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Abstract

A certain broad class of robust regression estimates in the linear model are
considered. Lower and upper bounds for the maximum asymptotic bias of the
regression estimates over the neighborhoods (called (¢, v)-neighborhoods) de-
fined by certain special capacities are derived without imposing zero-intercept
and elliptical regressors. The (¢, 7)-neighborhoods are a generalization of
Rieder’s (g, §)-neighborhoods and include e-contamination and total variation
neighborhoods, as special cases. In the case of Gaussian regressors, the lower
and upper bounds for the maximum asymptotic bias of 7-estimates are ob-
tained. Tables of their upper bounds are also given for three (Huber, Tukey,
Deninis-Welsh) score functions .
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1. Introduction

The maximum asymptotic bias By (g) of an estimate 7" when the underlying distri-
bution ranges over the e-contamination neighborhood of some central model distribution,
was first introduced by Huber (1964) for the location model. The Br(e) is one of the
most informative global quantitative measures to assess robustness of 7', because Br(¢)
shows the whole performance of T' from ¢ = 0 (the central model distribution) to the
breakdown point and under some regularity conditions its derivative Bz(0)" equals the
gross error sensitivity as a local robustness measure. Huber (1964) established that the
median minimizes Br(¢) among translation equivariant location estimates. Martin and
Zamer (1989, 1993) obtained minimax bias robust scale estimates. Adrover (1998) derived
minimax bias robust dispersion matrix estimates.

As for the linear regression model, in the case of the zero-intercept and elliptical
regressors, Martin, Yohai and Zamer (1989) obtained the minimax bias estimates in the
classes of M-estimates with general scale and GM- estimates of regression. In particular,
they showed that the least median of square estimate (LMS) introduced by Rousseeuw
(1984) is nearly minimax. Yohai and Zamer (1993) extended this result to the larger
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class of residual admissible estimates. Berrendero and Zamer (2001) obtained maximum
asymptotic bias of robust regression estimates in a broad class, which includes S-estimates,
T-estimates, R-estimates and so on, without requiring zero-intercept and/or elliptical
regressors. Their results argues against criticisms that the maxbias theory applies only
to regression models with the zero-intercept and elliptical regressors. All the authors
mentioned above adopt e-contamination neighborhoods to express deviation from the
central model.

On the other hand, Ando and Kimura (2003) introduced a neighborhood, called a
(¢,7)-neighborhood, to express deviation from the central model. The (¢, y)-neighborhood
is defined by a certain special capacity and includes e-contamination, total variation
and Rieder’s (1977) (g, 0)-neighborhoods as special cases. They characterized the (c,~)-
neighborhoods and gave their applications to bias-robustness of estimates. Among them,
there are the extensions of Huber’s (1964) and He and Simpson’s (1993) results. The
former states that the median minimizes the maximum asymptotic bias Br(c,y) over
(¢, y)-neighborhoods among translation equivariant location estimates. Ando and Kimura
(2004) derived the lower and upper bounds for Bg(c,7) of regression S-estimates over
(¢,7)-neighborhoods in the zero-intercept linear model with elliptical regressors. In the
case of Rieder’s neighborhood, the lower and upper bounds coincide and become Bg(c, 7).

In this paper, following Berrendero and Zamer (2001), without imposing the zero-
intercept and/or elliptical regressors , we derive the lower and upper bounds for Br(c,y) of
estimates in the larger class. In the case of e-contamination neighborhoods, the lower and
upper bounds coincide and this result is reduced to Theorem 1 of Berrendero and Zamar
(2001). As an important special case, we obtain the lower and upper bounds for the
maximum asymptotic bias B; (¢, ) of 7-estimates under Gaussian regressors. We also give
some tables of the upper bounds for T-estimates based on three (Huber, Tukey, Dennis-
Welsch) score functions . The use of the characterization of the (c,~)-neighborhoods is
indispensable to the derivation of our results in the paper.

The paper is organized as follows. Section 2 presents basic definitions and preliminary
results. Section 3 gives auxiliary results for verifying the main theorem. Section 4 derives
the lower and upper bounds for B, (c,7) which is the main result. Section 5 obtains the
lower and upper bounds for B (¢, ) of m-estimates under Gaussian error and regressors,
and evaluates the upper bounds for three types of 7-estimates. Their tables are also given.

2. Preliminaries

We consider the linear regression model
y = o+ 0y +u,

where ¢ = (zy,...,2,)" is a random vector in RP, 8y = (b, ...,0,) is the vector in R?
of the true regression parameters, oy is the true intercept parameter in R and the error
u is a random variable independent of x. Let Fj be the nominal distribution function of
u and G the nominal distribution function of . Then the nominal distribution function
H, of (y,x) is

(2.1) Holy, @) = /OO - /Oo Foly — ao — 6,8)dGo(s).
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Let M be the set of all distribution functions H on (RP*™!, BP*!), where B! is the Borel
o-field on RP*!. Let T be a RP-valued functional defined on M. Given a sample of inde-
pendent observations (yi, 1), - -, (Yn, €,) of size n from H, we define the corresponding
estimate of 8y as T'(H,,), where H, is the empirical distribution of the sample.

The asymptotic bias of T" at H is defined by

[SIE

bA(T H) =[(T(H) — 6,) A(T(H) — 6)]2,

where A is an affine equivariant covariance functional of & under GGy. Since we only
work with regression and affine equivariant estimates and b 4 (T', H) is invariant under
regression and affine equivariant transformations, we can assume without loss of generality
that 6y = 0 and A = I, (the identity matrix). Therefore the asymptotic bias b 4 (T', H)
is given by

(2:2) (T, H) = [ T(H)||,
where || - || denotes the Euclidean norm. We assume that T is Fisher consistent at H,
ie., T(H,) = 0.

In order to express deviation from the nominal distribution Hy we adopt the following
neighborhood of Hy introduced by Ando and Kimura (2003):

(2.3) Pu,(c,y) ={H € M : H(B) < cHyB)+~,"B € B},

where 0 < v < 1land 1 —v < ¢ < co. Note that Hy(H) is used as both a distribution
function and a probability measure for convenience. The neighborhood Py, (¢, v), which
is called a (¢, y)-neighborhood, is a generalization of e-contamination and total variation
neighborhoods: Let € and § be some given constants such that € > 0,0 > 0and e +6 < 1.
Then we have the e-contamination neighborhood Py, (1 —¢,¢) for c =1 — ¢ and v = &,
the total variation neighborhood Pp,(1,d) for ¢ = 1 and v = §, and Rieder’s (1977)
(g, 6)-neighborhood Pg,(1 — ¢, €+ 0) for c=1—¢ and v = ¢ + §. We should notice that
Pu,(c,7) is also generated by a special capacity (see Bednarski, 1981). Ando and Kimura
(2003) gives the following useful characterization of Py, (c, ).

Proposition 2.1. For0<y<1land1l—vy<c< oo it holds that
Pu,(c, v)={H=c(Hy—W)+~vK : W e Wg,\, K€ M},

where Wy, » is the set of all measures W such that W(B) < Hy(B) holds for VB € BP*!
and W(RPT) =X = (c+vy—1)/c.

Corollary 2.1. Fore>0,0>0 ande+ 4§ <1 it holds that
Pu,(1—e,e+d)={H=(1—¢c)(Hy—W)+(c+0) K : WeWy,,, Ke M},

where A =0/(1 —¢).



The maximum asymptotic bias of T over Py, (c, ) is defined as

(2.4) Bp(c,7) =sup{|T(H)| : H € Puy(c,7)}-

We consider the following class of robust estimates defined as

(2.5) (To(H), T(H)) = arg min T(Fy.0.0):

Q,

where J(-) is a robust loss functional defined on the set of all distributions on the real line
and Fy 4 is the distribution of the absolute residual (o, 0) = |y — a — 0'z| under H.
This class of estimates includes the well-known robust estimates such as S-estimates, 7-
estimates and R-estimates. We assume that .J, Fy and G satisfy the following conditions
Al and A2 corresponding to Berrendero and Zamar (2001).

Let L' be the set of all distributions F' on [0,00) and let £ be the subset of £
whose elements are continuous on (0, 00).

Al. (a) J is weakly continuous.

(b) Let FF € LT and G € LT. If F(v) < G(v) (F(v) < G(v)) for every v > 0, then
J(F) =2 J(G) (J(F) > J(G)).

(c) Let {F,} and {G,} be sequences of F,, € LI and G, € LI (n=1,2,---) such
that F,(v) — F(v) and G,,(v) — G(v), where F' and G are possibly substochas-
tic and continuous on (0,00) with G(c0) > 1 —~. If G(v) > F(v) (G(v) >
F(v)) for every v > 0, then lim,_,o J(F},) > lim, o J(G,) (lim, oo J(F,) >
limy, 00 J(Gh))-

(d) If Fe £} and G € LT, then
J(1 =) F +70s) = lim J((1 =) F +yUy) =2 J((1 = 7) F +1G),

where U, stands for the uniform distribution function on [n — £, n + 1J.

A2. Fj has an even and strictly unimodal density fo with fy(v) > 0 for every v € R,
and Pg,(0'x = a) < 1, for every 8 € R (0 # 0) and a € R.

Remark 2.1 The continuity condition Al(a) is not restrictive. In fact, J corresponding
to S-,7- and R-estimates satisfy Al(a). The e-monotonicity condition Al(c) guarantees
that the corresponding estimate T is residual admissible ( see Yohai and Zamar, 1993, for
the definition of residual admissible estimates). We should emphasize that A2 does not
require ellipticity nor continuity of regressor’s distribution.



3. Auxiliary results

Let & ={W_ g, :a € R,0 € RP} be the family of W_g , € Wg, x such that for any
&€ Rand 0 € R,
(3.1) lim (Hy—W_g,)(ly—a—0z| <v)
(0,0)—(a,0) o
— (HO - W

d7

é,A)(|y— a—0x <v), "v>0.

We let F) be the set of all such &,. In what follows, for simplicity we omit the subscript
Aof & and W g .

In order to establish an upper bound we need £ = {Wa g} and & = {W” o} defined
as follows: ’

Wa,O(B) = H, (B N {|y —a—0'z|> a0 (iz;l)}) . YBe Brtl
(3.2)
W*,Q(B) = H, (B N {|y —a—-0'z| < a,0 (l—zl)}) . YBe Bl

[0

where a_ g(n) (0 < n < 1) denotes the upper 1007% point of the distribution of [y—a—6'z|
under Hy such that

Ho(ly—oa—60'z|>a,g(m) = n
It is easy to see that f and &£* belong to F).

For any £ = {W_g} € F) let

(3.3) F*

a,O(U) = (HO—Wa,e)(|y—a—0'a:| <v), "v>0.

We note that Fj g is used as both function and measure on (R, B). Let

3.4 de = J(cF* o +70s) and me(t) = inf inf J(c FS 4+ v8p),
(3.4) ¢ =J(cFg+79) e(t) ||0||:taeR( .0 T 7%)

where g and d,, are the point mass distributions at 0 and oo, respectively.

Lemma 3.1.  Under Al(c) and A2, for any { = {W_g} € Fy there erists a(0) € R
such that
£ — 3 £
J(c Fa(O),O + 7o) = Olélel% J(c Fa,O + vdp).

Moreover, for any t > 0 there exists K; > 0 such that |«(0)| < K, for every 68 € {0 :
10| =t}



Proof. First we note that by Al(a) and A2 J(e Fa§0 + vdg) is a continuous function of
a and 6. Since, for any v > 0, lim|q| 00 Fje(v) < Fge(v), it also follows from Al(c) that

lim J(che + vdg) > J(CF§0+’)/(50)

|ar] =00

Therefore, for any @ € RP there exists Kg such that the infimum is attained in the
compact set [~Kg, Kg]. Denoting by a(8) the value of o which gives the infimum (= the
minimum), we obtain the first assertion of the lemma. We note that «(0) and K; depend
on &.

Assume that the second assertion of the lemma is not true. Then, there exist some
t > 0 and a sequence {0,} € {0 : [|0|| = t} such that lim,,_, |a(6,)] = co. Suppose
without loss of generality that 6,, — 0. For any & > 0 and v > 0 we have

n— 00

£ — £
lim [¢ F 20.).0. (v) +ydp(v)] =~ < CFa,é(v) + vdp(v).
Hence

(3.5) lim J(cF§9 0, T%) = J(cF 4 7d).

n—o0

On the other hand, the definition of a(@) implies that for any o € R,

(3.6) lim J(c F* 0.9, T 7%) < J(c FE .+ 7dp).

n— 00

It follows from (3.5) and (3.6) that J(¢ F*
lim|a) 00 /(€ F* . + vdo) > J(c F*.

0—1—750) does not depend on . This contradicts

+ vdg), which implies the second assertion. O

.0 0,0

Let F1x be the set of all § = {W_g} € F\ such that Flfa Lg(v) is strictly decreasing

in A >0for0< F]fa L) < (1 —7)/c. The next lemma shows that £ = {WaO} and
£ ={W? g} belong to Fi,.

Lemma 3.2.  Under A2, Fé 0( v) and F: kO( v) are strictly decreasing in k > 0 for
0< Fg k0( v) < (1—7)/c andO < F§ k0( v) < (1 —7)/e, respectively.

3 & :
Proof. We note that Fka,kG and Fka,k0 are expressed in the form of

. 1— vy
F/foz ke( ) min <FH0,ka,k0(v)a c ) , VU 2 0,



and
c+v—1

Ff;,ko(”) = max (FHo,ka,kO(U) - ,0> . v >0,

where F\, . g(v) is the distribution function of |y — ko — k@'z| under Hy. By Lemma

5 of Berrendero and Zamar (2001), F, . g(v) is strictly decreasing in k& > 0. Therefore,

Fje(v) and Fj*e(v) are strictly decreasing in £ > 0. O

Lemma 3.3. Let me(t) be as in (3.4). Then, under Al(c) and A2, for any £ =
{W_ g} € Fix the following results hold:

(a) There exist 8, € RP and o(0;) € R such that ||0,|| =t and me(t) = J(ch(e 0.t
Ydo)-

(b) me(t) is strictly increasing.

Proof. By Lemma 3.1, we have

<t 10)=t «0) 10)|=t [ Ko K] (cF, g+ %)

where J(c Fa§0 + 76dp) is uniformly continuous on the compact set {@ : ||@| = t} x

[— Ky, K. Therefore, M¢(0) is continuous on the compact set {6 : ||@|| =t} and there
exists ||0;]| = ¢ such that M¢(0,) = inf, g, _, M¢(0). This implies the assertion (a).

To show the assertion (b) let #; and ¢ be such that ¢; > . Define k = t5/t; < 1.
Applying the assertion (a), there exist 8, and @ such that me(t1) = M¢(601) and me(t,) =
M¢(05). Since, by & € Fiy

£ £
Fa(el),el(”) < Fka(el),kel (v),
it follows from A1(b) and the definition of «(@) that
(3.7) me(ty) > J(CFlfa(ol),kol + 7o) > J(CFj(kGI),kGI + vdp).
Also, by the definition of mg(t) and ||k6,|| = t,
(3.8) me(ty) < Me(k8,) = J(c Fj(wl),wl + 76p).
The inequalities (3.7) and (3.8) imply the assertion (b). O

The following lemma states that mg(t) is simplified under symmetry and unimodality
assumptions on the regressors distribution.



Lemma 3.4. Assume Al and A2, and that under Gy the distribution of @'z is sym-
metric, unimodal and only depends on ||0|| for all @ # 0. Then, it holds that

i (e F g+ 90) = (e F g +700) = me(16])

Proof. It is easy to check that
Fig(“) = (Hy — Wa,g)(—v +a<y—0z<v+a), "v>0.

By the symmetry and unimodality assumptions on Fj and Gy and the definition of Wa 0
we have for all o € R,

Fj,o(“) < (Hy— Wo,g)(—v <y—-0zxz<v)= F(io(v), Yo >0,
and therefore, from A1(b), it follows that

J(cFie +70y) > J(cF(f:e +78), ‘a€R.

This implies the first equality of the lemma. It is easy to see that J(c Ffe + vdp) only
depends on 6 through the value of ||8||, because Ffe is so. O

4. Main results

Let Foy be the set of all { = {W_g} € Fiy such that for any « € R and 6 € RP it
holds that
(4.1) 0< Fie(v) < F[io(v), Vv > 0.

It is easy to check that é belongs to F5,. Another example of elements of Fy) is &° =
{W;’o} defined as Wo‘le = [(c+~v —1)/c]Hy, Yo € R, € RP. In this case, we note
c(Hy — W;’e) = (1 — v)H,. The following theorem gives lower and upper bounds for the
maximum asymptotic bias Brp(c,7).

Theorem 4.1. Let T be a regression estimate defined by (2.5). Then

where



Proof. Let t* be such that dg« = mg(t"). First, we show By (c,v) <t*. Let 6 € R’ be

such that ||@|| = ¢ > t*. Tt is enough to show that for any H € Py, (c,y) and any a € R
we have

(4.2) J(FH@,Q) > J(FH,O,O)'

It is clear that for any H = ¢ (Hy — W) + vK € Py, (¢,7), « € R and v > 0,

(4.3) FH,a’é(v) = CFE,Q(U) + fYFK,a,é(U) < cFié(v) + vdp(v),

where { = {W_pg} € F) is defined as W _g = W for any o € R and 6 € RP. From (4.3),
A1(b), the definition of m¢(t) and Lemma 3.3 (b) it follows that for any H € Py, (c, )

H,a,e (2]
The condition dg- = mg(t*) and Al(d) imply

(4.4) JEF. ) > J(ch o+ 700) > mg(t) > me(t),

(45)  mg(t") = lim J(cFy o +Un) 2 lim J(c Fy o +7Ua) 2 J(Fyo0)-
Noting t* = mgl(dg*), we obtain Br(c,y) < Brp(e,v) from (4.4) and (4.5).

Next, we show Brp(c,v) > mgl(dg), VE € Foy. Let t; = mgl(d,g) and let t < ¢;. We
find a distribution H € Pp,(c,v) such that |T(H)|| > t. By Lemma 3.3(a), there exist
0, and o such that me(t) = J(c th 9, +70p). Define H, = d,, 2., where &, = nf, and
Yn is uniformly distributed on the interval lay +nt? — £ oy +nt? + 1] If F, is the uniform
distribution function on [—1, 1], then for any 3 € RP, v >0 and a € R

(4.6) Fﬁn,aﬂ(v) = F,(vta—a —n(t*—0386,))
—F(—v+a—a;—n(t* — 36,)).

For any £ = {W _g} € Fox let H(, 0) = ¢ (Hy—W,_ g) +vH, € Pu,(c,7). Suppose that
sup, g [T (H(«,0))|| < ¢ to find a contradiction. Then, for any & € R and 6 € RP
there exists a convergent subsequence, {T (HS(c, 8))}, such that

lim T(HE (e, 0)) = lim 65(cr,0) = 6°(0,0), where [8°(c,0)|| = #¥(cr,0) < 1.

n— 00

Since t* — 6,0, = 0, it follows from (4.6) that

(4.7) lim Fy 9,(v) =1, "v>0.

We show that for any o € R and @ € RP the subsequence of intercepts corresponding
to 6% (a, ), denoted by {Ty(HE(a, )} = {ad(a, @)} converges to a finite &(a, 8). To
do this, assume lim,,_,, |a5(a*, 0)] = oo for some o* € R and 6* € RP. Then, it follows
from (4.7) that



lim o0 Fyre o 0°).08 007,65 (0.0 (Y)

=T hm Fﬁn,ag a*, 0 06 a*, 0* (U)

n—00
(4.8) < cFyw 0*)7at70t( v) + o (v)
= i P 0)0.0,(0) 0> 0.

Hence, by Al(c) we have
Ty 0 0708 0 071050 07)) 7 T Pt 0,008

for large enough n. This fact contradicts the definition of (a4 (a*, 8%), 8% (a*, 8%)). There-

fore, for any o and 6 we have lim,,_, ., |a4 (a, 0)| = a*(a, 8) < co. Since t?— |00 g(a 0)| =
t2 — tt¢(ar, @) > 0, it follows from (4.6) that

n—0o0

Hence, by (4.9) and £ € Fy we have

lim F = cF*
n1—>11;.10 E[5 Oé 0 0),03(0&,0) (U) ¢ d&(a’O)’og(a’O)
(4.10) < CF[iO(U)
= lim [¢ Fo(v) + 1Ua(v)], Yo >0
By Al(c) and A1(d) we have
. : £
(4.11) i, J(FHﬁ(a,e),ai(a,G),Gi(aﬂ)) = Jim J(c Foo +7Un)
= dg = mg(tl).
From (4.7) it follows that
(4.12) lim Fpe . 9).,.0,0) = cFi,ot(v) + 80 (v)
The equation (4.12) and Lemma 3.3(b) imply
(4.13) Tim J(Fpe o 0)0.0,) = J(cF‘io +980) = me(t) < me(ty).

By (4.11) and (4.13), we have
J(FH£ (a, 0 (a, 0 05 ae ) > J(FHS(aae)aatyet)

for large enough n. This inequality is a contradiction because of (af (v, 8),85(a,0)) =
argmin, g.J(Fye, g, 3)- Thus, for any ¢t < £, we obtain sup, g ||T(H5(a, 0))| > t.
This completes the proof. O

Remark 4.1.  When ¢ =1-¢and v =¢ (ie., the e-contamination case), we have
A =0 and & = &*. Therefore Theorem 4.1 is reduced to Theorem 1 of Berrendero and
Zamar (2001).
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5. S- and T-estimates in the normal distribution case

We consider S-estimates and 7-estimates in the case that H, is the multivariate normal
distribution N (0, I,;;) with mean vector 0 and covariance matrix I,;;. We denote by
¢ the density of the standard normal distribution ®. For any & = {W_g} € F) let <pi 0
denote the density of Fj 0 Let F3y be the set of all { = {W_ g} € Fyy such that <pg 0 is
expressed in the form of ’ ’

1 )
3 _ v
()0 V)= ¢ ) v Z 07
00 V 1+ 1102 6<\/1+II6’||2)

where ¢ (0 < ¢¢ < 2¢) is some measurable function such that

/00 Pe(v)dv = Lo T

0 c

It is easy to see that £ = {Wa g} and £ = {W? g} belong to F;,.

Let x; and ys be score functions satisfying the following conditions:

A3. (a) The functions x; and y» are even, bounded, monotone on [0, c0), continuous
at 0 with 0 = x;(0) < x;(c0) = 1,i = 1,2 and with at most a finite number of
discontinuities.

(b) The function y. is differentiable with 2x,(v) — x4 (v)v > 0.

The S-estimate (Rousseeuw and Yohai,1984) is defined with J(F') = S(F'), where

(5.1) S(F) = inf{s>0 . Er [Xl (%)] gb}, 0<b<l.

For any £ = {W_g} € Fsy let

_ AN Y\ ¢ .
gg,i(S) - EF§,0Xi <_> = /0 Xi (;) @o,o(y)dy, 1=1,2.

S

The following theorem gives the lower and upper bounds for the maximum asymptotic
bias Bg(c, ) of S-estimates based on ;.

Theorem 5.1.  Assume that the nominal distribution Hy is N(0,I,41). Then

ES(Ca f)/) S‘BS(Ca f)/) SES(Ca 7)7 if 7<min(b71_b)a

Bs(c, ) = o0, if v > min(b, 1 —b),

where

52 Bs(e, ) = \Hggl () ot (2))




and

(5.3) Bs(c,v) = s J {gg,i (?) s (g) }2 -1

Proof. It follows from (5.1) and Lemma 3.4 that

. _ b—

C

and ;
e s(161) = Ste g + o) =i+ o} (2).

c
Hence, solving my 4(||0]]) = dg- in [|0]], we obtain (5.2). Similarly, we can obtain (5.3).
Assume b < 0.5. Then we have min(b, 1 — b) = b,

L [(b—7 ) L [b—7
l‘ *1 - d l 01 —_— =
'yITI‘nb 9.5 1 ( B ) O an vl%nbgg )1 ( c ) 0

Therefore, lim, 1 , Bs(c,7) = lim,, 1  Bg(c,v) = oo. This completes the proof. O

The 7-estimate (Yohai and Zamar, 1988) is defined with J(F) = 7%(F), where

m(F) = S*(F)Erx <%> |

As shown in Yohai and Zamar (1988), 7-estimates inherit the breakdown point of the
initial S-estimate defined by y; and their efficiencies are mainly determined by Yys.

The following theorem gives the lower and upper bounds for the maximum asymptotic
bias B; (¢, 7y) of T-estimates which shows how B (c, ) relates to the maximum asymptotic
bias Bgs(c,y) of the initial S-estimates based on ;.

Theorem 5.2.  Assume that the nominal distribution Hy is N(0,I,41). Then

B.(c, v) < B:(c, 7) < B:(c, 7),

where

(5.4) Bi(c,7) = {[1+Bs(e,7)]He. gle,y) — 132

(55) ET(C, ’y) = sup {IVQ&I(



Proof. We note that

and that

me,(|10]) = 7*(cFy g +700)

—0'z
5.6 — 2 g.CEAX<?J >
( ) 575(“ ||) Fs,o 2 mé,s(HoH)

= (1+]6 lggi (g)]:yf (9 '

Solving mg ,(||€]]) = d¢-, we obtain.

1011 = m; (de) = {(1 + Bs(c,7)*) He. gl ) — 1312

which implies (5.4). Similarly, we can obtain (5.5). O

Remark 5.1. We can easily check that S (based on y;) and 72 (based on y; and x2)
satisfy Al(a) under A3. As pointed out in Berrendero and Zamar (2001), we can see that
S and 72 also satisfy A1(b), Al(c) and A1(d) under A3.

Remark 5.2.  The upper bound Bg(c,v) in (5.2) is the same as (4.7) in Ando and
Kimura (2004). Note that he(7) in (4.7) satisfies the relation he(7) = g¢,1(2). We should
<1

notice that when y; is a jump function, Bg(c,y) = Bs(c,) holds for ¢ (see Theorem
4.1 of Ando and Kimura, 2004).

Remark 5.3. Regarding the intercept estimates, we can see the arguments in Section 7
of Berrendero and Zamar (2001). Here, we should point out that a (¢, 7)-neighborhood
version of their Theorem 6 is also obtained.

We give some tables of the upper bounds B; (¢, ) for the asymptotic bias of T-estimates
based on the following three score functions x; and y»:

(a) Huber score function:
XH(y) = min{(y/cH)27 1}7
X1 = xg with cg =1.041 and xy = xg with ¢z = 2.832.
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(b) Tukey score function:

xr(y) = min{3(y/cr)”* —3(y/er)* + (y/er)®, 1},
X1 = xr with ¢ = 1.548 and y9 = xr with ¢ = 6.039.

(c) Dennis-Welsch score function:

XDW(y) =1- exp{_(y/CDW)Z}a

X1 = Xpw Wwith cpyy = 0.816 and x9 = xpw with cpy = 4.043.

For comparison we also consider the following score function.

(d) Jump score function:

_ 0, y<g,
M@_{L y > cs,

X1 = X2 = Xs with ¢, = 0.67

The constants cy, ¢y, cpw and c¢; are chosen so that the corresponding 7-estimates
have 95% efficiency and 0.5 breakdown point. Note that 7-estimates are reduced to S-
estimates in the case of x; = 2. Tables 1,2 and 3 exhibit B, (¢, ) for T-estimates based on
Huber, Tukey and Dennis-Welsch score functions, respectively. Table 4 presents Bg(c, )
for the S-estimate based on the jump score function. As pointed out in Remark 5.2, we
have Bs(c,vy) = Bs(c,v) for ¢ <1 (taking ¢ =1 — ¢ and v = € + §, we have Rieder’s
(g,6)-neighborhood case). In all the tables, B,(c,v) and Bg(c,7) on the diagonal lines
correspond to y-contamination neighborhoods Pp, (1 —+,~) and are equal to B,(1—~,7)
and Bg(1 —~,7), respectively. We can see that Huber type 7-estimate gives the smallest
B, (c,~) among the three types of T-estimates and Tukey type T-estimate does the second
smallest one. Although the S-estimate based on the jump score function, which has
minimax bias in the class of M-estimates with general scale for the y-contamination case,
its efficiency is not high ( at most 33 %, see Hossjer, 1992).
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Table 1: B, (c, v) (Huber score function)

c\~v| 0.00 | 0.01 | 0.02 | 0.03 | 0.05 | 0.10 | 0.15 0.20 0.25 0.35 0.45

055 | — — — — — — — — — — 20.22
0.65| — — — — — — — — — 5.05 26.03
0.7 | — — — — — — — — 2.63 6.54 32.16
0.80 | — — — — — — — 2.00 3.11 7.31 35.37
085 — — — — — 1.52 2.44 3.62 8.10 38.58

1.10 | 1.92 2.87 4.13 8.90 41.94

09 | — | — | — | — | —
095| — | — | — | — | 071 146| 227 | 329| 464 970 | 45.14
097 — | — | — | 053 086| 1.59| 240 | 345| 483 | 10.03| 46.59
098 | — | — | 042 0.62| 093] 1.64 | 247 | 353| 494| 1019 | 47.25
099 | — | 029 053] 070 | 0.99| 1.70| 254 | 3.61| 504 | 1036 | 47.87

1.00 | 0.00| 042) 061| 076 | 1.05| 1.76 | 2.60 3.69 5.14 | 10.52 48.68
1.10 | 0.84 | 097 | 1.11| 1.24| 152 | 2.29 | 3.25 4.48 6.14 | 12.19 55.40
1.20 | 1.20 | 1.34 | 148 | 163 | 193 | 2.80 | 3.88 5.28 7.15 | 13.90 62.45
1.50 | 2.08 | 228 | 247 | 268 | 3.10| 430 | 5.79 7.70 | 10.22 | 19.15 84.29
200 | 347 397 | 407 | 438 | 5.02| 6.84| 9.06 | 11.87 | 15.56 | 28.42 | 123.01
3.00 | 629 | 683 | 737 | 791 | 9.05|12.18 | 15.95 | 20.68 | 26.90 | 48.12 | 205.18
5.00 | 12.32 | 13.39 | 14.44 | 15.48 | 17.67 | 23.70 | 30.79 | 39.68 | 51.21 | 90.43 | 379.09
10.00 | 28.94 | 31.37 | 33.82 | 36.35 | 41.38 | 55.18 | 71.56 | 91.73 | 117.22 | 208.27 | 863.63

c¢\~v| 0.00 | 0.01 | 0.02 | 0.03 | 0.05 | 0.10 | 0.15 0.20 0.25 0.35 0.45

05| — | — | — | — [ — [ =1 = — — — 24.40
065 — | — | — | — | — | — | — — — 6.42 |  31.66
05| — | — | — | — | — | — | — — 342 | 872 | 39.46
080 | — | — | — | — | — | — | — 2.61 | 4.14| 987 | 4334
08| — | — | — | — | — | — | 1.97| 3.19| 481 | 11.04| 47.50
090 | — | — | — | — | — | 143| 245| 372| 546| 1222 51.62
095 — | — | — | — | 091| 1.82| 28| 423| 6.11| 1342 | 55.80
097 | — | — 0.68 | 1.06 | 1.95| 3.02| 443 | 6.37| 13.88| 57.60

098 | — — 054 076 | 1.13| 2.02| 3.10 4.53 6.51 | 14.13 08.42
099 | — 038 | 0.63 | 0.83| 1.18| 2.08| 3.18 4.63 6.64 | 14.37 59.25
1.00| 0.00| 049 | 071 | 089 | 1.24 | 215 | 3.26 4.73 6.77 | 14.61 60.20
1.10 | 0.82 | 1.02| 1.20| 138 | 175 | 2.77 | 4.05 5.74 8.08 | 17.05 68.77
120 1.19| 139 159 | 179 220 3.37 | 4.83 6.75 9.40 | 19.52 77.62
1.50 | 2.08 | 237 | 265| 293 | 3.52| 516 | 7.20 9.87 13.5 | 27.23 | 105.26
200 | 348 | 3.93 | 437 | 481 | 5.72| 8.24 | 11.31 | 15.28 | 20.63 | 40.62 | 153.33
3.00 | 633 | 714 | 794 | 8.73|10.34 | 14.74 | 20.03 | 26.79 | 35.79 | 69.45 | 256.06
5.00 | 12.43 | 14.03 | 15.59 | 17.16 | 20.32 | 28.83 | 38.86 | 51.54 | 68.56 | 130.78 | 476.23
10.00 | 29.11 | 32.93 | 36.65 | 40.38 | 47.59 | 67.51 | 90.73 | 119.83 | 158.96 | 301.82 | 1076.98
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Table 3: B,(c, v) (Dennis-Welsch score function)

c\~v| 0.00 | 0.0l | 0.02 | 0.03 | 0.05 | 0.10 0.15 0.20 0.25 0.35 0.45

055 | — — — — — — — — — — 28.25
0.65 | — — — — — — — — — 7.66 37.04
0.7 | — — — — — — — — 4.05 | 10.57 46.35
080 | — — — — — — — 3.07 492 | 12.01 51.17
085 — — — — — — 2.31 3.76 5.72 | 13.46 56.06
090 | — — — — — 1.67 2.85 4.37 6.50 | 14.92 61.04
095 | — — — — 1.06 | 2.10 3.33 4.97 7.29 | 16.40 66.09
097 | — — — 079 | 1.21 | 2.25 3.52 5.21 7.60 | 16.99 68.12
098 | — — 0.63 | 0.87 | 1.28| 2.32 3.61 5.33 7.76 | 17.29 69.15
099 | — 044 | 072 094 | 1.34| 2.39 3.70 5.45 792 | 17.59 70.17

1.00 | 0.00 | 054 | 079 | 1.00 | 140 | 247 3.79 5.57 8.07 | 17.89 71.20
1.10 | 0.83 | 1.07| 1.29 | 151 | 1.95| 3.17 4.71 6.77 9.66 | 20.92 81.61
1.20 | 1.19 | 145 1.70| 194 | 245 | 3.85 5.63 799 | 11.27 | 24.01 92.24
1.50 | 2.09 | 246 | 282 | 3.18 | 3.90 | 5.92 8.42 | 11.71 | 16.23 | 33.55 | 125.23
200 | 348 | 4.08 | 465 | 522 | 6.36 | 948 | 13.28 | 18.19 | 24.90 | 50.25 | 183.11
3.00 | 634 | 743 | 847 | 9.49 | 11.54 | 17.03 | 23.60 | 32.00 | 43.36 | 85.84 | 306.47
5.00 | 12.45 | 14.62 | 16.69 | 18.71 | 22.73 | 33.36 | 45.95 | 61.90 | 83.29 | 162.66 | 572.37
10.00 | 29.19 | 34.37 | 39.29 | 44.07 | 53.52 | 78.32 | 107.40 | 144.00 | 192.81 | 372.75 | 1297.44

Table 4: Bg(c, ) (Jump score function)

c¢\~v| 0.00 | 0.01 | 0.02 | 0.03 | 0.05 | 0.10 0.15 0.20 0.25 0.35 0.45

055 | — — — — — — — — — — 14.77
0.65 | — — — — — — — — — 3.96 18.29
0.7 | — — — — — — — — 2.01 4.95 21.90
080 | — — — — — — — 1.51 2.30 5.46 23.73
085 — — — — — — 1.14 1.76 2.59 5.97 25.58
090 | — — — — — 0.82 1.36 2.01 2.88 6.49 27.45
095 — — — — 0.52 | 1.05 1.58 2.25 3.17 7.01 29.34
097 | — — — 039 | 0.63 | 1.13 1.67 2.35 3.29 7.22 30.09
098 | — — 031 0.45]| 0.68 | 1.17 1.71 2.40 3.35 7.33 30.47
099 | — 0221 039 051] 0.72 ] 1.21 1.75 2.44 3.41 7.44 30.85

1.00 | 0.00| 031 | 045 | 056 | 0.77 | 1.25 1.80 2.49 3.46 7.54 31.24
1.1 073 ] 082 090 099 | 1.17| 1.64 2.22 2.98 4.06 8.61 35.08
1.2 1.09| 117 | 126 | 134 | 151 | 2.01 2.64 3.47 4.66 9.70 38.97
1.5 2.01| 210 2.19 | 229 | 250 | 3.10 3.89 4.96 6.50 | 13.05 50.91
20| 347 | 359 3.71 | 3.84| 413 | 4.96 6.05 7.595 9.70 | 18.89 71.52
30| 650 | 669 | 689 | 710 | 7.55 | 888 | 10.64 | 13.05 | 16.52 | 31.24 | 114.59
5.0 | 3.05 | 13.40 | 13.76 | 14.15 | 14.97 | 1740 | 20.60 | 24.97 | 31.24 | 57.69 | 205.51

10.0 | 31.24 | 32.02 | 32.83 | 33.69 | 35.51 | 40.94 | 48.04 | 57.69 | 71.52 | 129.37 | 447.93
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