 5-8 47.12 52.88
0.4 1.12 4-17 10-25 5-8 48.14 51.86
0.6 1.14 4-17 10-25 8-9 48.40 51.60
0.8 1.12 4-17 9-25 8-10 48.41 51.59
1.0 1.14 4-17 9-25 8-10 48.41 51.59

1 3 0.2 295.72 4-20 7-15 1-18 5-8 46.12 53.88
0.4 109.06 4-17 8-25 5-7 1-3 46.91 53.09
0.6 107.31 4-17 3-9 7-25 1-12 47.14 52.86
0.8 107.48 4-17 3-9 7-25 1-12 47.15 52.85
1.0 108.28 4-17 3-9 7-25 1-12 47.15 52.85

2 1 0.2 4.36 17-20 4-8 11-25 52.64 47.36
0.4 4.42 12-17 4-7 11-25 52.52 47.48
0.6 4.64 12-17 1-4 11-25 52.59 47.41
0.8 4.30 1-17 4-12 7-25 52.57 47.43
1.0 4.28 1-17 4-12 7-25 52.57 47.43

2 2 0.2 23.91 12-17 4-8 9-18 7-22 50.64 49.36
0.4 16.50 17-20 4-8 10-12 5-25 50.67 49.33
0.6 15.56 17-22 4-7 9-25 11-12 50.69 49.31
0.8 17.84 7-17 4-22 9-25 11-12 50.69 49.31
1.0 17.69 7-17 4-22 9-25 11-12 50.69 49.31

2 3 0.2 1189.12 17-20 4-8 7-22 5-25 1-3 49.32 50.68
0.4 636.25 12-17 4-7 3-22 9-11 16-25 49.46 50.54
0.6 767.64 17-22 4-7 3-9 11-25 12-16 49.60 50.40
0.8 907.18 7-17 4-22 3-9 11-25 12-16 49.60 50.40
1.0 907.35 7-17 4-22 3-9 11-25 12-16 49.60 50.40

3 1 0.2 482.28 17-20 7-12 1-4 2-21 53.75 46.25
0.4 498.92 17-20 4-7 1-12 2-13 53.64 46.36
0.6 492.65 1-17 4-7 12-20 2-13 53.60 46.40
0.8 504.31 1-17 4-7 12-20 13-25 53.60 46.40
1.0 489.90 1-17 4-7 12-20 13-25 53.60 46.40

3 2 0.2 847.58 17-20 4-8 7-22 9-25 11-19 51.74 48.26
0.4 755.32 17-20 4-8 16-22 7-12 5-25 51.73 48.27
0.6 657.08 1-17 4-7 20-22 3-8 5-25 51.73 48.27
0.8 640.69 1-17 4-7 20-22 3-8 5-25 51.73 48.27
1.0 640.55 1-17 4-7 20-22 3-8 5-25 51.73 48.27

3 3 0.2 4809.90 3-17 4-20 7-22 12-18 5-8 13-15 50.72 49.28
0.4 4516.08 3-17 4-7 20-22 9-12 11-15 1-18 50.64 49.36
0.6 3813.45 1-17 4-7 20-22 3-9 15-25 12-13 50.67 49.33
0.8 3901.92 1-17 4-7 20-22 3-9 15-25 12-13 50.67 49.33
1.0 3877.50 1-17 4-7 20-22 3-9 15-25 12-13 50.67 49.33
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Table 4: Optimal results for HALCE(RD,PD,low,qA,qB ,α)
qA qB α CPU sec. A’s hub arcs B’s hub arcs A’s share(%) B’s share(%)

1 1 0.2 0.16 7-25 5-19 49.70 50.30
0.4 0.12 8-20 7-18 49.74 50.26
0.6 0.14 6-22 4-18 49.79 50.21
0.8 0.12 6-22 2-12 49.84 50.16
1.0 0.11 6-22 2-12 49.84 50.16

1 2 0.2 9.42 5-8 17-22 4-11 47.92 52.08
0.4 2.06 4-17 8-25 5-7 47.99 52.01
0.6 4.08 13-17 12-25 4-7 48.05 51.95
0.8 4.09 13-17 7-12 4-25 48.07 51.93
1.0 4.09 13-17 7-12 4-25 48.07 51.93

1 3 0.2 580.65 5-8 17-23 4-11 13-19 47.28 52.72
0.4 466.26 2-11 12-25 1-17 4-7 47.36 52.64
0.6 524.34 13-17 7-12 3-25 4-24 47.49 52.51
0.8 524.26 13-17 7-12 3-25 4-24 47.51 52.49
1.0 537.18 13-17 7-12 3-25 4-24 47.51 52.49

2 1 0.2 5.95 12-17 4-8 13-25 51.97 48.03
0.4 5.78 4-18 1-12 2-11 51.98 48.02
0.6 4.67 12-17 4-7 9-22 51.92 48.08
0.8 4.72 4-22 1-17 9-12 51.86 48.14
1.0 4.77 4-22 1-17 9-12 51.86 48.14

2 2 0.2 26.47 12-17 4-8 7-22 21-25 50.19 49.81
0.4 19.25 12-17 4-7 22-25 9-11 50.25 49.75
0.6 16.22 17-22 4-7 12-21 3-25 50.43 49.57
0.8 18.23 4-22 7-17 12-21 3-25 50.43 49.57
1.0 18.12 4-22 7-17 12-21 3-25 50.43 49.57

2 3 0.2 804.91 12-17 4-8 7-22 1-25 19-21 49.49 50.51
0.4 618.11 12-17 4-7 3-22 16-25 9-11 49.64 50.36
0.6 550.78 17-22 4-7 12-16 3-9 11-25 49.87 50.13
0.8 763.33 4-22 7-17 12-16 3-9 11-25 49.87 50.13
1.0 767.14 4-22 7-17 12-16 3-9 11-25 49.87 50.13

3 1 0.2 644.18 17-25 7-12 4-8 2-21 52.69 47.31
0.4 666.97 4-17 1-12 7-20 2-13 52.54 47.46
0.6 544.43 7-17 12-20 1-4 9-22 52.51 47.49
0.8 562.97 17-24 4-8 7-22 11-25 52.41 47.59
1.0 570.32 17-24 4-8 7-22 11-25 52.41 47.59

3 2 0.2 1355.77 12-17 4-8 1-7 21-25 19-22 50.96 49.04
0.4 1249.52 17-22 1-12 4-7 3-25 19-21 50.97 49.03
0.6 983.57 4-22 1-17 7-12 3-21 19-25 50.97 49.03
0.8 938.79 4-22 1-17 7-12 3-21 19-25 50.97 49.03
1.0 951.49 4-22 1-17 7-12 3-21 19-25 50.97 49.03

3 3 0.2 5887.58 4-8 7-22 17-20 10-12 9-25 3-21 50.37 49.63
0.4 4077.64 17-22 1-12 4-7 3-19 2-16 9-11 50.42 49.58
0.6 3212.09 4-22 1-17 7-12 9-19 2-16 3-11 50.43 49.57
0.8 3568.35 4-22 1-17 7-12 9-19 2-16 3-11 50.43 49.57
1.0 3588.21 4-22 1-17 7-12 9-19 2-16 3-11 50.43 49.57
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Figure 3: Share increase with use of additional hub arcs for Firm A

equally regardless of the number of hub arcs selected, since the demand for vast majority of OD pairs is

split equally (see Figure 2). The other extreme is high selectivity, where a firm may gain a considerable

advantage when it has more hub arcs than its competitor - and where results are more sensitive to α. In

the case of 〈qA, qB〉 = 〈3, 1〉, Firm A captures over 77% of the revenue, and for 〈qA, qB〉 = 〈1, 3〉 Firm B

similarly captures over 65% of the revenue. However, the figure shows a small advantage for the leader,

as Firm A captures more revenue with 〈qA, qB〉 = 〈3, 1〉, than does Firm B with 〈qA, qB〉 = 〈1, 3〉. As the

level of selectivity changes from medium to high, there does seem to be a benefit for the leader (Firm A)

from having more hub arcs: with 〈qA, qB〉 = 〈3, 1〉 Firm A increases its share of the revenue about 12%

as the level of selectivity changes from medium to high, while with 〈qA, qB〉 = 〈1, 3〉 Firm B increases its

share of the revenue only about 2%. Also note that when the number of hub arcs is the same for each

competitor, the leader has only a rather small advantage regardless of how selective are the customers,

except with large α and high selectivity.

4.4 Hub and hub arc use

Tables 5 and 6 summarize the results of 270 instances using customer allocation based on the distance

ratio DRA,B
ij for the six problem scenarios (using either the Airfare or Distance revenue set and either

the low, medium or high level of customer selectivity). Complete results for all these problems are in

Tables 3 and 4 and Appendix B. For each of the six problem scenario we solved 45 instances with different

combinations of hub arcs and α values, analogous to the two problem scenarios shown in Tables 3 and

4. Table 5 shows summary data for optimal hubs and Table 6 shows summary data for the optimal hub
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Figure 4: The percentage of captured share by Firm A with different levels of customer selectivity

arcs. Both tables have the same labels as follows. The first column identifies the hub (city) or the hub

arc. The second column is the percentage of times that a city or hub arc appears in the 270 problems.

The remaining 18 columns appear in groups of three for each of the six problem scenarios. Each group

of three columns is headed by a three-part description of the problem scenario with the revenue set first

(RA or RD), the customer allocation type second (PD), and the level of selectivity third. The columns

labeled “A” and “B” are the percentage of times a city (or hub arc) appears in the optimal solutions for

Firm A and Firm B, respectively. The column labeled “Total” is the sum of the percentages in columns

“A” and “B”, which is the percentage of times a city (or hub arc) appears for either Firm A or B. The

tables are sorted in descending order of the “%” column.

Table 5 shows that the top two cities (4=Chicago, 17=New York) are used as hubs in nearly every

problem. Then there is a significant break before the next most frequently used city (12=Los Angeles),

which is used in 57.0% of instances overall. The next most frequently used cities (1 and 8) show similar

aggregate usage, though it derives from different patterns with city 1 being used more evenly across the

six problem scenarios and city 8 varying in usage from 15.6% to 84.4%. Collectively, the results in Table

5 show that Firm A tends to use the same cities as hubs more often than Firm B, and uses fewer cities as

hubs overall. Across the six problem scenarios, Firm A uses a hub at the 40% or greater level 24 times

and uses a hub at the 5% or greater level 66 times. In contrast, Firm B uses a hub at the 40% or greater

level 13 times and uses a hub at the 5% or greater level 112 times. The heavily used hubs (over 40% for

at least one problem scenario) for Firm A are cities 1, 4, 7, 8, 12, 17, 20 and 22, and for Firm B are cities

3, 6, 9, 11, 12, 18, 21 and 25. Only city 12 is heavily used as a hub by both firms; the remaining cities
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tend to be used predominantly by a single firm. It is also interesting that a city that is used infrequently

overall, can be heavily used in one problem scenario, such as city 2. The variation in hub usage for

different problem scenarios highlights the importance of the customer selectivity in modeling different

transport systems. For example, city 14 is heavily used with high selectivity, but not at all with low

selectivity. Conversely, city 7 is predominantly used with low selectivity, and city 11 is predominantly

used with medium selectivity.

Naturally, there are some geographic patterns in the hub usage, with west coast cities 12 and 22 used

frequently overall (with slightly more usage by Firm A). Also, some centrally located cites seem to enjoy

a geographical advantage over more peripheral cities with the CAB data set. For example, cities 1, 8,

10 and 15 have very similar demands and revenue patterns (see Table 2), but cities 1 and 8 are among

the cities most often used as hubs, while cities 10 and 15 are rarely used as hubs. Cities 1 (Atlanta)

and 8 (Denver) seem to have a geographical advantage from being more centrally located, while cities 10

(Houston) and 15 (Minneapolis) are disadvantaged by being located on the periphery of the CAB data

set. Similarly, city 3 (Boston) seems disadvantaged, as it is ranked fourth in terms of demand (see Table

2), but eighth in usage as a hub (Table 5). Thus, while there is a strong link in many cases between

the level of demand at a city (i.e. originating and terminating traffic) and its usage as a hub (see the

similarities in the top ranked cities in Tables 2 and 5), geography also plays a strong role in selecting hub

locations.

Table 6 provides a summary of hub arc usage for the 270 instances. The 21 hub arcs included in

this table are the five most frequently used hub arcs in the optimal solutions for each of the six problem

scenarios. Not surprisingly, the top eight hub arcs in Table 6 use either city 4 or 17, reflecting their

importance as hubs (as shown in Table 5. The most frequently used hub arc is (1,4), which is used in

about one-quarter of the problems overall. It connects the first and fifth most used hubs and is used more

by Firm A than Firm B. The second and third most frequently used hub arcs in aggregate are (4,8) and

(1,17), which are used almost exclusively by Firm A and almost never with high customer selectivity.

In contrast, hub arcs (12,22) and (14,17) are used mainly with high customer selectivity. Although the

use of individual hub arcs seems low overall (maximum of 26.7% vs. 91.5% for hub use), given the much

greater number of hub arcs compared to hubs (300 vs. 25), and that each solution has half as many hub

arcs as hubs, such concentrated use of hub arcs is noteworthy.
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The use of hub arcs is much less consistent than the use of hubs across the problem scenarios. Only the

top two hub arcs are used at a level of over 20% for two or more problem scenarios. All other frequently

used hub arc (used in over 20% of the instances for a problem scenario) are used in a single problem

scenario. The results also show a differential intensity of hub arc use by the leader and follower. Firm A

uses a small fraction of the hub arcs intensively, with 13 hub arcs used at a level over 20% and 25 hub

arcs used at a level over 15%. Hub arcs used most intensively by Firm A include the top ten in Table 6.

In contrast, Firm B uses no hub arcs at a level over 20% and only 3 hub arcs at a level over 15%. Hub

arcs used most intensively by Firm B include (3,9) and (7,15). Note also the 48 “0” entries in the “Total”

columns of Table 6 (38% of the entries), which indicate a hub arc that is not used for any instances in

that scenario. In summary, Firm A uses a small fraction of the hub arcs intensively, while Firm B uses

a wider range of hub arcs at less intensisity; however, Firm B often manages to capture nearly the same

revenue that Firm A does when using the same number of hub arcs.

The complex patterns of hub arc use indicate that the optimal hub networks for Firms A and B vary

considerably over the different problem scenarios. As an example, Figure 5 shows the optimal hub arcs

with the Airfare and Distance revenue sets with low, medium and high selectivity for qA = qB = 2 and

α = 0.6. The solid lines show Firm A’s hub arcs and the dashed lines show Firm B’s hub arcs. With

low selectivity, the pattern of hub arcs is quite similar with both revenue sets, but with medium and

high selectivity the patterns are quite different. Of the 24 hub arcs in these six optimal solutions, there

are 20 different hub arcs using 20 different hub cities, with some concentrated usage of cities 4 and 17,

which are hubs in all six solutions, and cities 1, 7, 8, 12 and 14, which appear in three or four of the six

solutions. This shows just one example of how the level of customer selectivity can produce dramatically

different optimal hub networks, even though the revenue captured and some of the hub nodes may be

very similar.

4.5 Customer allocation using the cost ratio

The results above use the customer allocation function based on the ratio of travel distances (DRA,B
ij ).

This seems most appropriate for passenger transportation, since passengers prefer shorter travel times.

In this section, we provide results for 270 instances using the customer allocation function based on the

ratio of travel costs (CRA,B
ij ). These problems may be most appropriate for freight transportation where

the freight carriers have flexibility to route the freight efficiently to minimize cost, and the travel distance

may be less important. In these results we use the same two revenue sets, five α values, and nine 〈qA, qB〉

combinations as earlier. We present an illustration of the results here using the high level of customer

selectivity, which corresponds to the situation in [14]. For complete results with the customer allocation

24
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(b) HALCE(RD,PD,low,2,2,0.6)
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(c) HALCE(RA,PD,medium,2,2,0.6)
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(d) HALCE(RD,PD,medium,2,2,0.6)
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(e) HALCE(RA,PD,high,2,2,0.6)
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(f) HALCE(RD,PD,high,2,2,0.6)

Figure 5: Optimal solutions for qA = qB = 2 and α = 0.6
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function based on the cost ratio, see Appendix C.

As an example of the results with the cost and distance ratios, in Table 7 we provide the optimal

solutions with 〈qA, qB〉 = 〈3, 3〉. The top half of Table 7 is results with customer allocation based on the

cost ratio, and the lower half of Table 7 is the corresponding results for customer allocation based on

the distance ratio. The first column in this table indicates the revenue set and the customer allocation

type. A comparison of the first ten rows and the last ten rows shows that Firm A generally captures a

smaller share of revenue with the cost ratio, especially for small values of α. This implies that use of the

cost ratio CRij gives Firm B some advantages to capture more revenue. (Note that for α = 1.0 the cost

ratio and distance ratio become equivalent.) However, this behavior is not true in generall. The results

also show that although many hubs are common between the solutions using the cost and distance ratios

(cities 4, 12 and 17 are in all solutions in Table 7), different hub arcs are being used.

Table 7: Optimal results for HALCE(RS,AL,high,3,3,α)
Problem α CPU sec. A’s hub arcs B’s hub arcs A’s share(%) B’s share(%)
RA, PC 0.2 967.92 17-21 4-12 18-24 22-25 2-14 6-7 54.96 45.04

0.4 820.38 6-17 4-12 7-25 9-24 19-20 2-21 56.73 43.27
0.6 861.01 4-12 17-20 13-18 15-22 6-21 24-25 58.12 41.88
0.8 1043.79 4-17 9-12 7-25 14-21 6-8 2-18 58.81 41.19
1.0 709.49 7-17 12-25 4-9 3-21 6-14 2-22 63.09 36.91

RD, PC 0.2 467.36 4-22 12-18 17-21 8-25 1-20 13-19 62.37 37.63
0.4 654.88 4-17 9-12 19-22 1-18 8-21 6-25 59.49 40.51
0.6 929.15 4-17 18-22 5-12 21-25 20-24 19-21 58.95 41.05
0.8 502.90 4-12 7-17 18-22 8-11 24-25 9-20 63.42 36.58
1.0 341.00 14-17 4-22 12-25 3-18 9-21 1-8 71.47 28.53

RA, PD 0.2 1111.08 3-17 12-23 1-4 14-25 20-24 16-21 62.82 37.18
0.4 1051.97 3-17 12-22 1-4 5-9 8-14 10-15 60.52 39.48
0.6 1011.01 3-17 12-14 1-4 22-23 5-9 10-15 61.56 38.44
0.8 779.09 14-17 12-22 1-4 9-25 3-10 15-21 62.93 37.07
1.0 1087.78 7-17 12-25 4-9 3-21 6-14 2-22 63.09 36.91

RD, PD 0.2 648.97 3-17 12-23 1-4 14-25 20-24 16-21 67.80 32.20
0.4 634.64 14-17 12-22 1-4 3-25 19-23 15-21 69.22 30.78
0.6 629.72 14-17 12-22 1-4 24-25 7-15 5-9 69.34 30.66
0.8 700.72 4-14 3-17 12-22 23-25 1-9 7-11 72.18 27.82
1.0 827.12 14-17 4-22 12-25 1-18 3-21 8-9 71.47 28.53

Figure 6 provides an example of the optimal hub networks using the customer allocation function based

on the cost ratio and the distance ratio for the Distance revenue set with qA = qB = 3 and α = 0.6. These

two maps show strikingly different patterns that result from the quite different underlying motivations

reflected in the cost and distance ratios. With the distance ratio (Figure 6(b)) the customers (e.g.,

passengers) prefer shorter travel distances, so one-stop paths (origin-hub-destination) have high utility

and use of the hub arcs is discouraged. Thus, the hub arc networks in Figure 6(b)) are designed to create

more one-stop trips, so the locations of the hub nodes are more important than the locations of the hub
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Figure 6: Optimal solutions for qA = qB = 3 and α = 0.6

arcs. This is reflected in the hub arcs use, where in Figure 6(b) less than 15% of the total revenues are

derived from trips that utilize a hub arc (Firms A and B derive only 9.1% and 5.2%, respectively, of

their total revenues from trips that utilize a hub arc). In contrast, with the cost ratio (Figure 6(a)), the

demand (e.g., freight) is routed via the hub arcs to take advantage of the cost savings. In this solution,

two-thirds of the total revenues result from trips that utilize a hub arc, with Firms A and B deriving

40.9% and 24.7% of the total revenues, respectively, from trips that utilize a hub arc. Thus, the hub arcs

in Figure 6(a) are designed to attract customers to the hub arcs, so they tend to reflect the underlying

demand patterns (east-west and northeast-Florida).

These results in Table 7 and Figure 6 reflect some interesting behaviors that suggest strong differences

in freight and passenger hub networks. These results highlight how optimal network design can be very

sensitive to the details of the customer allocation mechanism in competitive problems.

4.6 Computation times

All the instances in this paper were solved with the SE algorithm described in Section 3. Details on the

cpu times for all instances are available in Appendix B and Appendix C. In general, the cpu times with

medium selectivity were greatest with a maximum of 9110 seconds for qA = qB = 3 and α = 0.6. The cpu

times with high selectivity were smallest and the maximum was only 1111 seconds for qA = qB = 3 and

α = 0.2. The cpu times for problems with customer allocation based on the cost ratio with high selectivity

were similar to those based on the distance ratio with a maximum of 1044 seconds for qA = qB = 3 and

α = 0.8. The efficiency of the SE algorithm can be gauged from the cpu times as well as the reduced

set of enumerations. For example, with the HALCE(RD,PD,high,3,3,0.6) problem shown in Figure 6(b)

complete enumeration would require evaluating 4.28×1012 hub arc combinations for Firms A and B; the

SE algorithm evaluated only 1.78×107 of these combinations. Furthermore, for each hub arc combination
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the algorithm evaluated on average only 132 of the 300 OD pairs due to the upper bounding procedure

for Firm B’s revenue. Thus, the net effect is that the evaluation effort of the SE algorithm was about

1.83×10−4% of that required for complete enumeration.

5 Conclusions

This paper provides a model and results for competitive hub arc location as a step towards the design

of competitive large-scale transportation systems. We examined how the optimal solutions are affected

by different customer allocation functions, different revenue sets, the number of hub arcs, and the degree

of discount for hub arc travel, and we highlighted some interesting differences between the leader’s and

follower’s optimal hub arcs and hubs. The results show a strong link in many cases between the level of

demand at a city (i.e. originating and terminating traffic) and its usage as a hub. This is due in large part

to the wide disparity in city sizes in the CAB data. However, the results also show how geography plays

an important role in designing hub networks, with centrally located cities having a locational advantage

over more peripheral cities. Our results highlight how optimal network design can be very sensitive to

the details of the customer allocation mechanism in competitive problems - even though the amount of

business captured in aggregate may be relatively insensitive to the allocation mechanism.

The optimal competitive hub networks with customer allocation based on the ratio of path distances

reflect the passenger’s desire for shorter routes with fewer stops at hubs. These networks may be very

different than the optimal hub networks designed to minimize transportation cost, both in competitive

revenue maximizing environments (e.g., with customer allocation based on the ratio of path distances)

and in non-competitive cost minimizing environments (e.g., hub median and hub arc location models).

Research on competitive hub location problems is a new area, so there are considerable opportunities

for future research. A few important ones are to develop better solution algorithms; to explore different

customer allocation functions (especially based on real world data); to compare solutions with different

revenue functions and different levels of demand; and to use other data sets. Extensions of our models

include developing better bounding strategies in the SE algorithm and exploring variations of the customer

allocation function. This could include different percentages as levels of the step function, different levels

of customer selectivity (i.e., values of r1 and r2) and different measures of service to include the impact

of stopovers at hubs. Research could also be directed at extending models to include revenues and costs.
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Appendix A Airfare vs. distance

Figure 7 shows a scatter plot of airfare vs. distance for all 300 OD pairs. The associated linear regression

coefficient of determination is R2 = 0.189. The outlier appearing near the Y axis corresponds to OD pair

{Cleveland,Pittsburgh}. Five of 300 OD pairs did not appear in the original data, so their airfares were

set to zero. The OD pairs with zero airfare are: (2,18), (2,25), (6,9), (13,21) and (14,24).
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Figure 7: Airfare vs. distance

Appendix B Complete results with customer allocation based
on the distance ratio

Tables 8 and 9 show detailed results using medium customer selectivity for the Airfare revenue set and

for the Distance revenue set, respectively. Similarly, Tables ?? and ?? show detailed results using high

customer selectivity for the Airfare revenue set and for the Distance revenue set, respectively.

Appendix C Complete results with customer allocation based
on the cost ratio

Tables 12 - 17 show detailed results with customer allocation based on the cost ratio using either the

Airfare or Distance revenue set and either the low, medium or high level of customer selectivity. Tables

12 and 13 show the results using low customer selectivity for the Airfare revenue set and for the Distance

revenue set, respectively. Tables 14 and 15 show the results using medium customer selectivity for the

Airfare revenue set and for the Distance revenue set, respectively. Tables 16 and 17 show the results

using high customer selectivity for the Airfare revenue set and for the Distance revenue set, respectively.
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Table 8: Optimal results for HALCE(RA,PD,medium,qA,qB ,α)
qA qB α CPU sec. A’s hub arcs B’s hub arcs A’s share(%) B’s share(%)

1 1 0.2 0.11 20-21 2-8 51.83 48.17
0.4 0.11 20-21 6-11 50.87 49.13
0.6 0.10 11-20 17-21 51.44 48.56
0.8 0.10 11-20 17-21 51.11 48.89
1.0 0.08 11-20 17-21 50.35 49.65

1 2 0.2 3.05 8-20 3-17 1-4 39.30 60.70
0.4 3.15 8-20 16-18 6-11 38.87 61.13
0.6 2.14 8-20 18-19 6-11 37.29 62.71
0.8 1.07 4-17 15-21 2-6 37.29 62.71
1.0 0.56 4-17 6-18 8-21 38.32 61.68

1 3 0.2 132.57 8-20 3-17 12-23 1-4 33.51 66.49
0.4 120.56 8-20 16-18 5-7 6-11 34.21 65.79
0.6 78.79 8-17 3-6 11-15 18-19 33.88 66.12
0.8 58.04 4-17 3-18 11-15 5-6 33.82 66.18
1.0 43.73 4-17 6-18 11-15 3-5 35.53 64.47

2 1 0.2 5.39 18-20 8-21 4-6 62.40 37.60
0.4 5.40 4-8 13-18 20-21 62.85 37.15
0.6 6.19 8-17 1-4 20-21 64.23 35.77
0.8 4.85 8-17 1-4 11-20 63.82 36.18
1.0 5.47 17-20 4-7 6-8 64.32 35.68

2 2 0.2 21.44 3-17 4-8 6-21 2-18 52.29 47.71
0.4 30.27 8-17 1-4 2-16 6-11 52.27 47.73
0.6 28.53 8-17 1-4 18-19 6-11 52.91 47.09
0.8 22.27 8-17 1-4 7-11 2-6 52.81 47.19
1.0 16.12 1-17 4-8 18-19 6-21 52.06 47.94

2 3 0.2 641.64 3-17 4-8 11-21 2-18 6-9 46.43 53.57
0.4 744.22 8-17 1-4 3-18 5-9 7-11 46.84 53.16
0.6 697.11 8-17 1-4 20-25 15-21 14-19 47.44 52.56
0.8 541.17 8-17 1-4 6-25 15-21 14-19 47.40 52.60
1.0 528.66 1-17 4-8 16-18 15-19 6-21 47.60 52.40

3 1 0.2 396.37 4-6 7-8 2-18 17-21 68.33 31.67
0.4 413.81 4-8 6-21 2-13 17-20 68.20 31.80
0.6 415.15 16-17 4-8 7-20 6-19 69.40 30.60
0.8 424.14 4-8 13-17 6-20 11-18 69.05 30.95
1.0 440.57 4-8 13-17 6-20 9-18 68.80 31.20

3 2 0.2 701.20 3-17 4-6 7-8 18-20 15-21 58.58 41.42
0.4 1097.39 16-17 4-8 7-20 3-6 1-21 57.72 42.28
0.6 929.31 7-17 1-4 6-8 5-9 18-19 58.42 41.58
0.8 708.59 1-17 4-8 6-7 12-18 9-13 58.98 41.02
1.0 787.38 1-17 4-6 7-8 9-18 12-21 58.07 41.93

3 3 0.2 5837.17 4-9 2-17 7-8 3-25 12-23 6-21 52.90 47.10
0.4 8952.53 10-17 4-8 7-20 19-23 2-13 6-11 52.66 47.34
0.6 6684.64 7-17 1-4 6-8 12-14 20-25 15-21 52.99 47.01
0.8 3551.94 1-17 4-6 7-8 9-22 16-18 5-11 53.22 46.78
1.0 2771.33 1-17 4-6 7-8 18-21 12-16 9-20 53.52 46.48
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Table 9: Optimal results for HALCE(RD,PD,medium,qA,qB ,α)
qA qB α CPU sec. A’s hub arcs B’s hub arcs A’s share(%) B’s share(%)

1 1 0.2 0.14 2-21 11-25 50.30 49.70
0.4 0.13 11-20 2-8 50.62 49.38
0.6 0.13 8-20 2-4 51.00 49.00
0.8 0.13 11-20 2-8 50.31 49.69
1.0 0.11 8-20 2-4 49.27 50.73

1 2 0.2 2.47 1-4 11-21 18-25 38.52 61.48
0.4 3.38 8-20 12-23 2-5 41.25 58.75
0.6 2.16 8-20 4-17 14-19 40.19 59.81
0.8 2.05 2-8 19-25 11-20 38.66 61.34
1.0 1.61 2-4 1-9 11-18 39.00 61.00

1 3 0.2 92.60 1-4 6-17 5-25 11-13 35.81 64.19
0.4 168.00 1-4 8-14 5-9 13-15 34.78 65.22
0.6 87.38 4-17 3-18 11-15 5-9 35.24 64.76
0.8 60.41 4-17 3-18 8-9 1-21 35.66 64.34
1.0 67.08 4-17 8-18 3-21 6-24 36.95 63.05

2 1 0.2 5.28 4-8 2-3 6-21 61.19 38.81
0.4 5.58 4-8 2-13 6-11 62.46 37.54
0.6 4.47 4-8 2-7 11-25 62.15 37.85
0.8 4.31 1-17 4-8 2-11 62.82 37.18
1.0 3.92 1-17 4-8 2-11 62.58 37.42

2 2 0.2 22.84 4-8 2-3 13-25 6-11 52.27 47.73
0.4 32.95 1-4 8-14 12-23 5-9 52.07 47.93
0.6 22.30 4-8 2-7 17-20 14-19 52.04 47.96
0.8 17.02 8-17 1-4 2-22 6-11 51.69 48.31
1.0 13.91 4-12 1-17 6-7 2-8 51.66 48.34

2 3 0.2 759.48 4-8 2-3 12-23 5-21 17-18 46.37 53.63
0.4 1021.93 1-4 8-14 12-23 7-24 5-9 46.33 53.67
0.6 921.63 4-8 2-7 17-20 11-15 14-19 46.29 53.71
0.8 461.71 1-17 4-8 6-25 11-15 14-19 46.66 53.34
1.0 313.37 4-12 1-17 21-22 6-14 8-25 47.85 52.15

3 1 0.2 421.65 4-8 11-21 2-25 5-20 67.80 32.20
0.4 457.62 4-6 7-8 2-18 9-11 67.27 32.73
0.6 436.96 4-8 11-20 2-13 12-18 66.24 33.76
0.8 428.71 1-4 7-8 2-17 12-25 66.50 33.50
1.0 446.10 6-17 4-8 7-25 12-20 65.80 34.20

3 2 0.2 934.25 3-17 12-23 1-4 6-11 2-13 57.50 42.50
0.4 1059.43 3-17 1-4 8-14 6-11 2-13 57.65 42.35
0.6 1043.84 17-25 4-8 7-14 11-20 19-24 56.77 43.23
0.8 935.49 1-17 8-12 4-7 2-22 6-11 56.26 43.74
1.0 973.44 12-25 7-17 4-8 11-18 1-6 56.25 43.75

3 3 0.2 3380.91 3-17 12-23 1-4 13-21 6-9 2-18 53.75 46.25
0.4 9014.08 3-17 1-4 8-14 12-22 6-11 2-13 51.70 48.30
0.6 9109.82 17-20 1-4 8-14 6-11 19-24 2-13 51.48 48.52
0.8 3579.95 1-17 8-12 4-7 14-22 6-25 11-13 51.86 48.14
1.0 3719.48 1-17 7-12 4-8 6-14 11-22 19-25 51.90 48.10
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Table 10: Optimal results for HALCE(RA,PD,high,qA,qB ,α)
qA qB α CPU sec. A’s hub arcs B’s hub arcs A’s share(%) B’s share(%)

1 1 0.2 0.09 20-21 8-17 51.61 48.39
0.4 0.11 11-20 4-17 48.67 51.33
0.6 0.08 8-17 1-4 49.64 50.36
0.8 0.08 11-17 4-7 52.30 47.70
1.0 0.06 11-17 5-8 54.86 45.14

1 2 0.2 0.91 8-17 4-6 12-23 36.37 63.63
0.4 1.05 8-17 3-6 1-4 37.83 62.17
0.6 0.83 8-17 12-22 3-20 39.03 60.97
0.8 0.69 8-17 12-22 3-20 38.65 61.35
1.0 0.36 4-17 3-21 9-20 43.03 56.97

1 3 0.2 26.84 4-17 14-20 6-14 21-24 32.71 67.29
0.4 35.39 12-17 3-6 1-4 8-14 31.97 68.03
0.6 50.56 12-17 3-6 1-4 14-22 34.42 65.58
0.8 38.25 12-17 3-14 4-22 2-9 33.47 66.53
1.0 27.09 4-17 3-9 14-20 12-21 38.71 61.29

2 1 0.2 4.09 3-17 11-15 1-4 65.65 34.35
0.4 4.14 8-17 1-4 3-6 67.74 32.26
0.6 4.23 12-17 4-13 1-6 70.05 29.95
0.8 3.78 10-17 4-5 7-20 74.39 25.61
1.0 3.78 1-17 4-12 20-21 75.82 24.18

2 2 0.2 10.75 12-17 4-8 3-9 2-21 55.55 44.45
0.4 13.31 8-17 1-4 3-6 7-14 54.98 45.02
0.6 10.44 12-17 1-4 5-9 8-14 58.61 41.39
0.8 8.28 14-17 4-13 3-9 10-21 59.85 40.15
1.0 7.08 1-17 4-12 11-14 9-20 62.06 37.94

2 3 0.2 283.68 12-17 4-8 3-9 11-15 5-25 51.43 48.57
0.4 277.86 3-17 1-4 14-25 15-21 20-24 50.06 49.94
0.6 214.33 12-17 1-4 3-6 8-14 7-15 51.10 48.90
0.8 139.69 12-17 4-14 22-25 1-9 3-11 52.46 47.54
1.0 201.68 7-17 4-12 9-22 3-21 10-25 53.26 46.74

3 1 0.2 400.92 3-17 12-23 1-4 6-21 77.38 22.62
0.4 400.79 3-17 1-4 8-14 12-20 78.20 21.80
0.6 400.14 3-17 1-4 8-14 12-20 78.12 21.88
0.8 395.37 14-17 4-5 8-10 12-22 81.82 18.18
1.0 396.01 7-17 12-25 4-9 20-21 83.44 16.56

3 2 0.2 460.69 3-17 12-23 1-4 20-24 16-21 67.14 32.86
0.4 458.08 3-17 12-22 1-4 5-9 8-14 66.66 33.34
0.6 477.95 3-17 12-14 1-4 5-9 10-15 67.13 32.87
0.8 445.13 3-17 12-14 4-13 20-22 7-15 69.97 30.03
1.0 440.38 7-17 12-25 4-9 3-14 21-22 71.16 28.84

3 3 0.2 1111.08 3-17 12-23 1-4 14-25 20-24 16-21 62.82 37.18
0.4 1051.97 3-17 12-22 1-4 5-9 8-14 10-15 60.52 39.48
0.6 1011.01 3-17 12-14 1-4 22-23 5-9 10-15 61.56 38.44
0.8 779.09 14-17 12-22 1-4 9-25 3-10 15-21 62.93 37.07
1.0 1087.78 7-17 12-25 4-9 3-21 6-14 2-22 63.09 36.91
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Table 11: Optimal results for HALCE(RD,PD,high,qA,qB ,α)
qA qB α CPU sec. A’s hub arcs B’s hub arcs A’s share(%) B’s share(%)

1 1 0.2 0.08 1-4 20-21 54.40 45.60
0.4 0.08 1-4 11-20 53.64 46.36
0.6 0.08 1-4 11-20 52.14 47.86
0.8 0.08 1-4 11-17 49.58 50.42
1.0 0.06 4-17 20-21 56.73 43.27

1 2 0.2 0.59 4-17 1-9 11-14 36.51 63.49
0.4 0.75 1-4 12-22 14-25 36.31 63.69
0.6 0.31 12-17 14-22 1-4 37.08 62.92
0.8 0.31 12-17 4-22 14-20 37.11 62.89
1.0 0.44 4-17 12-20 3-21 43.62 56.38

1 3 0.2 23.25 4-17 12-23 6-14 21-24 34.19 65.81
0.4 17.03 12-17 14-22 8-25 3-8 29.83 70.17
0.6 14.52 12-17 4-14 8-22 20-25 33.21 66.79
0.8 15.49 12-17 3-14 2-22 4-10 33.77 66.23
1.0 15.19 12-17 3-14 4-25 7-22 38.75 61.25

2 1 0.2 3.89 12-23 1-4 5-25 68.22 31.78
0.4 3.86 12-22 1-4 8-25 69.03 30.97
0.6 3.81 12-14 1-4 17-22 70.60 29.40
0.8 3.78 14-17 4-22 11-25 74.56 25.44
1.0 3.69 17-22 4-12 21-25 76.75 23.25

2 2 0.2 8.30 3-17 1-4 20-24 16-21 56.06 43.94
0.4 7.27 12-22 1-4 3-17 21-24 56.58 43.42
0.6 6.36 12-14 1-4 3-17 15-21 58.57 41.43
0.8 5.70 12-17 4-22 14-20 3-11 61.12 38.88
1.0 5.84 17-22 4-12 14-20 3-21 66.77 33.23

2 3 0.2 124.49 12-23 1-4 3-17 3-25 11-15 51.53 48.47
0.4 107.90 14-17 12-22 1-4 24-25 19-23 51.17 48.83
0.6 94.94 14-17 12-22 1-4 10-23 20-25 54.32 45.68
0.8 107.83 12-17 4-22 14-20 8-10 1-9 55.21 44.79
1.0 138.21 17-22 4-12 8-25 3-9 14-21 60.61 39.39

3 1 0.2 409.86 3-17 12-23 1-4 11-14 80.07 19.93
0.4 402.71 14-17 12-22 1-4 21-25 80.74 19.26
0.6 410.71 14-17 12-22 1-4 21-25 82.99 17.01
0.8 402.21 14-17 12-22 1-4 21-25 86.25 13.75
1.0 400.78 14-17 4-22 12-25 9-21 84.75 15.25

3 2 0.2 435.55 3-17 12-23 1-4 20-24 16-21 72.15 27.85
0.4 433.08 14-17 12-22 1-4 3-25 7-15 73.69 26.31
0.6 433.07 14-17 12-22 1-4 3-25 7-15 74.58 25.42
0.8 433.41 14-17 12-22 4-21 3-25 7-15 77.17 22.83
1.0 432.75 14-17 4-22 12-25 2-3 9-11 76.56 23.44

3 3 0.2 648.97 3-17 12-23 1-4 14-25 20-24 16-21 67.80 32.20
0.4 634.64 14-17 12-22 1-4 3-25 19-23 15-21 69.22 30.78
0.6 629.72 14-17 12-22 1-4 24-25 7-15 5-9 69.34 30.66
0.8 700.72 4-14 3-17 12-22 23-25 1-9 7-11 72.18 27.82
1.0 827.12 14-17 4-22 12-25 1-18 3-21 8-9 71.47 28.53
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Table 12: Optimal results for HALCE(RA,PC,low,qA,qB ,α)
qA qB α CPU sec. A’s hub arcs B’s hub arcs A’s share(%) B’s share(%)

1 1 0.2 0.05 12-20 18-22 49.83 50.17
0.4 0.05 4-17 12-20 50.62 49.38
0.6 0.03 4-17 2-9 50.55 49.45
0.8 0.05 4-17 8-25 50.57 49.43
1.0 0.05 4-17 8-25 50.57 49.43

1 2 0.2 0.63 4-17 12-20 9-18 45.23 54.77
0.4 0.69 4-17 9-18 12-21 47.13 52.87
0.6 0.74 4-17 7-12 2-9 47.93 52.07
0.8 0.77 4-17 7-12 9-25 48.28 51.72
1.0 0.8 4-17 8-25 9-10 48.41 51.59

1 3 0.2 52.19 4-17 9-18 6-12 24-25 42.42 57.58
0.4 58.55 4-17 9-18 12-21 2-14 44.75 55.25
0.6 65.37 4-17 7-12 2-9 1-3 46.58 53.42
0.8 70.48 4-17 3-25 7-12 1-9 46.97 53.03
1.0 71.53 4-17 3-12 7-9 1-2 47.15 52.85

2 1 0.2 2.16 6-17 4-12 20-22 55.90 44.10
0.4 2.24 4-17 12-13 21-25 54.71 45.29
0.6 2.34 4-17 11-12 5-25 53.57 46.43
0.8 2.53 4-17 7-12 11-25 52.63 47.37
1.0 2.55 1-17 4-12 7-25 52.57 47.43

2 2 0.2 4.69 6-17 4-12 9-18 20-22 51.80 48.20
0.4 7.33 4-17 7-12 9-18 11-22 50.99 49.01
0.6 9.08 4-12 17-20 9-18 7-19 50.79 49.21
0.8 10.97 7-17 4-22 9-25 11-12 50.64 49.36
1.0 11.05 7-17 4-22 12-25 9-11 50.69 49.31

2 3 0.2 156.97 6-17 4-12 9-18 14-20 13-22 49.16 50.84
0.4 309.29 6-17 4-12 14-18 7-20 19-21 49.25 50.75
0.6 438.2 4-17 7-12 2-9 11-22 1-3 49.51 50.49
0.8 450.9 7-17 4-22 3-12 1-9 2-11 49.55 50.45
1.0 550.34 7-17 4-22 3-12 9-25 11-16 49.60 50.40

3 1 0.2 250.76 6-17 4-12 14-20 7-25 59.15 40.85
0.4 267.8 4-17 14-25 11-12 8-20 57.12 42.88
0.6 286.11 4-17 7-12 5-24 21-25 54.87 45.13
0.8 301.81 4-17 7-12 1-20 11-25 53.86 46.14
1.0 314.29 1-17 4-7 12-20 13-25 53.60 46.40

3 2 0.2 295.91 4-17 12-20 14-18 2-7 6-19 54.43 45.57
0.4 315.63 4-17 7-12 14-18 1-25 6-22 53.23 46.77
0.6 378.23 1-17 7-12 4-20 3-25 8-21 52.15 47.85
0.8 454.15 17-20 4-22 7-24 12-18 5-16 51.76 48.24
1.0 446.61 1-17 4-7 20-22 3-8 5-25 51.73 48.27

3 3 0.2 673.73 4-17 14-18 2-12 3-21 19-25 1-20 52.11 47.89
0.4 1145 1-17 4-18 9-12 7-25 3-6 19-21 51.24 48.76
0.6 1279.06 1-17 7-12 4-20 3-25 15-22 5-10 51.00 49.00
0.8 2452.72 7-17 20-22 1-4 8-12 3-5 13-25 50.65 49.35
1.0 2151.81 1-17 4-7 20-22 9-12 3-15 2-13 50.67 49.33
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Table 13: Optimal results for HALCE(RD,PC,low,qA,qB ,α)
qA qB α CPU sec. A’s hub arcs B’s hub arcs A’s share(%) B’s share(%)

1 1 0.2 0.05 12-20 6-25 52.29 47.71
0.4 0.03 12-20 6-25 52.79 47.21
0.6 0.05 12-20 4-25 50.28 49.72
0.8 0.03 8-20 12-17 49.21 50.79
1.0 0.03 4-17 12-20 53.31 46.69

1 2 0.2 1.14 12-20 18-22 6-24 45.99 54.01
0.4 1.58 12-25 4-22 2-14 45.73 54.27
0.6 1.27 4-17 7-12 5-25 47.54 52.46
0.8 2.17 4-17 7-12 21-25 47.81 52.19
1.0 2.92 13-17 7-12 4-25 48.07 51.93

1 3 0.2 32.66 12-17 4-18 21-22 24-25 42.91 57.09
0.4 181.81 12-20 4-22 7-18 2-24 44.11 55.89
0.6 118.44 4-17 11-12 1-7 2-9 46.60 53.40
0.8 406.06 2-11 7-12 6-17 4-24 47.11 52.89
1.0 347.78 13-17 4-12 3-25 7-24 47.51 52.49

2 1 0.2 2.19 12-17 6-14 20-22 55.42 44.58
0.4 2.11 4-12 14-18 8-9 54.37 45.63
0.6 2.12 14-17 4-12 6-19 53.43 46.57
0.8 2.81 4-17 7-12 8-20 51.96 48.04
1.0 2.87 4-22 1-17 9-12 51.86 48.14

2 2 0.2 2.97 12-17 4-22 8-14 5-18 54.80 45.20
0.4 2.91 12-17 4-22 8-14 5-25 55.31 44.69
0.6 3.17 4-17 5-12 9-22 1-18 54.46 45.54
0.8 2.64 17-22 4-12 14-21 9-18 57.93 42.07
1.0 2.97 17-22 4-12 3-25 14-21 57.94 42.06

2 3 0.2 172.33 14-17 4-12 6-22 1-25 11-18 48.90 51.10
0.4 109.36 14-17 4-12 18-24 19-21 7-20 49.01 50.99
0.6 258.87 4-17 7-12 14-25 11-22 9-18 49.66 50.34
0.8 355.76 4-22 7-17 8-12 14-25 3-21 49.73 50.27
1.0 445.36 4-22 7-17 12-16 3-9 11-25 49.87 50.13

3 1 0.2 249.86 17-22 5-12 8-19 4-18 59.12 40.88
0.4 248.76 4-17 11-12 14-25 6-19 56.09 43.91
0.6 250.39 14-17 4-17 7-12 8-25 54.66 45.34
0.8 338.65 1-17 7-12 4-8 19-20 52.67 47.33
1.0 367.01 17-24 4-8 7-22 11-25 52.41 47.59

3 2 0.2 283.07 17-22 5-12 8-19 21-23 2-24 55.56 44.44
0.4 313.76 12-18 4-19 8-22 2-14 11-20 52.79 47.21
0.6 407.21 14-17 4-17 7-12 11-22 1-18 51.61 48.39
0.8 685.99 17-22 4-12 1-7 18-20 13-19 50.97 49.03
1.0 681.83 4-22 1-17 7-12 3-21 19-25 50.97 49.03

3 3 0.2 479.61 4-17 12-20 21-22 1-18 3-19 6-8 60.07 39.93
0.4 536.59 4-22 12-25 9-17 7-19 20-24 2-21 57.47 42.53
0.6 685.98 4-17 6-12 8-22 9-23 19-21 18-25 56.44 43.56
0.8 385.52 4-12 21-22 17-18 9-15 24-25 7-19 59.82 40.18
1.0 345.47 14-17 4-22 12-25 3-18 8-9 7-21 60.55 39.45
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Table 14: Optimal results for HALCE(RA,PC,medium,qA,qB ,α)
qA qB α CPU sec. A’s hub arcs B’s hub arcs A’s share(%) B’s share(%)

1 1 0.2 0.03 17-21 8-20 52.30 47.70
0.4 0.05 17-21 11-18 52.11 47.89
0.6 0.03 17-21 8-20 49.74 50.26
0.8 0.05 11-20 17-21 50.29 49.71
1.0 0.06 11-20 17-21 50.35 49.65

1 2 0.2 0.45 17-21 13-18 6-8 31.95 68.05
0.4 0.47 17-21 8-9 13-18 33.65 66.35
0.6 0.41 4-17 18-21 6-8 33.96 66.04
0.8 0.44 4-17 18-21 6-8 36.29 63.71
1.0 0.44 4-17 8-18 6-21 38.32 61.68

1 3 0.2 13.92 4-17 6-18 18-21 8-9 23.33 76.67
0.4 14.88 4-17 18-20 18-21 8-9 26.25 73.75
0.6 17.08 4-17 5-12 18-21 6-15 29.09 70.91
0.8 22.33 4-17 6-8 15-20 2-21 32.92 67.08
1.0 31.44 4-17 6-18 11-15 3-5 35.53 64.47

2 1 0.2 2.08 17-21 6-22 4-18 70.99 29.01
0.4 2.05 17-21 6-12 9-18 70.69 29.31
0.6 2.13 5-17 4-8 18-21 68.55 31.45
0.8 2.22 4-17 8-20 18-21 66.79 33.21
1.0 2.34 17-20 4-7 6-8 64.32 35.68

2 2 0.2 4.52 4-12 5-17 18-21 6-22 55.35 44.65
0.4 5.69 17-21 5-12 2-4 7-20 54.57 45.43
0.6 5.30 4-12 17-20 5-18 6-8 54.29 45.71
0.8 8.55 1-17 4-12 13-18 6-8 52.10 47.90
1.0 11.64 1-17 4-8 18-19 6-21 52.06 47.94

2 3 0.2 93.27 4-17 5-12 9-22 18-21 1-20 45.58 54.42
0.4 116.30 4-17 12-20 18-21 5-22 2-6 45.65 54.35
0.6 121.78 4-12 17-20 21-22 5-18 6-8 47.30 52.70
0.8 211.68 4-12 17-20 9-18 5-7 6-8 46.96 53.04
1.0 377.91 1-17 4-8 16-18 15-19 6-21 47.60 52.40

3 1 0.2 222.35 4-12 6-18 13-17 2-22 81.01 18.99
0.4 235.13 6-17 4-12 2-13 5-18 79.28 20.72
0.6 229.00 4-12 17-20 2-13 6-18 77.16 22.84
0.8 232.83 4-17 8-20 13-18 6-12 73.73 26.27
1.0 255.46 4-8 13-17 6-20 9-18 68.80 31.20

3 2 0.2 275.08 16-17 4-18 6-12 20-22 2-21 65.97 34.03
0.4 274.62 4-12 6-18 13-17 11-22 2-5 65.56 34.44
0.6 300.07 6-17 4-12 13-18 8-9 1-2 63.94 36.06
0.8 357.26 6-17 4-8 12-13 18-21 19-20 61.10 38.90
1.0 516.29 1-17 4-6 7-8 9-18 12-21 58.07 41.93

3 3 0.2 606.22 7-17 4-12 6-18 9-24 21-22 2-5 57.07 42.93
0.4 635.00 6-17 4-12 7-18 9-22 20-24 2-21 58.04 41.96
0.6 784.30 4-12 17-20 7-18 21-22 6-8 1-2 56.91 43.09
0.8 1759.29 6-17 4-12 1-8 15-22 5-18 7-20 54.57 45.43
1.0 1611.48 1-17 4-6 7-8 12-18 9-21 16-20 53.52 46.48
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Table 15: Optimal results for HALCE(RD,PC,medium,qA,qB ,α)
qA qB α CPU sec. A’s hub arcs B’s hub arcs A’s share(%) B’s share(%)

1 1 0.2 0.05 12-20 5-18 54.33 45.67
0.4 0.03 12-20 4-18 54.82 45.18
0.6 0.05 12-20 2-4 52.59 47.41
0.8 0.05 8-20 2-4 53.84 46.16
1.0 0.06 8-20 2-4 49.27 50.73

1 2 0.2 0.27 12-20 6-22 5-18 32.60 67.40
0.4 0.55 5-12 21-22 19-25 34.52 65.48
0.6 0.52 12-20 17-22 5-19 35.06 64.94
0.8 0.98 12-20 11-22 5-18 36.71 63.29
1.0 1.23 2-4 1-9 11-18 39.00 61.00

1 3 0.2 10.38 12-20 4-19 6-22 5-18 23.90 76.10
0.4 21.03 5-12 9-22 18-19 2-21 25.98 74.02
0.6 14.39 4-12 9-22 18-19 8-21 27.99 72.01
0.8 35.38 4-12 21-22 8-9 19-20 30.66 69.34
1.0 49.02 4-17 8-18 3-21 6-24 36.95 63.05

2 1 0.2 1.86 17-21 12-20 4-22 72.67 27.33
0.4 1.86 17-21 6-12 4-22 72.47 27.53
0.6 1.92 4-8 2-12 5-17 69.65 30.35
0.8 2.00 4-12 2-8 18-21 66.07 33.93
1.0 2.11 1-17 4-8 2-11 62.58 37.42

2 2 0.2 3.58 4-22 2-12 5-17 19-21 55.38 44.62
0.4 3.83 4-12 1-17 6-22 24-25 55.14 44.86
0.6 3.67 4-12 1-17 6-22 18-21 55.66 44.34
0.8 4.41 4-12 1-17 14-18 6-8 53.87 46.13
1.0 9.03 4-12 1-17 6-7 2-8 51.66 48.34

2 3 0.2 61.22 4-22 2-12 9-19 18-21 20-24 48.61 51.39
0.4 80.52 12-17 4-22 9-18 20-24 19-21 46.43 53.57
0.6 84.05 4-12 5-17 14-25 21-22 6-19 46.65 53.35
0.8 90.14 17-22 4-12 14-18 8-21 6-19 46.67 53.33
1.0 157.06 4-12 1-17 22-25 8-14 6-21 47.85 52.15

3 1 0.2 217.06 4-22 17-21 12-20 1-2 79.56 20.44
0.4 217.17 4-22 17-21 2-12 5-18 79.59 20.41
0.6 218.44 4-8 2-12 5-17 18-22 78.11 21.89
0.8 226.80 4-12 1-17 8-20 2-21 73.32 26.68
1.0 252.08 6-17 4-8 7-25 12-20 65.80 34.20

3 2 0.2 265.83 4-22 17-21 2-12 1-18 6-8 69.95 30.05
0.4 260.58 4-17 12-20 21-22 1-25 18-19 67.14 32.86
0.6 274.03 4-17 22-25 12-21 2-19 13-20 63.91 36.09
0.8 316.88 4-12 6-22 13-17 19-20 2-21 60.46 39.54
1.0 601.97 12-25 7-17 4-8 1-18 6-11 56.25 43.75

3 3 0.2 471.49 12-17 4-22 18-21 1-2 2-9 13-19 62.52 37.48
0.4 500.71 4-17 12-20 21-22 1-25 18-19 11-19 59.60 40.40
0.6 608.80 4-17 12-21 20-22 19-25 6-8 13-18 57.34 42.66
0.8 695.01 14-17 4-22 12-21 18-24 6-19 8-13 55.62 44.38
1.0 2356.00 1-17 7-12 4-8 6-14 11-22 19-25 51.90 48.10
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Table 16: Optimal results for HALCE(RA,PC,high,qA,qB ,α)
qA qB α CPU sec. A’s hub arcs B’s hub arcs A’s share(%) B’s share(%)

1 1 0.2 0.05 17-21 2-11 50.14 49.86
0.4 0.03 17-21 2-11 51.32 48.68
0.6 0.05 17-21 8-20 49.79 50.21
0.8 0.03 4-17 11-20 51.72 48.28
1.0 0.05 11-17 5-8 54.86 45.14

1 2 0.2 0.39 17-21 4-18 3-7 31.36 68.64
0.4 0.39 17-21 4-8 1-25 31.65 68.35
0.6 0.22 4-17 1-18 6-8 34.07 65.93
0.8 0.22 4-17 8-9 1-25 37.32 62.68
1.0 0.25 4-17 3-9 20-21 43.03 56.97

1 3 0.2 9.97 4-17 3-9 18-21 2-18 21.07 78.93
0.4 9.06 4-17 18-21 8-9 18-25 21.87 78.13
0.6 9.67 4-17 8-9 20-21 2-18 23.97 76.03
0.8 11.05 4-17 8-9 20-21 2-18 28.41 71.59
1.0 19.42 4-17 3-9 14-20 12-21 38.71 61.29

2 1 0.2 1.92 17-21 12-20 1-25 75.11 24.89
0.4 1.91 17-21 12-20 4-25 74.19 25.81
0.6 1.91 4-12 5-17 13-25 73.49 26.51
0.8 1.89 6-17 12-21 5-8 74.00 26.00
1.0 1.89 1-17 4-12 20-21 75.82 24.18

2 2 0.2 4.34 17-21 4-12 22-25 13-18 56.38 43.62
0.4 4.78 17-21 9-12 4-22 18-20 55.89 44.11
0.6 5.28 4-17 5-12 8-25 1-18 55.66 44.34
0.8 4.67 6-17 4-12 18-25 5-8 57.07 42.93
1.0 4.28 1-17 4-12 11-14 9-20 62.06 37.94

2 3 0.2 86.54 4-17 5-12 18-21 6-22 1-3 42.87 57.13
0.4 90.64 4-12 5-17 18-21 1-25 19-20 43.76 56.24
0.6 87.63 9-17 4-12 15-22 20-21 2-18 45.07 54.93
0.8 112.41 4-12 17-20 8-9 5-18 24-25 47.59 52.41
1.0 104.33 7-17 4-12 3-22 21-25 9-10 53.26 46.74

3 1 0.2 218.85 6-17 4-12 13-25 1-20 82.20 17.80
0.4 216.55 6-17 4-12 13-25 2-7 82.68 17.32
0.6 215.27 4-17 6-12 13-25 8-9 82.92 17.08
0.8 218.19 17-20 4-8 1-12 13-25 81.23 18.77
1.0 211.07 7-17 12-25 4-9 20-21 83.44 16.56

3 2 0.2 278.92 4-17 6-12 1-25 18-21 20-24 67.04 32.96
0.4 284.57 6-17 4-12 13-25 21-22 1-2 67.52 32.48
0.6 289.43 9-12 13-17 4-20 8-25 1-18 68.02 31.98
0.8 300.57 17-20 4-8 12-13 1-25 9-19 67.58 32.42
1.0 261.20 7-17 12-25 4-9 3-14 21-22 71.16 28.84

3 3 0.2 967.92 17-21 4-12 18-24 22-25 2-14 6-7 54.96 45.04
0.4 820.38 6-17 4-12 7-25 9-24 19-20 2-21 56.73 43.27
0.6 861.01 4-12 17-20 13-18 15-22 6-21 24-25 58.12 41.88
0.8 1043.79 4-17 9-12 7-25 14-21 6-8 2-18 58.81 41.19
1.0 709.49 7-17 12-25 4-9 3-21 6-14 2-22 63.09 36.91
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Table 17: Optimal results for HALCE(RD,PC,high,qA,qB ,α)
qA qB α CPU sec. A’s hub arcs B’s hub arcs A’s share(%) B’s share(%)

1 1 0.2 0.05 12-20 6-25 52.27 47.73
0.4 0.03 12-20 6-25 52.81 47.19
0.6 0.05 12-20 4-25 50.44 49.56
0.8 0.03 8-20 12-17 49.80 50.20
1.0 0.03 4-17 20-21 56.73 43.27

1 2 0.2 0.34 5-12 21-22 2-19 27.25 72.75
0.4 0.17 12-17 20-22 18-25 28.48 71.52
0.6 0.23 4-12 19-25 8-21 31.40 68.60
0.8 0.13 12-17 4-22 6-18 37.57 62.43
1.0 0.30 4-17 3-12 20-21 43.62 56.38

1 3 0.2 12.42 12-20 4-22 6-18 1-19 20.96 79.04
0.4 5.02 12-17 4-19 20-22 18-25 21.40 78.60
0.6 9.02 12-17 4-22 18-20 2-18 21.91 78.09
0.8 4.78 12-17 22-25 6-18 11-19 29.27 70.73
1.0 10.19 12-17 4-22 3-25 7-14 38.75 61.25

2 1 0.2 1.89 4-17 5-12 2-19 72.54 27.46
0.4 1.89 4-17 12-20 5-22 72.48 27.52
0.6 1.88 4-17 5-12 8-25 72.97 27.03
0.8 1.84 17-22 4-12 21-25 73.43 26.57
1.0 1.83 17-22 4-12 21-25 76.75 23.25

2 2 0.2 3.11 12-17 4-22 19-21 18-25 55.56 44.44
0.4 3.13 12-17 4-22 18-20 19-21 55.89 44.11
0.6 3.05 17-22 4-12 8-21 18-25 56.61 43.39
0.8 2.66 17-22 4-12 14-21 6-18 61.62 38.38
1.0 2.91 17-22 4-12 3-14 20-21 66.77 33.23

2 3 0.2 40.89 12-17 4-22 9-23 19-21 18-25 48.39 51.61
0.4 48.55 12-17 4-22 18-20 24-25 19-21 46.36 53.64
0.6 48.38 17-22 4-12 14-21 18-20 19-25 44.91 55.09
0.8 35.31 17-22 4-12 14-21 18-19 6-18 52.37 47.63
1.0 69.77 17-22 4-12 3-25 8-14 9-21 60.61 39.39

3 1 0.2 217.42 17-21 12-20 1-22 4-14 82.07 17.93
0.4 216.37 4-17 12-25 1-22 2-24 82.20 17.80
0.6 225.85 4-17 12-20 1-22 14-25 82.00 18.00
0.8 214.92 4-17 12-25 21-22 2-24 83.12 16.88
1.0 215.62 14-17 4-22 12-25 9-21 84.75 15.25

3 2 0.2 264.51 12-17 4-22 18-21 16-25 2-9 69.50 30.50
0.4 265.73 12-17 4-22 13-25 18-21 6-24 69.25 30.75
0.6 274.35 4-22 12-20 13-17 11-19 2-6 67.89 32.11
0.8 260.00 4-12 21-22 17-18 24-25 9-11 71.20 28.80
1.0 249.61 14-17 4-22 12-25 3-9 2-11 76.56 23.44

3 3 0.2 467.36 4-22 12-18 17-21 8-25 1-20 13-19 62.37 37.63
0.4 654.88 4-17 9-12 19-22 1-18 8-21 6-25 59.49 40.51
0.6 929.15 4-17 18-22 5-12 21-25 20-24 19-21 58.95 41.05
0.8 502.90 4-12 7-17 18-22 8-11 24-25 9-20 63.42 36.58
1.0 341.00 14-17 4-22 12-25 3-18 9-21 1-8 71.47 28.53
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