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Abstract A certain class of symmetric and unimodal continuous distributions is
considered. The smallest and largest distributions of the absolute difference of two
independent random variables with a common distribution in the class are derived.
The results are extended to the case that any distribution in the class may be con-
taminated. As an application of the results to robust estimation, the implosion and
explosion biases of an Q-estimate for scale over a class of contaminated distributions
are derived. This contaminated distribution class is related to (c, γ)-contamination.
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1 Introduction and basic results

For a given symmetric and unimodal continuous function we consider a certain class of sym-
metric unimodal continuous distributions and derive some basic results (Proposition, Corollary).
From these results we obtain the stochastically smallest and largest distributions of the abso-
lute difference of two independent random variables with a common distribution in the class
(Theorem 1). Next we consider the case that any distribution in the class may be contaminated
and extend the results to a broader class which consists of all the ε-contaminated distributions
(Theorem 2). There are various statistics based on the absolute difference and the results have
large applicability. As an application of Theorem 2 to robust estimation, we use the contam-
inated distribution class to descrive the departure from the model distribution and derive the
implosion and explosion biases of an Q-estimate for scale (Theorems 3 and 4). The Q-estimate
was proposed as an alternative to MAD (median absolute deviation) by Rousseeuw and Croux
(1993). We notice that the class of contaminated distributions is related to (c, γ)-contamination
introduced by Ando and Kimura (2003). See Ando and Kimura (2004, 2005, 2006) for applica-
tions of (c, γ)-contamination.

Let g be nonnegative continuous unimodal function defined on the real line R which is even
and satisfies

1 ≤

∫

∞

−∞

g(x)dx < ∞.(1.1)
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For g we define Fg as the class of all continuous distributions F which has an even unimodal
continuous (on the support) density f such that 0 ≤ f ≤ g. In what follows, for any F in Fg

we use its even unimodal continuous density f . Let X and Y be independent and identically
distributed with a common F in Fg. There are a lot of important statistics based on the
abosolute difference |X − Y | and we are interested in its smallest and largest distributions.

Let F̂ and F̄ have the densities f̂ and f̄ defined as follows:

f̂(x) =

{

g(x) if |x| ≤ a,
0 if |x| > a,

(1.2)

f̄(x) =

{

g(b) if |x| ≤ b,
g(x) if |x| > b,

(1.3)

where a and b are the positive constants such that f̂ and f̄ are densities. Note that F̂ and F̄
belong to Fg.

The following basic results are used to derive main theorems.

Proposition. The following hold:

(i) sup
F∈Fg

∫

∞

−∞

{F (x + t) − F (x − t)}dF (x) =

∫

∞

−∞

{F̂ (x + t) − F̂ (x − t)}dF̂ (x), t ≥ 0,

(ii) inf
F∈Fg

∫

∞

−∞

{F (x + t) − F (x − t)}dF (x) =

∫

∞

−∞

{F̄ (x + t) − F̄ (x − t)}dF̄ (x), t ≥ 0.

Proof. (i) Let F be any element of Fg. Since F (x + t) − F (x − t) is nonincreasing in |x| and

f ≤ f̂ on [−a, a], it follows that

∫

∞

−∞

{F (x + t) − F (x − t)}f(x)dx ≤

∫

∞

−∞

{F (x + t) − F (x − t)}f̂(x)dx.(1.4)

Since f and f̂ are even, it follows that

∫

∞

−∞

{F (x + t) − F (x − t)}f̂(x)dx =

∫

∞

−∞

{F (x + t) − F (−x − t)}f̂(x)dx.

Hence
∫

∞

−∞

{F (x + t) − F (x − t)}f̂(x)dx(1.5)

=

∫

−t

−∞

{F (x + t) − F (−x − t)}f̂(x)dx +

∫

∞

−t
{F (x + t) − F (−x − t)}f̂(x)dx

=

∫

∞

−t
{F (x + t) − F (−x − t)}{f̂(x) − f̂(x + 2t)}dx.
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Since, for x > −t we have f̂(x) − f̂(x + 2t) ≥ 0 and

F (x + t) − F (−x − t) ≤ F̂ (x + t) − F̂ (−x − t),(1.6)

it follows that
∫

∞

−t
{F (x + t) − F (x − t)}{f̂(x) − f̂(x + 2t)}dx

≤

∫

∞

−t
{F (x + t) − F (−x − t)}{f̂(x) − f̂(x + 2t)}dx.

Therefore the assertion (i) follows from (1.4) and (1.5).

(ii) Let F be any element of Fg. Since f ≥ f̄ on [−b, b], it follows that

∫

∞

−∞

{F (x + t) − F (x − t)}f(x)dx ≥

∫

∞

−∞

{F (x + t) − F (x − t)}f̄(x)dx(1.7)

Since f̄ is even and unimodal, for x > −t we have f̄(x) − f̄(x + 2t) ≥ 0 and

F̄ (x + t) − F̄ (−x − t) ≤ F (x + t) − F (−x − t).

Hence it follows that
∫

∞

−∞

{F (x + t) − F (x − t)}f̄(x)dx

=

∫

∞

−t
{F (x + t) − F (−x − t)}{f̄ (x) − f̄(x + 2t)}dx

≥

∫

∞

−t
{F̄ (x + t) − F̄ (−x − t)}{f̄ (x) − f̄(x + 2t)}dx

=

∫

∞

−∞

{F̄ (x + t) − F̄ (x − t)}f̄(x)dx

This and (1.7) imply the assertion (ii). 2

Corollary. The following hold:

(i) sup
F∈Fg

∫

∞

−∞

F (x + t)dF (x) =

∫

∞

−∞

F̂ (x + t)dF̂ (x)

(ii) inf
F∈Fg

∫

∞

−∞

F (x + t)dF (x) =

∫

∞

−∞

F̄ (x + t)dF̄ (x)

Proof. It is easy to see that for any F in Fg

∫

∞

−∞

F (x − t)dF (x) = 1 −

∫

∞

−∞

F (x + t)dF (x).
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This implies that

∫

∞

−∞

F (x + t)dF (x) =
1

2

∫

∞

−∞

{F (x + t) − F (x − t)}dF (x) +
1

2
.

Therefore the corollary follows from Prposition. 2

2 Main results

The following useful theorem is readily obtained from Prposition.

Theorem 1. Let X and Y be independent random variables distributed with a common F
in Fg. Then the distribution of |X − Y | is stochastically smallest and largest under F̂ and F̄ ,
respectively, i.e.,

(i) sup
F∈Fg

PF×F (|X − Y | ≤ t) = P
F̂×F̂

(|X − Y | ≤ t), t ≥ 0,

(ii) inf
F∈Fg

PF×F (|X − Y | ≤ t) = PF̄×F̄ (|X − Y | ≤ t), t ≥ 0.

Proof. For any F in Fg we have

PF×F (|X − Y | ≤ t) =

∫

∞

−∞

{F (y + t) − F (y − t)}dF (y)

where f is a density of F . Therefore the theorem follows from Theorem 1. 2

Next, we consider the case that X and Y may be contaminated. Define the ε-contaminated
class Pg,ε of Fg as

Pg,ε = {H = (1 − ε)F + εK : F ∈ Fg, K ∈ M},(2.1)

where M is the set of all distributions on R. The following is an extension of Theorem 1.

Theorem 2. Let X and Y be independent random variables distributed with a common H in
Pg,ε. Then

(i) sup
H∈Pg,ε

PH×H(|X − Y | ≤ t)

= (1 − ε)2P
F̂×F̂

(|X − Y | ≤ t) + 2ε(1 − ε)F̂ (|X| ≤ t) + ε2, t ≥ 0,

(ii) inf
H∈Pg,ε

PH×H(|X − Y | ≤ t)

= (1 − ε)2PF̄×F̄ (|X − Y | ≤ t), 0 ≤ t < ∞,

where F̂ and F̄ are given by (1.2) and (1.3), and ∆0 is the point mass distribution at 0 .
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Proof. (i) For any H = (1 − ε)F + εK in Pg,ε we have

PH×H(|X − Y | ≤ t)

= (1 − ε)2PF×F (|X − Y | ≤ t) + 2ε(1 − ε)PF×K(|X − Y | ≤ t) + ε2PK×K(|X − Y | ≤ t).

It is easy to see that

PF×K(|X − Y | ≤ t) ≤ P
F̂×∆0

(|X − Y | ≤ t) = F̂ (|X| ≤ t)

and

PK×K(|X − Y | ≤ t) ≤ 1 = P∆0×∆0
(|X − Y | ≤ t).

Therefore the assertion (i) follows from (i) of Theorem 1.

(ii) Let ∆n be the point mass distribution at n. Then, for any H = (1 − ε)F + εK in Pg,ε we
have

PF×K(|X − Y | ≤ t) ≥ lim
n→∞

PF̄×Kn
(|X − Y | ≤ t) = 0

and

PK×K(|X − Y | ≤ t) ≥ lim
n→∞

PKn×Kn
(|X − Y | ≤ t) = 0.

Therefore the assertion (ii) follows from (ii) of Theorem 2 . 2.

Remark 1. Let F∗
g be the set of all continuous densities f such that f ≤ g. The assertions

(i) of Proposition, Corollary and Theorem 1 also hold for this broader F∗
g . These results were

proved in a different way by Ando and Kimura (2003). In this case, we note that the symmetry
and unimodality of f are not required in the definition of F∗

g . Let P∗
g,ε be the set defined by

replacing Fg with F∗
g in the definition (2.1) of Pg,ε. We can see that the assertion (i) of Theorem

2 also holds for P∗
g,ε

3 The explosion and implosion bias of an Q-estimate

As an application of the previous results, we consider the explosion and implosion biases of
an Q-estimate for robust scale estimation. To give a robust scale estimation model we need to
define a certain class of distributions. Let F0 be a specified distribution with an even unimodal
continuous density f0. For some given constants c and γ (0 < γ < 1 and c > 1− γ) we consider
the (c, γ)-symmetric unimodal neighborhood Fc,γ(F0) of F0, defined as the set of all continuous
distributions F which has an even unimodal densitiy f and satisfies f ≤ ( c

1−γ
)f0. Further we

consider the γ-contamination neighborhood Pc,γ(F0) of Fc,γ(F0), that is

Pc,γ(F0) = {H = (1 − γ)F + γK : F ∈ Fc,γ(F0), K ∈ M}.(3.1)
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The robust scale model we consider here is given as follows: Let X1, · · · ,Xn be independent
and identically distributed random variables with H. We assume that H belongs to the class

Pc,γ(Fµ,s) = {H : H(x) = (1 − γ)F (
x − µ

s
) + γK(x), x ∈ R, F ∈ Fc,γ(F0),K ∈ M},(3.2)

where µ is an unknown location parameter and s > 0 is an unknown scale parameter to be
estimated. For more details of the model (3.2), see Martin and Zamar (1993) and Ando and
Kimura (2003). Among various robust estimates for scale s, we consider an Qn-estimate given
by the kth order statistic

Qn = d · {|Xi − Xj |; i < j }(k),(3.3)

where d is a constant factor and k = (
h
2

) ≈ (
n
2

)/4, where h = [n/2]+1. The Qn was proposed

as an alternative to MADn by Rousseeuw and Croux (1993) and it has 50% breakdown point
and higher efficiency than MADn. Since Qn is location and scale equivariant, we derive the
explosion and implosion biases of Qn over Pc,γ(F0) (F0 = F0,1). The explosion bias B+

Q(c, γ)

and implosion bias B−

Q(c, γ) of the Q-estimate T over Pc,γ(F0) are defined by

B+
Q(c, γ) = sup{Q(H) : H ∈ Pc,γ(F0)},(3.4)

B−

Q(c, γ) = inf{Q(H) : H ∈ Pc,γ(F0)}.(3.5)

The asymptotic version of Qn is given by

Q(H) = dG−1
H (

1

4
) = dL−1

H (
5

8
).(3.6)

where GH and LH are the distributions of |X − Y | and X − Y , respectively. Note that LH is
symmetric about the origin.

As in Section 1, we define the densities f̂ and f̄ by

f̂(x) =

{

( c
1−γ

)f0(x) if |x| ≤ a,

0 if |x| > a,
(3.7)

f̄(x) =

{

( c
1−γ

)f0(b) if |x| ≤ b,

( c
1−γ

)f0(x) if |x| > b,
(3.8)

where a and b are the constants such that

a = F−1
0 (

c − γ + 1

2c
) and F0(b) − bf0(b) =

2c + γ − 1

2c
.

The explosion and implosion biases of the Q-estimate are obtained by next two theorems.
Although the thorems can be readily derived using Theorem 2 and GH , we give the proofs
following Rousseeuw and Croux (1993) .
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Theorem 3. Let F0 have an even unimodal continuous density f0. Then

B+
Q(c, γ) =

{

d(F̄ ∗2)−1(5−8γ+4γ2

8(1−γ)2
) if 0 ≤ γ < 1

2 ,

0 if γ ≥ 1
2 ,

(3.9)

where F̄ ∗2 denotes the convolution of F̄ .

Proof. For any H = (1 − γ)F + γK in Pc,γ(F0), Q(H) is the smallest solution of

∫

∞

−∞

H(y + d−1Q(H))dH(y) ≥
5

8
.(3.10)

Let X be distributed with F , and let Y1 and Y2 be distributed with K. Then (3.10) is expressed
as

(1 − γ)2F ∗2(d−1Q(H)) + γ(1 − γ){1 + P (|X − Y1| ≤ d−1Q(H))}(3.11)

+γ2P ((Y1 − Y2) ≤ d−1Q(H)) ≥
5

8
.

Each term in (3.11) is increasing in Q(H). Hence, Q(H) is maximized when F ∗2(d−1Q(H)), P (|X−
Y1| ≤ d−1Q(H)) and P ((Y1−Y2) ≤ d−1Q(H)) are minimized. To do this, by Theorem 1 we need
to take F = F̄ . Let K = Kn be the normal distribution N(n, n2) with mean n and variance
n2. Then, under H̄n = (1 − γ)F̄ + γKn, as n → ∞ we have P (|X − Y1| ≤ d−1Q(H)) → 0 and
P ((Y1−Y2) ≤ d−1Q(H)) → 1

2 . Substituing the lower bounds 0 and 1
2 of P (|X−Y1| ≤ d−1Q(H))

and P ((Y1 − Y2) ≤ d−1Q(H)) into (3.11), we obtain Theorem 3. 2.

Theorem 4. Let F0 have an even unimodal continuous density f0. Then

B−

Q(c, γ) =

{

Q(F̂ ) if 0 ≤ γ < 1
2 ,

0 if γ ≥ 1
2 ,

(3.12)

where Q(F̂ ) satisfies the equation

(1 − γ)2F̂ ∗2(d−1Q(F̂ )) + 2γ(1 − γ)F̂ (Q(F̂ )) + γ2 =
5

8
,(3.13)

and F̂ ∗2 denotes the convolution of F̂ .

Proof. By (3.11), Q(H) is minimized when F ∗2(d−1Q(H)), P (|X − Y1| ≤ d−1Q(H)) and
P ((Y1 − Y2) ≤ d−1Q(H)) are maximized. Hence, by Theorem 1 we choose F = F̂ and K = ∆0,
where K = ∆0 is the poit mass distribution at the zero. Then P (|X − Y1| ≤ d−1Q(Ĥ)) =
2F̂ (Q(Ĥ) − 1 and P ((Y1 − Y2) ≤ d−1Q(Ĥ)) = 1. Therefore we obtain Theorem 4. 2

Remark 2. Let P∗
c,γ(F0) be the set of defined by replacing Fc,γ with F∗

c,γ , that is

P∗
c,γ(F0) = {H = (1 − γ)F + γK : F ∈ F∗

c,γ , K ∈ M}.
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As shown in Ando, Kakiuchi and Kimura (2006), P∗
c,γ(F0) is the (c, γ)-contamination neighbor-

hood of F0 intorduced by Ando and Kimura (2003). We should notice that Throem 4 holds for
P∗

c,γ(F0).
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