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Abstract

In this paper, we study clustering algorithms for wireless sensor networks from a view of facility

location theory. From this view, we can consider that LEACH-C, which is one of the principal studies

on cluster-based network organization, formulates the clustering problem as a p-median problem. We

point out drawbacks of the formulation in LEACH-C. To overcome the drawbacks, we formulate the

problem as an uncapacitated facility location problem. Computational experiments show that the

proposed algorithm can extend the lifetime of sensor networks, compared to LEACH-C.
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1 Introduction

Wireless sensor networks have been paid much attention due to their rich applications in the scientific,

medical, commercial and military domain. A wireless sensor network is formed by tens to thousands

sensor nodes randomly deployed in a target field. Sensor nodes should be first organized into an ad

hoc network and send information about monitored events to a data sink or a remote base station (BS)

through the organized network.
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One of crucial challenges in the organization of sensor networks is energy efficiency, because battery

capacities of sensor nodes are severely limited and replacing the batteries is not practical. Once all

sensor nodes run out their batteries, the sensor network doesn’t work anymore. So various network

architectures and protocols to save energy consumption and extend the lifetime of sensor networks have

been studied (e.g., see [1] and references therein). Among them, cluster-based network organization is

considered as the most favorable approach in terms of energy efficiency. In this approach, sensor nodes

are organized into clusters, and one sensor node in each cluster is selected as cluster head (CH) to play a

special role as transfer point (see Figure 1). Moreover, each CH creates a schedule for the sensor nodes

within the cluster, which allows the radio components of each non-CH-node to be turned off all times

except during its transmit time.

The rotation of CHs is also important factor to organize sensor networks. Since the BS is generally

far away from the sensor field, CHs exhaust much amount of energy for the data transmission to the BS.

Hence, CHs will die quickly if the same node continuously works as a CH. Thus, in order not to drain

the battery power of a single sensor, clustering algorithms studied so far introduce the rotation of CHs

among sensor nodes.
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Figure 1: Cluster-based sensor network

One of the primal studies on cluster-based network organization is LEACH (Low Energy Adaptive
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Clustering Hierarchy) [2] and LEACH-C (LEACH-Centralized) [3]. LEACH is based on self-organized

network. On the other hand, LEACH-C is a centralized cluster formation version of LEACH, where

the BS organizes and controls the network. More precisely, LEACH-C protocol provides a centralized

cluster formation, local processing for aggregation of sensing data, and the rotation of CHs for every

round. These activities are aimed at achieving uniform energy consumption among sensor nodes and

maximizing network lifetime. Since the BS usually does not have energy constraint, centralized cluster

formation methods can be attractive alternatives. In fact, LEACH-C is more efficient than LEACH in

terms of energy consumption from the computational results [3].

In this paper, we study centralized clustering algorithms for wireless sensor networks from a view

of facility location theory. From this view, we can consider that LEACH-C formulates the clustering

problem as a p-median problem [4], which is one of well-known facility location problems. We point out

drawbacks of the formulation in LEACH-C. To overcome the drawbacks of LEACH-C, we formulate the

clustering problem as an uncapacitated facility location problem (UFLP) [4] incorporating additional

factors that haven’t been taken into account in LEACH-C.

The remainder of this paper is organized as follows. In Section 2, we point out drawbacks in the

clustering algorithm of LEACH-C, and give basic idea to overcome the drawbacks. In Section 3, we

formulate the clustering problem as a UFLP. Based on the formulation, we propose a new clustering

algorithm for wireless sensor networks. In Section 4, we show computational results to compare the

lifetime of sensor network. Finally, we give concluding remarks and mention our future work in Section

5.

2 Centralized cluster-based sensor network

The operation of cluster-based sensor network is usually divided into rounds. Each round has two phases,

which are the clustering phase and the data transmission phase. Rounds are repeated to monitor events

continuously. In the following, we briefly summarize the centralized cluster formation algorithm employed

in LEACH-C.
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In the clustering phase of LEACH-C, each sensor node first reports information about its current

location (this information may be obtained by a GPS receiver) and its battery level to the BS. The

BS computes the average battery level of nodes and selects sensor nodes as CH candidates which have

above-average battery level. Finally, the BS determines CHs and finds a cluster formation by solving a

p-median problem where the objective is to minimize the sum of the squared distances from each sensor

node to the nearest CH.

In the data transmission phase of LEACH-C, each non-CH node sends monitored data to its CH.

After each CH receives all data from the sensor nodes within the cluster, data aggregation process can

be carried out by each CH. Since the data monitored by each sensor node within a cluster are often

correlated or redundant, the BS does not require all data. Thus, the data aggregation process removes

such redundant data and reduces the size of data to send the BS, which consequently saves the energy

consumption of CHs.

Heinzelman et al. [3] reported that LEACH-C performs better compared to LEACH from their

simulation. However, there are drawbacks listed below in the clustering algorithm of LEACH-C.

• Although it is important to consider energy consumption or remaining battery level of sensor nodes,

the algorithm does not take them into account. It simply takes into account the squared distances

from sensor nodes to the nearest CHs. Since the distances from CHs to the BS is usually much

longer than the distances between sensor nodes, these distances are critical factors governing the

network lifetime.

• The algorithm considers the energy consumption only caused by data transmission, although CHs

also expend their battery powers on receiving and aggregating data.

• In the algorithm, the number of CHs is predetermined and fixed through rounds. The number of

CH candidates may be less than the predetermined number after some rounds. Hence, this can

cause the p-median problem to be infeasible due to the shortage of CH candidates, although many

sensor nodes are still alive. When it happens, we can not continue rounds with this algorithm

unless we select CHs in alternative way.
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To overcome the above drawbacks, we formulate the clustering problem as a UFLP where the ob-

jective is to maximize the total battery level of all sensor nodes taking into account all kinds of energy

consumption. The facilities correspond to the CHs and the fixed cost for each sensor node corresponds

to the energy consumption to transmit data to the BS as a CH. By formulating the problem as a UFLP,

the number of selecting CHs in each round will be more flexible than using the p-median problem, which

finally may bring a long lifetime network.

3 Formulation

As mentioned in the previous section, each round has two phases. The first phase is the clustering phase,

where the clustering problem is solved. In this section, we formulate the clustering problem as a UFLP,

and also show the p-median problem formulation used in LEACH-C. First, we employ the following

notations:

N : the index set of sensor nodes,

dij: the distance from sensor node i ∈ N to sensor node j ∈ N ,

fi: the distance from sensor node i ∈ N to the BS,

bi: the battery level of sensor node i ∈ N (J),

l: the data amount sent by each sensor node (bit),

E: coefficient for the radio dissipate (J/bit),

EDA: coefficient for data aggregation (J/bit),

n: the number of sensor nodes which have positive battery level,

α: parameter to determine CH candidates (0 < α ≤ 1),

Si: 0 if sensor node i has a positive battery level and 1 otherwise.
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We assume that every sensor node sends a fixed length of message (l bits) in each round. The parameter

α is introduced to allow more flexible CH candidate selection. Note that α = 1 throughout in LEACH-

C. As mentioned in Section 1, CHs play not only transfer points but also other roles to control sensor

networks. However, we omit these factors and assume that CHs play only transfer points.

We assume that the model of the energy consumption of transmitting and receiving the data is the

same as LEACH-C [3]. Amplifier energy used for data transmission is defined by two models depending

on the distance between the sensor nodes. If the distance is less than the distance threshold d0, we use the

free space model, otherwise, we use the multi-path model. Amplifier energy used for data transmission

from sensor node i to j is given by

Dij =





εfsdij
2 (if dij < d0)

εmpdij
4 (if dij ≥ d0),

and that from sensor node i to the BS is given by

Fi =





εfsfi
2 (if fi < d0)

εmpfi
4 (if fi ≥ d0),

where εfs and εmp are coefficients for the two models, respectively. Amplifier energy used for data

receiving from a sensor node is lE. For data aggregation, we adopt a perfect data aggregation as

LEACH-C, where the received messages is aggregated into one message at CHs. As a result, every CH

sends l bits data to the BS.

We further introduce the following decision variables.

xi: binary variable such that xi = 1 if sensor node i ∈ N is selected as a CH, and xi = 0 otherwise.

yij: binary variable such that yij = 1 if sensor node i ∈ N belongs to the cluster where sensor node

j ∈ N is a CH, and yij = 0 otherwise.

We now propose a new formulation for clustering problem of sensor networks. The clustering problem

is formulated as the following integer programming problem:

max
∑

i∈N



bi −


lE + l

∑

j∈N

Dijyij + lFixi


− lE

∑

j∈N

yji − lEDA

∑

j∈N

yji



 (1)
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s.t. xi +
∑

j∈N

yij + Si = 1, i ∈ N, (2)

(
bi − α

n

∑

i∈N

bi

)
xi ≥ 0, i ∈ N, (3)

yij ≤ xj , i, j ∈ N, (4)

xi ∈ {0, 1}, i ∈ N, (5)

yij ∈ {0, 1}, i, j ∈ N. (6)

The objective is to maximize the total amount of remaining batteries of sensor nodes after one round.

From constraint (2), each sensor node plays a CH or sends the data to the nearest CH as far as its

battery level is positive. Constraint (3) ensures that sensor node which has at least α times as much as

the average battery level of all alive sensor nodes can be a candidate of CH. Constraint (4) means that

only CHs can receive the data.

Note that the objective (1) is to maximize the total sum of battery level of sensor nodes and it can

be rewritten as the standard form of the objective in the UFLP:

min
∑

i∈N

∑

j∈N

(E + Dij + EDA)yij +
∑

i∈N

Fixi.

Hence, the problem can be regarded as a UFLP.

In a similar manner, we can formulate the clustering problem in LEACH-C as the following p-median

problem:

min
∑

i∈N

∑

j∈N

(dij)2yij

s.t.
∑

j∈N

xj = p,

(2), (3), (4), (5).

Note that in LEACH-C, the objective is to minimize the total sum of squared distances between the

sensor nodes and the nearest CHs, and the energy consumption is not directly considered. Also, the

parameter α is fixed and equal to 1 in constraint (3), which means that sensor nodes that have battery

over the average of all alive sensor nodes can be CH candidates.
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4 Computational Experiments

We made computational experiments to compare the performance of our clustering algorithm with that

of LEACH-C. We used exact solutions of the clustering problem in the experiments, while Heinzelman

et al. [3] used heuristic solutions brought by the simulated annealing algorithm. Our objective is to

examine how long we can extend the network lifetime by using our UFLP based formulation for the

clustering problem. From this point of view, we should use the exact solutions rather than the heuristic

solutions for our computational experiments. We used an optimization software Xpress-MP (2005B) to

obtain the exact solutions. All experiments were run on a PC with Intel Pentium 4 processor (2.53GHz)

and 512MB RAM.

We used the following physical constants and parameters in the experiments: bi = 0.5 J, E = 50

nJ/bit, εfs = 10 pJ/bit/m2, εmp = 0.0013 pJ/bit/m4, EDA = 5 nJ/bit, d0 = 87 m, l = 4200 bit, and

various values of α from 0.1 to 1.0. In addition, we assume that p = 5 to solve the p-median problems

as LEACH-C [3]. We used two types of data sets, where 100 sensor nodes are randomly deployed in a

100 meters square (data1, · · · , data5) and deployed in a 400 meters square (data6, · · · , data10). For

convenience, we define the lower left of the squares as (x = 0, y = 0), and the upper right of the 100

meters square as (x = 100, y = 100) and the 400 meters square as (x = 400, y = 400). We assume

that the BS is located at (x = 50, y = 175) in the data sets of the 100 meters square and at (x = 200,

y = 475) in the data sets of the 400 meters square. The average computational time of our clustering

algorithm using Xpress-MP is 4.76 seconds per round.

We simulated data transmission from every node to the BS until all sensor nodes died. To evaluate

the performance of the clustering algorithms, we introduce the survival rate, which is defined as the

percentage of alive sensor nodes over all sensor nodes. Table 1 shows comparisons of the numbers of

rounds between our UFLP based formulation with α = 1.0 and the p-median based formulation in

LEACH-C for the data sets of the 100 meters square. Table 2 also shows comparisons for the data sets

of the 400 meters square. Each table shows the numbers of rounds operated until survival rates decrease

to 99%, 90%, 70%, 50%, 30%, 10%, and 0%. We use 100 sensor nodes data in the experiments, then 99%
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Table 1: Comparisons of the number of rounds for each survival rate (s.r.) between our UFLP-based

formulation with α = 1.0 (UFLP) and the p-median based formulation in LEACH-C (p-med.) in a 100

meters square

data1 data2 data3 data4 data5

s.r. p-med. UFLP p-med. UFLP p-med. UFLP p-med. UFLP p-med. UFLP

99% 902 902 611(100) 902 907 916 908 920 888 902

90% 907 922 N/A 919 923 933 919 940 896(93) 915

70% 906(90) 933 N/A 933 924(88) 950 920(89) 950 N/A 933

50% N/A 939 N/A 939 N/A 957 N/A 959 N/A 943

30% N/A 944 N/A 944 N/A 961 N/A 965 N/A 948

10% N/A 952 N/A 954 N/A 969 N/A 972 N/A 957

0% N/A 963 N/A 960 N/A 981 N/A 979 N/A 963

Table 2: Comparisons of the number of rounds for each survival rate (s.r.) between our UFLP-based

formulation with α = 1.0 (UFLP) and the p-median based formulation in LEACH-C (p-med.) in a 400

meters square

data6 data7 data8 data9 data10

s.r. p-med. UFLP p-med. UFLP p-med. UFLP p-med. UFLP p-med. UFLP

99% 38 49 31 47 36 53 50 59 32 42

90% 53 70 61 74 50 68 76 81 62 74

70% 105 119 102(78) 135 131(78) 171 103 113 90(76) 109

50% 235 245 N/A 180 N/A 247 179 201 N/A 151

30% 254(44) 359 N/A 291 N/A 342 183(50) 392 N/A 271

10% N/A 441 N/A 423 N/A 463 N/A 545 N/A 502

0% N/A 526 N/A 455 N/A 469 N/A 550 N/A 575
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survival rate means that the first sensor node died. In other words, the numbers appeared in the row

labeled “99%” show the number of rounds operated with all sensor nodes alive. Note that the numbers

appeared in the row labeled “0%” express the network lifetime. The numbers in parenthesis appeared

in the “p-med.” columns are the number of nodes still alive when the clustering problem becomes

infeasible. For instance, 906(90) means that the problem becomes infeasible at the 906-th round and

ninety of sensor nodes are still alive.

The p-median problem in LEACH-C becomes infeasible due to the lack of CH candidates. Tables

1 and 2 show that many sensor nodes are still alive when the problem becomes infeasible. Especially

in the experiment for data2, all sensor nodes are still alive when the problem becomes infeasible at the

611-th round. In other words, only less than five sensor nodes have above-average energy among 100

sensor nodes. This seems unlikely to happen. Let us make sure what happens at the 611-th round.

Figure 2 shows the battery level of each sensor node at the 611-th round of data2. The horizontal

line expresses the average remaining battery level. The circled crosses mean that the battery levels are

above the average. We can see that only four sensor nodes can be CH candidates though the p-median

problem needs at least five candidates to select five CHs. We also find that three of the four candidates

have much larger remaining batteries than the others’. From further investigation, we have found that

the three candidates are closed to the BS. Thus, they do not expend a large amount of energy to send

the data to the BS even if they are selected as CHs. However, in spite of the advantage of their locations

being selected as CHs, they are selected as CHs only about the same times as the other sensor nodes.

In short, they have enough battery level, but play a role as CHs less frequently. In such a case, only a

few sensor nodes may have much larger remaining batteries and raise the average battery level, which

possibly makes the rest of the sensor nodes have below-average energy. As a result, this leads to the

shortage of CH candidates and makes the problem infeasible at early stage of rounds remaining many

alive nodes.

As an alternative, we proposed a UFLP based formulation in which the number of CHs dynamically

optimized to maximize the total battery level in each round as shown in Figure 3. This keeps the

problem being feasible even after a quite large number of rounds, although sensor nodes do not expend
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Figure 2: The battery level of each sensor node at the 611-th round of data2 (100×100)

their batteries uniformly.

From Tables 1 and 2, we can observe that, in terms of the network lifetime, our UFLP based

formulation is more suitable than the p-median based formulation proposed in LEACH-C. Using our

formulation, we can get the exact solutions of the clustering problems without being infeasible until all

sensor nodes died. Moreover, the numbers of rounds using our formulation are greater than or equal to

those using the p-median based formulation at any of the survival rates where we made an observation.

To see how the number of rounds changes with various values of α using our formulation, we simulated

data transmission from every node to the BS until all sensor nodes died. Tables 3 and 4 show the

computational results for the data sets of 100 meters square and for the data sets of 400 meters square,

respectively. In Tables 3 and 4, the columns labeled “ave.” show the average number of rounds operated

until survival rates decrease to 99%, 90%, 70%, 50%, 30%, 10%, and 0%, and the columns labeled “std.”

show the standard deviation. The average numbers of rounds are averaged over the five data sets in each

type.

From Tables 3 and 4, we can see that the number of rounds is sensitive to the value of α. Note that

the number of CH candidates in each round increases as the value of α decreases. As the value of α

decreases, the network lifetime is extended, but the number of rounds operated down to 70% survival
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Figure 3: The number of CHs in each round with the case of data1 (100×100) and α = 0.9

rate decreases. Thus, when the value of α is small, many sensor nodes die quickly, but the network

lifetime tends to be long. On the other hand, when the value of α is large, each sensor node lives longer,

but many sensor nodes die suddenly at a time and the network lifetime tends to be short. From these

observation, we can select appropriate value of α according to required characteristics of sensor networks.

For example, if we need at least 70 % survival rate to monitor events in the sensor field, we should set

the value of α rather large. If the network lifetime is more important than the number of alive nodes,

we should set the value of α rather small.

5 Conclusion

We formulate the clustering problem as a UFLP and develop a centralized method to find a good

clustering with the objective of maximizing the network lifetime. Our method is superior to the clustering

algorithm of LEACH-C in many cases. We use 100 sensor nodes examples for computational experiments

and get exact solutions using Xpress-MP. Suitable heuristics for the UFLP [5] may enable us to deal

with more practical size of sensor network problems.
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Table 3: The number of rounds vs. survival rate (s.r.) of nodes : 100×100

α

0.1 0.3 0.5 0.7 0.9 1.0

s.r. ave. std. ave. std. ave. std. ave. std. ave. std. ave. std.

99% 227.6 17.47 641.6 11.22 903.6 19.27 905.0 12.02 912.8 13.50 908.4 8.88

90% 390.8 25.16 706.0 4.53 922.6 13.94 925.6 14.67 930.4 12.07 925.8 10.38

70% 691.0 23.11 795.4 10.71 933.0 13.78 939.8 12.60 943.8 11.21 939.8 9.31

50% 969.6 14.12 892.6 12.18 943.8 12.21 948.6 13.74 951.2 11.30 947.4 9.84

30% 1222.8 19.41 1095.0 30.65 954.6 11.35 958.6 13.79 957.4 10.71 952.4 9.91

10% 1460.4 28.92 1276.0 29.33 985.8 14.86 977.2 9.68 967.8 11.21 960.8 9.09

0% 1501.0 29.84 1347.4 22.43 1123.6 12.24 1053.6 13.28 988.2 11.14 969.2 9.96

Table 4: The number of rounds vs. survival rate (s.r.) of nodes : 400×400

α

0.1 0.3 0.5 0.7 0.9 1.0

s.r. ave. std. ave. std. ave. std. ave. std ave. std. ave. std.

99% 20.4 7.70 60.8 14.17 61.0 9.30 57.8 8.90 51.6 7.13 50.0 6.40

90% 67.4 5.77 93.6 10.55 100.8 10.13 95.0 6.40 83.2 6.61 73.4 4.98

70% 118.8 23.15 144.2 29.39 148.4 30.26 145.0 29.01 136.6 28.37 129.4 25.27

50% 176.4 25.73 197.2 39.40 217.2 47.86 218.2 45.89 211.6 39.37 204.8 41.60

30% 278.2 51.06 312.6 52.66 334.4 42.34 342.4 45.40 335.6 51.29 331.0 49.56

10% 495.8 50.48 503.6 43.32 492.6 70.56 489.0 54.36 478.8 51.86 474.8 49.07

0% 813.0 92.43 728.8 92.88 691.8 76.76 615.6 81.86 567.2 79.75 515.0 51.63
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