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Asymptotic Exactness of Parameter-Dependent

Lyapunov Functions:

An Error Bound and Exactness Verification∗

Yasuaki Oishi†

This paper provides an approximate approach to a robust semidefinite programming prob-
lem with a functional variable and shows its asymptotic exactness. This problem cov-
ers a variety of control problems including a robust stability/performance analysis with
a parameter-dependent Lyapunov function. In the proposed approach, an approximate
semidefinite programming problem is constructed based on the division of the set of pa-
rameter values. This approach is asymptotically exact in the sense that, as the resolution
of the division becomes higher, the optimal value of the constructed approximate problem
converges to that of the original problem. Our convergence analysis is quantitative. In par-
ticular, this paper gives an a priori upper bound on the discrepancy between the optimal
values of the two problems. Moreover, it discusses how to verify that an optimal solution
of the approximate problem is actually optimal also for the original problem. Finally, the
results are generalized for robust stability/performance analysis against a time-varying
parameter and for stability analysis of a nonlinear system.

Keywords: parameter-dependent Lyapunov functions, robust semidefinite programming,
approximation error, exactness verification, matrix dilation, linear matrix inequalities.

1. Introduction

Search of a parameter-dependent Lyapunov function is an important control problem for less

conservative analysis and design of a parameter-dependent system. This problem is, however,

not easy due to its infinite-dimensional nature. A widely accepted approach is to assume

polynomial parameter dependence on a Lyapunov function and to apply recent techniques

based on positive polynomials [14, 5, 19, 21, 22]. As a result, we have a standard semidefinite

programming (SDP) problem, which is solvable with the efficient interior-point method. This

approach is conservative by two reasons. First, an infinite-dimensional problem to find an

unknown function is reduced to a finite-dimensional one. Second, a semi-infinite constraint

necessary to hold for infinitely many parameter values is replaced by a finitely many linear

matrix inequality (LMI) constraints.

Bliman [2] showed asymptotic exactness of a polynomially parameter-dependent Lyapunov

function. That is, there is no conservatism if we assume polynomial parameter dependence
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of sufficiently high degree. This result combined with asymptotic exactness of the positive-

polynomial techniques [10, 15, 20, 3, 24, 25] implies asymptotic exactness of the above approach.

This analysis is, however, only qualitative. Namely, it states that conservatism asymptotically

vanishes as the degrees of the Lyapunov function and the associated positive polynomial in-

crease. It does not tell how large degrees are required to suppress conservatism to a certain

level. This theoretical limitation prevents us from efficient use of the above approach to suppress

conservatism with small computational complexity.

In this paper, we give an approximate approach to a parameter-dependent Lyapunov func-

tion and show its asymptotic exactness in a quantitative manner. We generally formulate the

problem as a robust SDP problem with a functional variable. This problem covers a wide

range of problems such as robust stability/performance analysis and design of a gain-scheduled

state-feedback controller. The proposed approach is based on division of the parameter set. We

make the infinite-dimensional problem to a finite-dimensional one by considering a piecewise

polynomial consistent with the division. We make the semi-infinite constraint to a finite num-

ber of LMI constraints using the matrix-dilation technique in [17, 18]. Thus, a standard SDP

problem is constructed to approximate the original robust SDP problem. As the resolution of

the division goes up, the optimal value of the approximate problem converges to that of the

original problem. In particular, we give an a priori upper bound on the approximation error,

that is, the discrepancy between the two optimal values. This bound shows a quantitative

relationship between the approximation error and the resolution of the division. This bound

is also useful to make an efficient division, which gives good approximation with low computa-

tional complexity. Moreover, we discuss how to verify exactness of the approximation. With

the proposed method, we can detect that the obtained approximate result is actually exact and

higher resolution of the division is not necessary any more. At the end of the paper, the results

are generalized for robust stability/performance analysis against a time-varying parameter and

for stability analysis of a nonlinear system. There, the considered robust SDP problem includes

not only an unknown function but also its derivatives.

These results are extension of the results of the present author [17, 18], which is on a robust

SDP problem without a functional variable. It is notable that the extension is natural in spite

of apparently large difference due to the existence of a functional variable. Many authors have

considered the use of piecewise Lyapunov functions [4, 16, 9, 13, 23, 11, 6]. Although some of

them discussed asymptotic exactness of their methods [9, 13, 23], their discussion was limited

to qualitative one. Coutinho–Danès [6] gave an approach close to the present one without

discussion on asymptotic exactness. Scherer [24] discussed verification of exactness in the case

of no functional variable.

Construction of the paper is as follows. After a problem is formulated in Section 2, our
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approximate approach is presented in Section 3. Section 4 gives an upper bound on the approx-

imation error and shows asymptotic exactness of our approach. Section 5 discusses verification

of exactness. Section 6 provides a numerical example. After the results are generalized in

Section 7, the paper is concluded in Section 8.

The symbol Rp stands for the set of p-dimensional real vectors while Zp
+ for the set of p-

dimensional vectors of nonnegative integers. The symbol T denotes the transpose of a matrix

or a vector. For θ = [θ1 θ2 · · · θp]
T ∈ Rp and α = [α1 α2 · · · αp]

T ∈ Zp
+, the symbol θα

means the product θα1
1 θα2

2 · · · θαp
p . The symbols Oq×r and Iq designate the q× r zero matrix and

the q × q identity matrix, respectively. The sizes of these matrices are omitted when they are

obvious from the context. The maximum singular value of a matrix A is written as σ(A). For

a real symmetric matrix A, the inequality A º O means that A is positive semidefinite, that

is, xTAx is nonnegative for any real vector x. Similarly, A Â O expresses that A is positive

definite. For two real symmetric matrices A and B, the inequality A º B means A− B º O.

The Kronecker product of two (not necessarily symmetric) matrices A = (aij) and B is defined

as

A⊗B :=




a11B · · · a1rB
...

...

aq1B · · · aqrB


 .

For a set S, the symbol |S| denotes its cardinality.

2. Problem

The problem to be considered in this paper is the following:

P : minimize cTx

subject to E(x) º O, F(x, φ(θ); θ) º O (∀θ ∈ Θ),

where the optimization variables are a vector x ∈ Rn and a function φ ∈ Φ. The set Φ is a

linear space of piecewise continuous functions mapping Θ to Rnφ . The set Θ is a given closed

polytope in Rp and works as the domain of an uncertain p-dimensional parameter θ. The

objective function is a linear function of x only, which is described as cTx with given c ∈ Rn. In

the constraints, the value of E(x) is an `× ` symmetric matrix while the value of F(x, φ(θ); θ)

is an m×m symmetric matrix. The function E(x) is affine in x ∈ Rn. The function F(x, a; θ)

is affine in x ∈ Rn and a ∈ Rnφ while polynomial in θ. The optimal value of the problem P is

denoted by inf P with the attention that the minimum may not be attained.

The problem P is called a robust SDP problem because the second constraint has to be

satisfied for all possible values of the uncertain parameter θ. It is also notable that P has a
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functional variable φ ∈ Φ. Many control problems are formulated into the form of P . Here is

a simple example.

Example 1. Consider a parameter-dependent linear system

ξ̇(t) = A(θ)ξ(t) + B(θ)u(t),

y(t) = C(θ)ξ(t),

where the matrices A(θ), B(θ), and C(θ) are polynomials of a time-invariant but unknown

parameter θ. Let the domain of θ be a closed polytope Θ. Suppose that A(θ) is Hurwitz for

all θ ∈ Θ. Then, the maximum L2-induced norm over Θ is computed through the problem:

minimize x

subject to



−A(θ)R(θ)−R(θ)A(θ)T −R(θ)C(θ)T −B(θ)

−C(θ)R(θ) xI O

−B(θ)T O xI


 º O (∀θ ∈ Θ),

where the optimization variables are a real scalar x and a piecewise continuous symmetric-

matrix-valued function R(θ). No generality is lost by the piecewise continuity of R(θ) because

A(θ) is continuous and Θ is compact [2]. This problem is in the form of P . ¤

Various generalization is possible with this example. The matrices A(θ), B(θ), and C(θ)

can be rational functions of θ. In this case, multiplication of an appropriate polynomial makes

the constraint polynomial in θ. Design of a gain-scheduled state-feedback controller has a

similar structure to Example 1 and can be formulated into P . When the system depends on a

time-varying parameter, we need to modify the problem P . This will be discussed in Section 7.

The problem P is difficult to solve by two reasons: it has a functional variable φ ∈ Φ and

the semi-infinite constraint F(x, φ(θ); θ) º O (∀θ ∈ Θ). In the succeeding sections, we propose

an approximate approach and discuss its properties.

3. Matrix-dilation approach

An approximate approach to the problem P is presented in this section. In the approach, we

require φ to be a low-order polynomial and make the problem finite-dimensional. In order to

improve the quality of approximation, we divide the parameter set Θ into several subregions

and allow φ to be a piecewise polynomial. To deal with the semi-infinite constraint, we employ

the matrix-dilation approach in [17, 18], which is again based on the division of the parameter

set. Hence, we use the division for two purposes: to approximate the functional variable
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and to approximate the semi-infinite constraint. As the resolution of the division goes up,

approximation is improved in the two senses. We will quantitatively investigate this property

in the next section.

For the function variable φ(θ), we use a fixed-order polynomial
∑

α∈S uαθα for some finite

set S ⊂ Zp
+. We use the coefficients u = (uα) ∈ Rnu to characterize the polynomial and write

φu(θ) =
∑

α∈S uαθα. Here, the dimension nu is equal to |S|nφ. Substitution of φu(θ) into F
makes F dependent on the finite-dimensional variables x and u. This is made explicit by the

notation

F (x, u; θ) := F(x, φu(θ); θ).

Note that F is affine in x and u while polynomial in θ.

We next introduce a division ∆ of the parameter set Θ. This is a finite collection of p-

dimensional closed convex polytopes {Θ[1], Θ[2], . . . , Θ[J ]} such that the intersection Θ[j] ∩ Θ[k]

has no interior point for any j 6= k and the union ∪J
j=1Θ

[j] is equal to the whole parameter set

Θ. We allow u to take a different value u[j] depending on the subregion Θ[j] (j = 1, 2, . . . , J).

Hence, our φ is a piecewise polynomial. We consider the following approximate problem:

P0(∆) : minimize cTx

subject to E(x) º O, F (x, u[j]; θ) º O (∀θ ∈ Θ[j], ∀j = 1, 2, . . . , J),

where the optimization variables are x ∈ Rn and u[1], u[2], . . . , u[J ] ∈ Rnu . Since only a limited

class of functions are considered for φ, we have inf P ≤ inf P0(∆).

The problem P0(∆) is still difficult to solve because it has a semi-infinite constraint. We

use the matrix-dilation approach to circumvent this difficulty. In particular, we replace the

semi-infinite constraint with its sufficient condition that can be expressed by a finite number

of LMIs. The resulting problem P (∆) is a standard SDP problem and thus solvable with

the interior-point method. We have inf P ≤ inf P0(∆) ≤ inf P (∆) and expect that inf P (∆)

converges to inf P as the resolution of the division ∆ becomes higher.

For construction of the problem P (∆), we use the expansion F (x, u; θ) =
∑

α Fα(x, u)θα. In

many practical situations, only a part of the coefficient matrices Fα(x, u) is nonzero. We would

like to exploit this sparse structure to construct P (∆) of small size. To this end, we consider a

directed graph (V, A) having the following properties.

(i) The vertex set V is a finite subset of Zp
+. It consists of the origin, all α’s with nonzero

coefficient matrices Fα(x, u), and possibly some additional points.

(ii) The arc set A is a finite set of arcs (α, β) with α, β ∈ V such that βi = αi + 1 for one and

only one i = 1, 2, . . . , p and βi = αi for all the remaining i’s.
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Figure 1. A rectilinear Steiner arborescence in the case of p = 2 and {α |Fα(x, u) 6= O} =

{[0 0]T, [2 0]T, [1 1]T}.

(iii) For any vertex α ∈ V , the directed graph (V, A) has one and only one directed path from

the origin to α.

Figure 1 shows such a graph (V, A) in the case of p = 2 and {α |Fα(x, u) 6= O} = {[0 0]T, [2 0]T,

[1 1]T}. Note that the vertex [1 0]T is added for satisfaction of the conditions (ii) and

(iii). A graph (V, A) satisfying (i)–(iii) is called a rectilinear Steiner arborescence for the set

{α |Fα(x, u) 6= O}. When the set {α |Fα(x, u) 6= O} has small cardinality, we can construct a

rectilinear Steiner arborescence with small |V |.
We number the elements of V as α(1), α(2), . . . , α(|V |). The numbering is arbitrary as far as

α(1) = 0. We here define the matrices:

G(x, u) :=

[
2Fα(1)(x, u) F∗(x, u)

F∗(x, u)T O

]
, (1)

F∗(x, u) := [Fα(2)(x, u) Fα(3)(x, u) · · · Fα(|V |)(x, u)],

M(θ) := [θα(1)

Im θα(2)

Im · · · θα(|V |)
Im]T.

It is easy to see 2F (x, u; θ) = M(θ)TG(x, u)M(θ). We next define the matrix H(θ) by

H(θ) := H̃(θ)⊗ Im (2)

with the (q, r)-element of H̃(θ) being

(H̃(θ))qr :=





−θi, if (α(q), α(r+1)) ∈ A and is parallel to the ith axis;

1, if q = r + 1;

0, otherwise

for q = 1, 2, . . . , |V | and r = 1, 2, . . . , |V | − 1. It is straightforward to see M(θ)TH(θ) = O

and the matrix [M(θ) H(θ)] is square and nonsingular for any θ. Hence, H(θ) is called an

orthogonal complement of M(θ). It is notable that this particular orthogonal complement is
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affine in θ. In the case of Figure 1, the matrices M(θ) and H(θ) look as

M(θ) =




Im

θ1Im

θ2
1Im

θ1θ2Im




, H(θ) =




−θ1Im

Im −θ1Im −θ2Im

Im

Im




.

With these preparations, we introduce the desired problem:

P (∆) : minimize cTx

subject to E(x) º O, G(x, u[j]) + H(θ)(W [j])T + W [j]H(θ)T º O

(∀θ ∈ ver Θ[j], ∀j = 1, 2, . . . , J),

where the optimization variables are x ∈ Rn, u[1], u[2], . . . , u[J ] ∈ Rnu , and |V |m × (|V | − 1)m

matrices W [1],W [2], . . . , W [J ]. The symbol ver Θ[j] denotes the set of the vertices of the convex

polytope Θ[j]. Since the second constraint is affine in θ, it actually holds for any θ ∈ Θ[j]. Then,

premultiplication of M(θ)T and postmultiplication of M(θ) give F (x, u[j]; θ) º O. This leads

to the next proposition [17, 18].

Proposition 2. The feasible region of P (∆) projected onto the space of (x, u[1], u[2], . . . , u[J ])

is contained in the feasible region of P0(∆). In particular, inf P ≤ inf P0(∆) ≤ inf P (∆).

We here have an approximate approach to P , which we call a matrix-dilation approach. That

is, we first choose a division ∆ for the parameter set Θ and solve the approximate problem

P (∆). If the obtained optimal value inf P (∆) is satisfactory, we stop. Otherwise, we subdivide

∆ and solve again the new approximate problem P (∆).

This is a natural approach to the problem P . However, it is not clear how inf P (∆) converges

to inf P . We quantitatively answer to this question in the next section.

4. An upper bound on the approximation error

4.1. Upper bound

In this section, we obtain an a priori upper bound on the approximation error | inf P (∆)−inf P |
in terms of the resolution of the division. This is a generalization of the upper bounds in [17, 18],

which are for a robust SDP problem without a functional variable.

We make the following assumptions to have the result. The first assumption is a reasonable

one, which means strict feasibility of the problem P . The second assumption means that

search of bounded x and φ is sufficient for the problem P as well as its modification Pε, to be
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introduced in Section 4.2. This assumption is mild enough because it is satisfied when P and

Pε have bounded optimal solutions. The last assumption is again mild one, which means that

the polynomial φu(θ) has a constant term.

Assumption 3.

(a) There exist x ∈ Rn and φ ∈ Φ such that E(x) Â O and F(x, φ(θ); θ) Â O (∀θ ∈ Θ).

(b) There exist three positive numbers ε, x, and φ such that, for any 0 ≤ ε ≤ ε and any v ∈ R,

the set {(x, φ) ∈ Rn×Φ | cTx ≤ v, E(x) º O, F(x, φ(θ); θ) º εI (∀θ ∈ Θ)} is either empty

or having an element (x, φ) with ‖x‖ < x and ‖φ(θ)‖ < φ (∀θ ∈ Θ).

(c) The set S in the polynomial φu(θ) =
∑

α∈S uαθα includes the origin. ¤

We next need a measure of the resolution of the division. For a division ∆ = {Θ[1], Θ[2], . . . , Θ[J ]}
of the parameter set Θ, the radius of a subregion Θ[j] is rad Θ[j] := minθ∈Θ[j] maxθ′∈Θ[j] maxi=1,2,...,p

|θ′i − θi|. A θ ∈ Θ[j] that attains the minimum is called a center of Θ[j]. The maximum radius

of the division ∆ is defined as rad ∆ := maxj=1,2,...,J rad Θ[j], which measures the resolution of

∆.

With these preparations, we have the desired upper bound. The proof will be given in

Section 4.2.

Theorem 4. Under Assumption 3, there exist positive numbers C and C ′, which are indepen-

dent of the division ∆, such that

| inf P (∆)− inf P | ≤ C rad ∆

for any ∆ satisfying rad ∆ ≤ C ′.

The concrete forms of C and C ′ will be given in (6) and (7).

This theorem immediately implies the asymptotic exactness of our approach. To see this,

consider a sequence of divisions whose maximum radii converge to zero. Then, the correspond-

ing approximate problems P (∆) have the approximation errors converging to zero because C

and C ′ are independent of ∆. Note that Theorem 4 also gives the rate of convergence. Namely,

the convergence is at least in the linear order of the maximum radius.

Theorem 4 shows a tradeoff between the approximation error and the computational com-

plexity of the present approach. Indeed, the theorem tells that the maximum radius should be

small for small approximation error. A small maximum radius leads to a large number of sub-

regions and, then, to a large number of variables and constraints in the approximate problem

P (∆). Since the number of subregions is in the order of (rad ∆)−p, a small maximum radius

invites computational difficulty especially when p is large.
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In order to address this issue, we can improve the theorem by replacing the maximum

radius with a more sophisticated measure of the resolution. Consider an approximate problem

P (∆) for some division ∆ and suppose that its optimal value is attained. The constraint

G(x, u[j]) + H(θ)(W [j])T + W [j]H(θ)T º O is called active for an optimal solution if the left-

hand-side matrix has a zero eigenvalue for this optimal solution. A subregion Θ[j] is called

active if it has an active constraint. We define the maximum active radius of the division

∆, denoted by a-rad ∆, as the maximum radius over all active subregions. When P (∆) has

multiple optimal solutions, we define a-rad ∆ by taking the minimum of all possible values. In

this case, actual computation of a-rad ∆ may be difficult while computation of its upper bound

is easy. When the optimal value is not attained in P (∆), we define a-rad ∆ := rad ∆. We here

have the following result. The proof is given in Section 4.2.

Corollary 5. Under Assumption 3, the inequality

| inf P (∆)− inf P | ≤ C a-rad ∆

holds for any ∆ satisfying rad ∆ ≤ C ′, where C and C ′ are the same positive constants as in

Theorem 4.

This corollary states that we do not need to decrease the maximum radius but the maximum

active radius for the reduction of the approximation error. Although direct decrease of the

maximum active radius is difficult, a heuristic algorithm can be constructed.

Algorithm 6.

0. Choose a coarse division ∆.

1. Solve P (∆) for the current division ∆.

2. Stop if the obtained solution is satisfactory.

3. If an optimal solution is found, find an active subregion that attains a-rad ∆ and divide it

into two subregions so that they have small radii. Otherwise, find a subregion that attains

rad ∆ and divide it similarly.

4. Go back to Step 1 with the updated division ∆. ¤

This type of algorithm was originally proposed for a robust SDP problem without a func-

tional variable [17].
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4.2. Proof

We prove Theorem 4 as well as Corollary 5 in this subsection. We present the full proof for the

sake of completeness though it includes some discussion found also in [17, 18]. The key idea is

to relate the following auxiliary problem with the approximate problem P (∆):

Pε : minimize cTx

subject to E(x) º O, F(x, φ(θ); θ) º εI (∀θ ∈ Θ),

where ε is a nonnegative number. We will find below an ε that attains inf P ≤ inf P (∆) ≤ inf Pε.

Note that inf Pε is convex in ε and that P0 is identical with the original problem P . With g being

an upper bound on a subgradient of inf Pε, we have | inf Pε− inf P | = inf Pε− inf P ≤ gε. Since

this implies | inf P (∆)− inf P | ≤ gε, we obtain the desired upper bound on the approximation

error.

We first prepare a |V |m × |V |m matrix L(θ), which will be used for simplification of the

dilated LMI constraint G(x, u[j]) + H(θ)(W [j])T + W [j]H(θ)T º O. The definition of L(θ) is

based on the rectilinear Steiner arborescence (V, A). For α(q), α(r) ∈ V , we say that α(q) is

reachable from α(r) in (V, A) if these two vertices are identical or (V, A) has a directed path

connecting α(r) to α(q). For the convenience of the proof, we assume that the numbering of

the vertices is consistent with the partial order defined by (V, A). In other words, we have

q ≥ r whenever α(q) is reachable from α(r). This assumption does not contradict with α(1) = 0

because the origin is the root of the arborescence (V, A). Also, this assumption does not harm

the generality of the result because the result does not depend on the numbering.

Now, the matrix L(θ) is defined as

L(θ) := L̃(θ)⊗ Im (3)

with

L̃(θ)qr =





θα(q)−α(r)
, if α(q) is reachable from α(r) in (V, A);

0, otherwise.

The matrix L̃(θ) is lower triangular, i.e., L̃(θ)qr 6= 0 only if q ≥ r. Moreover, its diagonal

elements are all equal to unity. A consequence is nonsingularity of L̃(θ) and also of L(θ).

Straightforward calculation gives the concrete forms of L(θ)TG(x, u)L(θ) and L(θ)TH(θ′)

for θ, θ′ ∈ Rp.

Lemma 7. For the matrices G(x, u) and L(θ) in (1) and (3), respectively, we have

L(θ)TG(x, u)L(θ) =

[
2F (x, u; θ) F∗∗(x, u; θ)

F∗∗(x, u; θ)T O

]
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with

F∗∗(x, u; θ) =
[ ∑

α∈V (2)

Fα(x, u)θα−α(2)
∑

α∈V (3)

Fα(x, u)θα−α(3) · · ·
∑

α∈V (|V |)

Fα(x, u)θα−α(|V |)
]
,

where V (r) is the set of vertices reachable from α(r) in (V, A) for r = 2, 3, . . . , |V |.

Lemma 8. For the matrices H(θ) and L(θ) in (2) and (3), respectively, we can write

L(θ)TH(θ′) =




∗ ∗ · · · ∗
1 ∗ · · · ∗
0 1 · · · ∗
...

...
. . .

...

0 0 · · · 1



⊗ Im,

where an element expressed by ∗ is either equal to zero or expressed as θα(θi − θ′i) for some

α ∈ Zp
+ and i = 1, 2, . . . , p. When θ = θ′ in particular, the elements expressed by ∗ are all equal

to zero.

With these preparations, we relate Pε and P (∆). By Assumption 3 (a), there exists ε0 > 0

such that, for any 0 ≤ ε ≤ ε0, the auxiliary problem Pε is strictly feasible. This ε0 can be chosen

smaller than or equal to the ε in Assumption 3 (b). We consider the set of all u such that the

corresponding φu(θ) is constantly equal to some vector a with ‖a‖ < φ. This set is nonempty

by Assumption 3 (c). We let F be an upper bound of σ[F∗∗(x, u; θ)] over all ‖x‖ < x, all θ ∈ Θ,

and all u in the considered set.

We begin by the special case that Θ ⊆ [−1, 1]p. In this case, |θi| ≤ 1 for any θ ∈ Θ and any

i = 1, 2, . . . , p.

Lemma 9. Suppose that Θ ⊆ [−1, 1]p and

rad ∆ ≤ min
{ 2ε0

(F +
√
|V |m)2

,
1

|V |
}

.

Then, we have inf P ≤ inf P (∆) ≤ inf Pε for

ε =
(F +

√
|V |m)2

2
rad ∆.

Proof. Since inf P ≤ inf P (∆) by Proposition 2, we will show inf P (∆) ≤ inf Pε. Let ∆ be

{Θ[1], Θ[2], . . . , Θ[J ]}. The ε given in the lemma satisfies 0 ≤ ε ≤ ε0. Let (x, φ) be a feasible

solution of Pε satisfying ‖x‖ ≤ x and ‖φ(θ)‖ ≤ φ (∀θ ∈ Θ). Here, F(x, φ(θ); θ) º εI for any

θ ∈ Θ. We show below that there exists (u[j],W [j]) for each j = 1, 2, . . . , J such that

G(x, u[j]) + H(θ)(W [j])T + W [j]H(θ)T º O (∀θ ∈ ver Θ[j]), (4)
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in other words, this x is feasible for P (∆). Then the proof is complete because (x, φ) can be

chosen so that cTx is arbitrarily close to inf Pε. In fact, the inequality (4) holds if we choose

(u[j],W [j]) for each j so that φu[j](θ) ≡ φ(θc) and W [j] = (1/ rad Θ[j])H(θc) , where θc is a center

of Θ[j]. Note in this case that σ[F∗∗(x, u[j]; θ)] ≤ F for any j and θ ∈ Θ.

In order to show the desired inequality (4), we premultiply L(θc)T and postmultiply L(θc) to

it. Lemmas 7 and 8 give the concrete forms of L(θc)TG(x, u[j])L(θc) and (rad Θ[j])(W [j])TL(θc) =

H(θc)TL(θc). By Lemma 8 again, the product (1/ rad Θ[j])L(θc)TH(θ) has the form




∗ ∗ · · · ∗
1/ rad Θ[j] ∗ · · · ∗

0 1/ rad Θ[j] · · · ∗
...

...
. . .

...

0 0 · · · 1/ rad Θ[j]



⊗ Im,

where an element expressed by ∗ is either equal to zero or of the form

(θc)α(θc
i − θi)

rad Θ[j]
,

whose magnitude is at most one since |θc
i | ≤ 1 and |θc

i − θi| ≤ rad Θ[j] for i = 1, 2, . . . , p. Let us

write the product (1/ rad Θ[j])L(θc)TH(θ) as [HT
1 HT

2 ]T with the m × (|V | − 1)m matrix H1

and the (|V | − 1)m× (|V | − 1)m matrix H2. Then, we have

L(θc)TH(θ)(W [j])TL(θc) =

[
Om×m H1

O(|V |−1)m×m H2

]
.

Since H1 has at most (|V | − 1)m nonzero elements whose magnitude is at most one, we have

σ(H1) ≤
√

(|V | − 1)m. On the other hand, H2 is upper triangular and each of its rows has the

diagonal element 1/ rad Θ[j] and at most |V |−2 nonzero off-diagonal elements, whose magnitude

is at most one. Hence, we have

H2 + HT
2 º

( 2

rad Θ[j]
− |V |+ 2

)
I.

Now, the left-hand side of (4) multiplied by L(θc)T and L(θc) has the upper-left m×m block

equal to

2F (x, u[j]; θc) = 2F(x, φu[j](θc); θc) = 2F(x, φ(θc); θc) º 2εI.

Its Schur complement is

H2 + HT
2 − [F∗∗(x, u[j]; θc)+H1]

T[2F (x, u[j]; θc)]−1[F∗∗(x, u[j]; θc)+H1]

º
( 2

rad Θ[j]
− |V |+ 2

)
I − {

σ[F∗∗(x, u[j]; θc)] +
√

(|V | − 1)m
}2 1

2ε
I.
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Noting that 2/ rad Θ[j] − |V | + 2 > 1/ rad Θ[j] and σ[F∗∗(x, u[j]; θc)] ≤ F , we see the positive

semidefiniteness of the right-hand side matrix. This completes the proof. ¤

The general case that not necessarily Θ ⊆ [−1, 1]p can be reduced to the special case. Let

us write

θ := max{1, max
θ∈Θ

max
i=1,2,...,p

|θi|} (5)

and |α| := α1 + α2 + · · ·+ αp. Since

F (x, u; θ) =
∑
α∈V

Fα(x, u)θα =
∑
α∈V

Fα(x, u)θ
|α|(θ

θ

)α

,

we can regard Fα(x, u)θ
|α|

as a coefficient and θ/θ as a parameter. Since θ/θ moves in [−1, 1]p,

the discussion in the special case can be applied. To present the result in this case, we define

F ′
∗∗(x, u; θ) by

F ′
∗∗(x, u; θ) :=

[ ∑

α∈V (2)

Fα(x, u)θ
|α|(θ

θ

)α−α(2) ∑

α∈V (3)

Fα(x, u)θ
|α|(θ

θ

)α−α(3)

· · ·
∑

α∈V (|V |)

Fα(x, u)θ
|α|(θ

θ

)α−α(|V |)]
.

We also define F ′ as an upper bound of σ[F ′
∗∗(x, u; θ)] over all ‖x‖ < x, all θ ∈ Θ, and all u

corresponding to the polynomial φu(θ) constantly equal to a vector a with ‖a‖ < φ.

Lemma 10. Suppose that

rad ∆ ≤ min
{ 2θε0

(F ′ +
√
|V |m)2

,
θ

|V |
}

.

Then, we have inf P ≤ inf P (∆) ≤ inf Pε for

ε =
(F ′ +

√
|V |m)2

2θ
rad ∆.

Proof. The replacement of Fα(x, u) by Fα(x, u)θ
|α|

and θ by θ/θ does not change the

problems P and Pε essentially. As is shown below, this replacement does not change either the

approximate problem P (∆). The parameter after the replacement, i.e., θ/θ, moves in [−1, 1]p.

Hence, the result of Lemma 9 is valid with F replaced by F ′ and rad ∆ by rad ∆/θ. This

completes the proof.

We show that the approximate problem P (∆) does not change by the replacement above.

Let G′(x, u) and H ′(θ) be the matrices obtained from G(x, u) and H(θ), respectively, by this

replacement. It is routine to confirm that

G′(x, u) = diag{Im, T}G(x, u) diag{Im, T},

13



H ′(θ) = diag{Im, T}H(θ)T−1,

where T := diag{θ|α
(2)|

, θ
|α(3)|

, . . . , θ
|α(|V |)|} ⊗ Im and diag denotes a block-diagonal matrix.

Therefore, the existence of W satisfying

G(x, u) + H(θ)WT + WH(θ)T º O

is equivalent to the existence of W ′ satisfying

G′(x, u) + H ′(θ)(W ′)T + W ′H ′(θ)T º O

with the correspondence W ′ = diag{Im, T}WT . This means that the approximate problem

P (∆) does not change essentially by the replacement. ¤

We now take the final step toward the proof of Theorem 4. Recall that we assume As-

sumption 3. The number ε0 is such that the auxiliary problem Pε is strictly feasible for any

0 ≤ ε ≤ ε0. It also satisfies ε0 ≤ ε for the ε in Assumption 3 (b). The number θ is as in (5)

while F ′ is as in the same paragraph. Finally, let g be an upper bound on the left derivative of

inf Pε at ε = ε0. Then, with

C =
g(F ′ +

√
|V |m)2

2θ
, (6)

C ′ = min
{ 2θε0

(F ′ +
√
|V |m)2

,
θ

|V |
}

, (7)

we can prove the theorem.

Proof of Theorem 4. Lemma 10 implies that, when rad ∆ ≤ C ′, we have inf P ≤ inf P (∆) ≤
inf Pε for ε = [(F ′ +

√
|V |m)2/2θ] rad ∆. Owing to the convexity of inf Pε, the upper bound g

is greater than or equal to the left derivative of inf Pε at this ε. Hence, the convexity of inf Pε

again implies inf P ≥ inf Pε − gε, from which inf Pε − inf P ≤ gε. Substitution of the concrete

form of ε gives the theorem. ¤

The proof of Corollary 5 follows from subdivision of ∆.

Proof of Corollary 5. The corollary is reduced to Theorem 4 when the optimal value of

P (∆) is not attained. Hence, we assume that the optimal value is attained.

Consider an optimal solution and subdivide each inactive subregion of ∆, if necessary, so

that each of the created subregion has the radius smaller than or equal to a-rad ∆. Then, the

resulting new division ∆̃ = {Θ̃[k]} has rad ∆̃ = a-rad ∆. Note also inf P (∆̃) ≤ inf P (∆). We

next consider the SDP dual of P (∆). As is shown below, the dual problem of P (∆) has an
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optimal solution that attains inf P (∆). Based on this solution, we construct a dual feasible

solution of P (∆̃). In particular, if a subregion Θ̃[k] is a newly created subregion, assign zero

matrices to the dual variables corresponding to this subregion; If a subregion Θ̃[k] coincides

with one subregion in ∆, assign the same values as the dual optimal solution of P (∆). With

these assigned values, the dual objective function takes the same value as before, i.e., inf P (∆).

By weak duality, we have inf P (∆) ≤ inf P (∆̃) ≤ inf P (∆). Hence,

| inf P (∆)− inf P | = | inf P (∆̃)− inf P | ≤ C rad ∆̃ = C a-rad ∆,

which shows the claim.

We show that the dual problem of P (∆) has an optimal solution. Let ε = [(F ′+
√
|V |m)2/2θ]×

rad ∆. Since 0 < ε ≤ ε0 ≤ ε, the problem Pε is strictly feasible and has a solution (x, φ) satis-

fying ‖x‖ < x and ‖φ(θ)‖ < φ for any θ ∈ Θ. It is possible to assume strict feasibility of this

(x, φ) because it can be perturbed, if necessary, to the direction of a strictly feasible solution.

We construct from this (x, φ) a solution of P (∆) as in the proof of Lemma 9. We then obtain a

strictly feasible solution of P (∆). On the other hand, the problem P is bounded from below by

Assumption 3 (b) and so is P (∆). The duality theorem on SDP (Theorem 2.4.1 of [1]) implies

that the dual problem of P (∆) has an optimal solution. ¤

5. Verification of exactness

Suppose that we solved an approximate problem P (∆) for some division ∆ and obtained an

optimal solution (x̂, {û[j]}, {Ŵ [j]}). In general, the attained value cTx̂ = inf P (∆) is larger than

the true optimal value inf P . In some cases, however, these two values happen to be identical.

One of such cases is that there exist some j and θ̂ ∈ Θ[j] such that (x̂, û[j]) is optimal for the

problem:

P (θ̂) : minimize cTx

subject to E(x) º O, F (x, u[j]; θ̂) º O.

Indeed, since only a particular parameter value θ̂ ∈ Θ is considered in this problem, the attained

minimum value cTx̂ is smaller than or equal to inf P . But we also have inf P ≤ inf P (∆) = cTx̂,

which implies that these three values are equal to each other. In this case, θ̂ is understood as

the worst-case parameter value, which prevents inf P from becoming smaller than the present

value.

The purpose of this section is to give a condition for the above situation to occur. If this

condition is satisfied, the obtained solution is optimal not only for the approximate problem

P (∆) but also for the original problem P . This result is useful because, in this case, we
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do not have to improve the approximate problem any more. The condition is obtained by

generalization of the result on a robust SDP problem without a functional variable [17]. See

also [24] for a related result.

A feasible solution of an SDP problem is optimal if there exists a dual feasible solution

satisfying the complementary slackness condition with the given (primal) solution (Section 4.1

of [1]). To make an explicit statement, we introduce the inner product 〈A,B〉 := tr AB for

symmetric matrices A and B and let en
i be the ith elementary n-dimensional vector (i =

1, 2, . . . , n). Then, a feasible solution (x̂, û[j]) of P (θ̂) is optimal if there exists a matrix pair

(Ŷ , Ẑ), where Ŷ is an ` × ` symmetric matrix and Ẑ is an m × m symmetric matrix, that

satisfies the dual feasibility condition

Ŷ º O, Ẑ º O, (8)〈
Ŷ , E(en

i )− E(0)
〉

+
〈
Ẑ, F (en

i , 0; θ̂)− F (0, 0; θ̂)
〉

= ci (i = 1, 2, . . . , n), (9)
〈
Ẑ, F (0, enu

i ; θ̂)− F (0, 0; θ̂)
〉

= 0 (i = 1, 2, . . . , nu) (10)

as well as the complementary slackness condition

〈Ŷ , E(x̂)〉 = 0, (11)

〈Ẑ, F (x̂, û[j]; θ̂)〉 = 0. (12)

We show below that the existence of such (Ŷ , Ẑ) is equivalent to the existence of a dual feasible

solution of P (∆) having some special structure. Hence, if we solve the approximate problem

P (∆) and the obtained dual solution has this structure, the obtained solution is exact in

the sense that it optimizes the original problem P . Note that the primal-dual interior-point

method gives not only a primal solution but also a dual solution. Here, the dual variables of

P (∆) consist of an `× ` symmetric matrix, which corresponds to E(x) º O, and |V |m× |V |m
symmetric matrices, each of which corresponds to G(x, u[j]) + H(θ)(W [j])T + W [j]H(θ)T º O

(θ ∈ ver Θ[j], j = 1, 2, . . . , J).

Theorem 11. Let (x̂, {û[j]}, {Ŵ [j]}) be a primal feasible solution of the approximate problem

P (∆) for a division ∆. Let θ̂ be a point in some subregion Θ[j]. Then, the problem P (θ̂) has

a dual feasible solution (Ŷ , Ẑ) satisfying the complementary slackness condition (11) and (12)

with the primal feasible solution (x̂, û[j]) if and only if the approximate problem P (∆) has a

dual feasible solution satisfying the complementary slackness condition with (x̂, {û[j]}, {Ŵ [j]})
and having the following structure.

(a) The dual variable corresponding to the constraint E(x) º O is Ŷ .
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(b) Each remaining nonzero dual variable corresponds to the constraint G(x, u[j])+H(θ)(W [j])T+

W [j]H(θ)T º O for some vertex θ ∈ ver Θ[j].

(c) Let the vertices in (b) be θ(1), θ(2), . . . , θ(Q). Then, the set {θ(1), θ(2), . . . , θ(Q)} includes θ̂ in

the relative interior of its convex hull.

(d) The nonzero dual variable corresponding to θ(q) is expressed as (a(q)/2)M(θ̂)ẐM(θ̂)T for

each q = 1, 2, . . . , Q, where a(q) is the coefficient of a positive convex combination θ̂ =

a(1)θ(1) + a(2)θ(2) + · · ·+ a(Q)θ(Q).

The structure (a(q)/2)M(θ̂)ẐM(θ̂)T can be checked by solving an SDP problem. Indeed,

a symmetric matrix A is equal to (a(q)/2)M(θ̂)ẐM(θ̂)T if and only if AH(θ̂) = O and the

upper-left m×m submatrix of A is equal to (a(q)/2)Ẑ. Since AH(θ̂) = O is affine in θ̂, we can

search θ̂ by solving an SDP problem. See Section 6 for an example.

Proof. Assume the existence of a dual feasible solution of P (∆) with the described structure.

Then, we have

Ŷ º O, Ẑ º O, (13)

〈
Ŷ , E(en

i )− E(0)
〉

+

Q∑
q=1

〈a(q)

2
M(θ̂)ẐM(θ̂)T, G(en

i , 0)−G(0, 0)
〉

= ci (i = 1, 2, . . . , n),

(14)

Q∑
q=1

〈a(q)

2
M(θ̂)ẐM(θ̂)T, G(0, enu

i )−G(0, 0)
〉

= 0 (i = 1, 2, . . . , nu), (15)

Q∑
q=1

〈a(q)

2
M(θ̂)ẐM(θ̂)T, H(θ(q))WT + WH(θ(q))T

〉
= 0

(for any |V |m× (|V | − 1)m matrix W ), (16)

〈Ŷ , E(x̂)〉 = 0, (17)
〈a(q)

2
M(θ̂)ẐM(θ̂)T, G(x̂, û[j]) + H(θ(q))(Ŵ [j])T + Ŵ [j]H(θ(q))T

〉
= 0 (q = 1, 2, . . . , Q). (18)

Here, (13)–(16) constitute the dual feasibility condition while (17) and (18) the complementary

slackness condition.

We consider (14) first. Application of a(1) + a(2) + · · ·+ a(Q) = 1 and M(θ̂)TG(x, u)M(θ̂) =

2F (x, u; θ̂) gives (9). Similarly, (15) implies (10). Summing up (18) for q = 1, 2, . . . , Q and

using a(1)θ(1) + a(2)θ(2) + · · · + a(Q)θ(Q) = θ̂, we have (12). Hence, (Ŷ , Ẑ) satisfies (8)–(12),

in other words, it is a dual feasible solution of P (θ̂) satisfying the complementary slackness

condition.
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Conversely, assume that (Ŷ , Ẑ) satisfies (8)–(12). By the reversed reasoning, (14) and (15)

follow from (9) and (10), respectively. The equality (16) is a consequence of a(1)θ(1) + a(2)θ(2) +

· · · + a(Q)θ(Q) = θ̂ and M(θ̂)TH(θ̂) = O. We finally derive (18) from (12). The equality (12)

implies

Q∑
q=1

〈a(q)

2
M(θ̂)ẐM(θ̂)T, G(x̂, û[j]) + H(θ(q))(Ŵ [j])T + Ŵ [j]H(θ(q))T

〉
= 0.

Since each term is nonnegative, the equality (18) follows. ¤

6. Example

A numerical example is presented for illustration.

Consider a two-dimensional system

ξ̇(t) =

[
0 1

−1 −1− 0.1θ1

]
ξ(t) +

[
0

1 + 0.2θ1 − 0.1θ2
1 − 0.1θ2

]
u(t),

y(t) = [1 0]ξ(t)

depending on a two-dimensional parameter θ = [θ1 θ2]
T ∈ Θ = [0, 1]2. We compute its

maximum L2-induced norm over Θ. This problem is formulated into a robust SDP problem as

in Example 1. Substituting a polynomial R(θ) = R00+R10θ1+R20θ
2
1 +R01θ2 into the constraint

there, we have an LMI with the terms of θ1, θ2
1, θ3

1, θ2, and θ1θ2 as well as the constant term.

With the coarsest division ∆ = {Θ}, we constructed the approximate problem P (∆) and

solved it. The obtained optimal value was 1.20687. We used SeDuMi [26] for the SDP solver

with the help of the parser YALMIP [12] on a computer equipped with Pentium M of 1.10 GHz

and memory of 760MBytes. The computational time was 7.25 seconds.

The region Θ has four vertices: θ(1) = [0 0]T, θ(2) = [1 0]T, θ(3) = [0 1]T, and θ(4) = [1 1]T.

Among them, θ(1) and θ(2) are interesting because the obtained dual variables corresponding to

these vertices are found nonzero. With the dual variable corresponding to θ(1), we computed

the worst-case parameter θ̂ as in Section 5. The result was θ̂ = [0.694205 0]T. With this

parameter, the system has the L2-induced norm equal to 1.20687, which shows the accuracy

of our approximate optimal value. Moreover, the obtained dual variables corresponding to θ(1)

and θ(2) coincide with (a(1)/2)M(θ̂)ẐM(θ̂)T and (a(2)/2)M(θ̂)ẐM(θ̂)T, respectively, up to the

order of 10−8 for a(1) = 1− 0.694205, a(2) = 0.694205 and appropriately chosen Ẑ. This verifies

the exactness of our approximation. We do not need to increase the order of R(θ) or divide Θ

any more.
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It is interesting that an exact result is obtained with a low-degree R(θ) and a coarse divi-

sion. This is consistent with the reported performance of other approaches based on positive

polynomials.

7. A robust SDP problem with function derivatives

In this section, we consider a robust SDP problem not only with a function but also with its

derivatives:

Pd : minimize cTx

subject to E(x) º O,

F
(
x, φ(θ),

∂φ(θ)

∂θ1

,
∂φ(θ)

∂θ2

, . . . ,
∂φ(θ)

∂θp

; θ
)
º O (∀θ ∈ Θ).

Here, the optimization variables are a vector x ∈ Rn and a function φ ∈ Φd. The function set

Φd is a linear space of continuous and piecewise continuously differentiable functions defined

on Θ. The function F is affine in x, φ(θ), (∂/∂θ1)φ(θ), (∂/∂θ2)φ(θ), . . ., (∂/∂θp)φ(θ) while

polynomial in θ. Other setting such as the size of E(x) is the same as in P .

Various control problems are formulated into Pd.

Suppose in Example 1 that the parameter θ varies with time in the set Θ and its time

derivative θ̇ belongs to the set Θ̇. Assume 0 ∈ Θ̇. The L2-induced norm of the system can be

computed with an optimization problem similar to the one in Example 1 [27, 8, 28, 29]. The

difference is that the (1, 1)-block of the constraint is replaced by

p∑
i=1

∂R(θ)

∂θi

θ̇i − A(θ)R(θ)−R(θ)A(θ)T

with R(θ) being a continuous and piecewise continuously differentiable function. Moreover, the

parameter of the problem is (θ, θ̇) ∈ Θ × Θ̇ here. This problem is in the form of Pd.

Another example is stability analysis of a nonlinear system.

Example 12. Consider a nonlinear system ξ̇(t) = f(ξ(t)) with a polynomial f(ξ) satisfying

f(0) = 0. Then, the origin is asymptotically stable with this system if the optimum value of

the following problem is negative:

minimize x

subject to φ(0) = 0, 1− φ(ξ0) ≥ 0,

φ(ξ) + x‖ξ‖2 ≥ 0, x‖ξ‖2 −
(∂φ(ξ)

∂ξ

)T

f(ξ) ≥ 0 (∀ξ ∈ Ξ).
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Here, Ξ is some closed polytope containing the origin in its interior; ξ0 6= 0 is a point in Ξ. The

optimization variables are a scaler x and a Lyapunov function candidate φ, which is continuous

and piecewise continuously differentiable. This problem is again in the form of Pd. ¤

We consider an approximate approach to the problem Pd.

First, a general function φ(θ) is replaced by a polynomial φu(θ) =
∑

α∈S uαθα characterized

by u = (uα) ∈ Rnu . The notation

F (x, u; θ) := F
(
x, φu(θ),

∂φu(θ)

∂θ1

,
∂φu(θ)

∂θ2

, . . . ,
∂φu(θ)

∂θp

; θ
)

is used for explicit representation of the finite dimensionality. Here, F is affine in x and u while

polynomial in θ.

Next, a division ∆ = {Θ[j]}J
j=1 of the parameter set Θ is prepared and a polynomial φu[j](θ)

is considered for each subregion Θ[j]. Recall that the function φ(θ) has to be continuous over the

whole set Θ. This requirement is expressed by a linear equality constraint on u[1], u[2], . . . , u[J ],

which is denoted by

d(u[1], u[2], . . . , u[J ]) = 0.

Finally, the matrices G(x, u), M(θ), H(θ) are defined in the same way as in P . Then, we

have an approximate problem:

Pd(∆) : minimize cTx

subject to E(x) º O, G(x, u[j]) + H(θ)(W [j])T + W [j]H(θ)T º O

(∀θ ∈ ver Θ[j],∀j = 1, 2, . . . , J),

d(u[1], u[2], . . . , u[J ]) = 0,

which can be solved with the standard interior-point method.

It is natural to expect an upper bound on the approximation error | inf Pd(∆) − inf Pd|.
For the present, such a bound is obtained in a rather special setting: the parameter set Θ is a

multi-dimensional interval
∏p

i=1[θi, θi], its division ∆ is a Cartesian division, and the polynomial

φu(θ) is cubic in each θi. This is due to the requirement of continuity and the technical difficulty

to bound u[j] in the limit of rad ∆ → 0.

A Cartesian division of Θ =
∏p

i=1[θi, θi] is defined as follows. For each i = 1, 2, . . . , p, divide

the interval [θi, θi] as θi = θ0
i < θ1

i < · · · < θQi−1
i < θQi

i = θi. Then, the collection of all the

multi-dimensional intervals
∏p

i=1[θ
qi

i , θqi+1
i ] (qi = 0, 1, . . . , Qi − 1, i = 1, 2, . . . , p) is a Cartesian

division of Θ.

When the polynomial φu(θ) is cubic in each θi (i = 1, 2, . . . , p), the dimension nu is equal to

4pnφ. Let us use this φu(θ) to interpolate a sufficiently smooth function φ(θ) on Θ. Pick up one
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subregion Θ[j] from a Cartesian division ∆. Then, we can choose φu[j](θ) so as to interpolate the

function value φ(θ) as well as the first derivatives (∂/∂θ1)φ(θ), (∂/∂θ2)φ(θ), . . ., (∂/∂θp)φ(θ)

at all the 2p vertices of Θ[j]. Since the required dimension is 2p(p + 1)nφ, the choice of u[j] is

made from the space of the dimension 4pnφ − 2p(p + 1)nφ. Whatever the particular choice is,

if each u[j] is chosen as such the continuity condition d(u[1], u[2], . . . , u[J ]) = 0 is automatically

satisfied. Moreover, it is possible to bound u[j] irrespectively of the maximum radius rad ∆ by

exploiting the freedom in the choice of u[j]. More discussion can be found in Chapters 14–16 of

[7].

We make the following two assumptions to obtain the bound. The first assumption is a

natural generalization of Assumption 3 (a). Although the second assumption is a generalization

of Assumption 3 (b), it may look restrictive due to the bounds on the high-order derivatives of

φ(t). Note, however, that it is satisfied in a practically reasonable situation that the problem

Pd and its modification Pd,ε, to be introduced, are optimized by some x and smooth enough

φ(θ).

Assumption 13.

(a) There exist x ∈ Rn and φ ∈ Φd such that E(x) Â O and F(x, φ(θ), (∂/∂θ1)φ(θ), (∂/∂θ2)φ(θ),

. . . , (∂/∂θp)φ(θ); θ) Â O (∀θ ∈ Θ).

(b) There exist positive numbers ε, x, and φα, where α = [α1 α2 · · · αp]
T and αi = 0, 1, 2, 3

for each i, having the following property: For any 0 ≤ ε ≤ ε and any v ∈ R, the set {(x, φ) ∈
Rn × Φd | cTx ≤ v, E(x) º O, F(x, φ(θ), (∂/∂θ1)φ(θ), (∂/∂θ2)φ(θ), . . . , (∂/∂θp)φ(θ); θ) º
εI (∀θ ∈ Θ)} is either empty or having an element (x, φ) with ‖x‖ ≤ x and ‖(∂/∂θ1)

α1(∂/∂θ2)
α2

· · · (∂/∂θp)
αpφ(θ)‖ ≤ φα for any θ ∈ Θ and αi = 0, 1, 2, 3 (i = 1, 2, . . . , p). ¤

With this setting, we have the following bound on the approximation error of Pd(∆).

Theorem 14. Let Θ be a multi-dimensional interval and ∆ be its Cartesian division. Let also

φu(θ) be cubic in each θi. Then, under Assumption 13, there exist positive numbers Cd and C ′
d,

which are independent of the division ∆, such that

| inf Pd(∆)− inf Pd| ≤ Cd rad ∆

for any ∆ satisfying rad ∆ ≤ C ′
d.

The implication of this theorem is parallel to that of Theorem 4. This theorem immediately

implies the asymptotic exactness of Pd(∆), that is, the approximation error | inf Pd(∆)− inf Pd|
converges to zero as the maximum radius rad ∆ of the division goes to zero. The convergence is

at least proportional to rad ∆. Exactness verification is possible in a similar fashion to Section 5.
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Adaptive division as in Section 4 is not possible in the present setting because the division

is restricted to be Cartesian. Improvement on this point is a future research subject. In the

literature [4, 16, 9, 13, 23, 11, 6], a low-order polynomial is used for φu(θ) in place of the present

cubic function. An upper bound in this setting is another interesting subject.

The proof of Theorem 14 is similar to that of Theorem 4. We show only a sketch of the

proof for avoidance of repetition.

Sketch of the proof of Theorem 14. We first consider the following auxiliary problem:

Pd,ε : minimize cTx

subject to E(x) º O,

F
(
x, φ(θ),

∂φ(θ)

∂θ1

,
∂φ(θ)

∂θ2

, . . . ,
∂φ(θ)

∂θp

; θ
)
º εI (∀θ ∈ Θ)

for ε ≥ 0.

The critical step of the proof is to show inf Pd(∆) ≤ inf Pd,ε for ∆ with small rad ∆ and for

consistently small ε > 0. To this aim, we construct a solution (x, {u[j]}, {W [j]}) of Pd(∆) from

a solution (x, φ) of Pd,ε.

Suppose Θ ⊆ [−1, 1]p first. If ε > 0 is small enough, the auxiliary problem Pd,ε is feasible

due to Assumption 13 (a). Moreover, a feasible solution (x, φ) can be chosen so that ‖x‖ ≤ x

and ‖(∂/∂θ1)
α1(∂/∂θ2)

α2 · · · (∂/∂θp)
αpφ(θ)‖ ≤ φα, for any θ ∈ Θ and αi = 0, 1, 2, 3 owing

to Assumption 13 (b). Now, we choose a cubic function φu[j](θ) for each j = 1, 2, . . . , J so

as to interpolate φ(θ) and its first derivatives at the vertices of Θ[j]. We also choose W [j] as

(1/2 rad Θ[j])H(θ0) for each j, where θ0 is the vertex of Θ[j] with the smallest coordinate in

each axis. Then, if the maximum radius of ∆ satisfies some linear relationship with ε, this

(x, {u[j]}, {W [j]}) forms a feasible solution of the approximate problem Pd(∆). This implies

inf Pd(∆) ≤ inf Pd,ε.

The extension to the case of Θ 6⊆ [−1, 1]p is as in Section 4.2. Finally, the convexity of

inf Pd,ε gives the desired bound. ¤

8. Conclusion

In this paper, we considered a robust SDP problem with a functional variable, which covers

many control problems with a parameter-dependent Lyapunov function. In particular, we

present an approximate approach to solve this problem and show its asymptotic exactness.

A quantitative error bound is given in terms of the resolution of the division. Verification of

exactness is also discussed. A numerical example shows the possibility of exact optimization

through a finite-dimensional approximate problem.
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